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Abstract Synchronous electrical activity in di�erent brain regions is generally
assumed to imply functional relationships between these regions.
A measure for this synchrony is electroencephalography (EEG) co-
herence. Recently, we developed a new method for data-driven
visualization of high-density EEG coherence, avoiding the visual
clutter of conventional data-driven methods. It uses the concept of
maximal clique detection, having time complexity O(3n/3) with n
the number of vertices. Here, a more e�cient clustering method is
used with time complexity O(n2 log n), based on a watershed algo-
rithm which is modi�ed to detect cliques in a greedy way. Here, it
obtains a speedup of factor 400 while results are similar, making
interactive visualization of high-density EEG coherence feasible.
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1. Introduction

Electroencephalography (EEG) measures the electrical activity of the brain
using electrodes attached to the scalp at multiple locations. Synchronous
electrical activity in di�erent brain regions is generally assumed to imply
functional relationships between these regions. A measure for this synchrony
is EEG coherence [6,9]. Visualization of high-density EEG (at least 64 elec-
trodes) is not always managed well [12�14]. For the analysis of high-density
EEG coherence, EEG researchers often employ a hypothesis-driven de�ni-
tion of certain regions of interest (ROIs). In these ROIs, all electrodes are
assumed to record similar signals, because of volume conduction e�ects [8].
As an alternative to the hypothesis-driven approach, we previously intro-
duced a data-driven visualization of ROIs which shows less clutter than
conventional data-driven methods [14]. It is based on a graph with ver-
tices representing electrodes and edges representing signi�cant coherences
between electrode signals. The data-driven version of a ROI is called a



functional unit (FU) and is represented in the graph by a clique consisting
of spatially connected vertices [14].

Our existing maximal clique based (MCB) method clusters vertices into
FUs using the concept of maximal clique detection [2], having time complex-
ity O(3n/3) with n the number of vertices [15], which we extended to �nd
sets of spatially connected vertices [14]. With an interactive visualization
of EEG coherence in mind, we here present a new method with time com-
plexity O(n2 log n), based on the concept of the watershed transform [11]
which is adapted to detect cliques in a greedy way. We refer here to the
more e�cient new method as watershed based (WB) method.

2. Preliminaries

2.1 EEG Data

EEG can be recorded using up to 512 electrodes attached to the scalp. A
conductive gel is applied between skin and electrodes to reduce impedance.
The electrical potential is measured at all electrodes simultaneously. The
measured signals are ampli�ed, resulting in one recording channel for ev-
ery electrode. If there are many electrodes, the term `multichannel' or
`high-density' EEG is used. As a result of volume conduction [8], multiple
electrodes can record a signal from a single source in the brain. There-
fore, nearby electrodes usually record similar signals. Because sources of
activity at di�erent locations may be synchronous, electrodes far apart can
also record similar signals. A measure for this synchrony is coherence, cal-
culated between pairs of signals as a function of frequency. The coher-
ence cλ as a function of frequency λ for two continuous time signals x
and y is de�ned as the absolute square of the cross-spectrum fxy normal-
ized by the autospectra fxx and fyy [6], having values in the interval [0, 1]:
cλ(x, y) = |fxy(λ)|2

fxx(λ)fyy(λ) . An event-related potential (ERP) is an EEG record-
ing of the brain response to a sensory stimulus. For L repetitive stimuli,
the EEG data can be separated into L segments, each containing one brain
response. A signi�cance threshold for the estimated coherence is then given
by [6]

φ = 1− p1/(L−1), (1)

where p is a probability value associated with a con�dence level α, such that
p = 1−α. Throughout this paper, we use p = 0.05, unless stated otherwise.

2.2 Graph Theory

A graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ V × V . The vertices u and v are called neighbors or adjacent if there
is one edge between them. The neighborhood of vertex v is the collection of



all neighbors of v. In a directed graph, the set E consists of ordered pairs
of vertices from V . In an undirected graph, the pairs are not ordered. A
directed edge is denoted as e = (u, v), an undirected edge as e = {u, v}; u
and v are called incident with e, and e is said to be incident with u and
v. A walk between two vertices is a sequence of edges (e1, ..., en), with
vertices v0, ..., vn such that ei = {vi−1, vi}. If a walk exists between two
vertices, they are called connected. For a graph G = (V,E) and V ′ ⊆ V ,
the set of all edges with both vertices in V ′ is denoted as E|V ′. The graph
G′ = (V ′, E|V ′) is called the (vertex-) induced subgraph on V ′. If V ′ ⊂ V
and E′ ⊂ E|V ′, then G′ = (V ′, E′) is called a subgraph. If any two vertices
in G = (V,E) are connected, G is called a connected graph. A maximal
connected subgraph of G is a connected component. If all two-element
subsets of V are edges, then G = (V,E) is a complete graph. A clique is a
set V ′ ⊆ V such that the induced subgraph on V ′ is a complete graph. A
maximal clique is a clique which is not a subgraph of a larger clique. For
more background information on graphs, see, e.g., [7].

3. Data Representation

3.1 Experimental Setup

Here, brain responses from three young adults are studied, recorded using
an EEG cap with 119 scalp electrodes. During a so-called P300 experiment,
each participant was instructed to count target tones of 2000Hz (proba-
bility 0.15), alternated with standard tones of 1000Hz (probability 0.85)
which were to be ignored. After the experiment, the participant had to re-
port the number of perceived target tones. For each dataset, brain reactions
to 20 target tones were recorded in L = 20 segments.

A procedure from Neurospec (www.neurospec.org) was adopted to com-
pute the coherence. Frequencies between 1 and 30Hz are typically stud-
ied clinically. We calculated the coherence within a lower (1-3Hz) and a
higher (13-20Hz) EEG frequency band, because EEG synchrony behaves
di�erently for lower and higher frequencies [9, 10]. For 119 electrodes, in
total 7021 coherence values were computed per frequency band. If the con-
ductive gel accidentally connected two adjacent electrodes, very high coher-
ences were measured. Coherences higher than 0.99 were therefore ignored.

3.2 EEG Coherence Graph

The data are represented by a coherence graph with vertices representing
electrodes. Coherences above the signi�cance threshold (Eqn. 1) are repre-
sented by edges, coherences below the threshold are ignored.

To determine spatial relationships between electrodes, a Voronoi dia-
gram is employed which partitions the plane into regions with the same
nearest vertex. For EEG data, the vertex set equals the set of electrode



positions (Figure 1). The vertices are referred to as (Voronoi) centers, the
boundaries as (Voronoi) polygons. The area enclosed by a polygon is called
a (Voronoi) cell. We call two cells Voronoi neighbors if they have a bound-
ary in common. A collection of cells C is called Voronoi-connected if for
a pair φ0, φn ∈ C there is a sequence φ0, φ1, ..., φn of cells in C with each
pair φi−1, φi consisting of Voronoi neighbors. We use the terms �Voronoi
neighbor� and �Voronoi-connected� interchangeably for cells, vertices, and
electrodes.

Figure 1. Voronoi diagram, with (a
subselection of all) electrode labels in
the corresponding cells (top view of the
head, nose at the top). To improve
the readability, the Voronoi diagram
is stretched horizontally. The bound-
ary is the convex hull of all electrodes.
Because the coherence computation is
independent of distance, distances be-
tween electrodes do not need to be pre-
served. However, spatial relationships
between electrodes are maintained.

4. Vertex Clustering

4.1 Existing Maximal Clique Based (MCB) Method

A functional unit (FU) is a clique consisting of Voronoi-connected ver-
tices [14]. Consequently, an FU corresponds to a Voronoi-connected set
of electrodes in which the electrodes record pairwise signi�cantly coherent
signals. Our existing FU clustering method for high-density EEG coher-
ence [14] uses maximal clique detection [2], which we extended to �nd sets of
Voronoi-connected vertices. Every vertex can be part of multiple (Voronoi-
connected) maximal cliques. To assign a unique label to every vertex, a
quantity total strength is de�ned for a (sub)graph G = (V,E) as the sum
of all edge values. This value is not normalized for the size of E. Conse-
quently, if two graphs have an equal average coherence, the graph with more
vertices has a higher total strength. Next, all cliques are queued in decreas-
ing order by their total strength. Then the following labeling procedure is
repeated, until there are no more cliques or until all vertices are labeled.
The �rst clique is removed from the queue, and all its vertices are assigned
a unique label and are removed from the other cliques. If necessary, the
changed cliques are separated into Voronoi-connected components. For all
changed cliques, the total strength is recomputed before they are put in the
appropriate position in the sorted queue. After completion of the labeling
procedure, every set of identically labeled vertices is an FU.



The worst-case time complexity of maximal clique detections is O(3n/3),
with n the number of vertices [15]. In practice, performance of maximal
clique detection strongly depends on graph structure [16].

4.2 New Watershed Based (WB) Method

As an alternative to the MCB method, we present here a greedy method
approximating maximal cliques on the basis of the watershed transform [11].
In the usual watershed algorithm, a subset of all local minima is selected
as markers. Markers are labeled and are associated with basins. Basins
contain vertices with the same label as the corresponding marker and are
extended as follows, using the watershed implementation based on ordered
queues [1]. The �rst vertex v is removed from a queue of vertices sorted in
decreasing order of priority. Every unlabeled neighbor v′ of v receives the
same label as v and is put into the queue with a priority depending on the
value of v′, but not higher than the priority of v. This continues until the
queue is empty.

Now we modify the usual watershed transform in order to obtain spa-
tially connected sets of electrodes, where all electrodes in a given set have
recorded mutually signi�cantly coherent signals. This modi�cation concerns
two steps in the watershed transform: (i) choice of markers; (ii) use of an
edge queue instead of a vertex queue. We explain these two points in more
detail.

First, we de�ne a marker as an electrode recording a signal that is lo-
cally maximally coherent with signals of its spatially neighboring electrodes.
Because the EEG coherence graph has edge values instead of vertex values,
we �rst assign a coherence value to each vertex by computing the average
of the edge values between this vertex and all its Voronoi neighbors. Then,
we select all vertices which are local maxima as markers to be associated
with basins, because those vertices are locally maximally similar to their
spatially neighboring vertices. Note that we choose all local maxima as
markers, instead of a small subset as is usually done when the watershed
algorithm is applied to digital images. In our case the over-segmentation
problem is less severe, because the number of electrodes is an order of mag-
nitude smaller than the number of pixels in an image. If the number of
basins (i.e., clusters) found is still too large, we can suppress basins below
a certain size in a post-processing step (see section 6).

The second point concerns the type of queue we use. Whereas the usual
queue-based implementation of the watershed transform uses a vertex queue
sorted in increasing order of gray value, we use an edge queue sorted in
decreasing order of coherence value. (The vertex values are only used for
de�ning the markers, as indicated above.) In case the coherence graph has
multiple identical edge values (which did not occur for our datasets), an
ordered queue consisting of queues with identically valued elements can be
used, as for digital images which usually contain multiple identically valued



vertices [1].
This queue is initialized with edges (corresponding with a signi�cant

coherence) between markers and their Voronoi neighbors. The �rst edge
(v, v′) in the queue corresponds to the highest similarity (coherence) between
any vertex v′ outside and a Voronoi neighboring vertex v inside a basin.
Therefore, vertex v′ is the �rst candidate to be added to a basin.

The greedy WB method maintains the following dynamic vertex sets for
the detection of Voronoi-connected cliques.

• bsni contains a sorted list of the vertices in basin i.

• L(v) contains the basin label of vertex v.

• adjCohBsni contains a list of vertices (sorted by vertex number) which
are adjacent to each of the vertices in bsni in the coherence graph.

• queue contains edges in decreasing order. When vertex v receives a
label, an edge e = (v, v′) is added to queue for each unlabeled Voronoi
neighbor v′ of v, provided that the corresponding edge value exceeds
the signi�cance threshold (Eqn. 1).

The main procedure consists of the following steps. Remove the �rst edge,
say e = (v, v′) from queue. In case vertex v′ was also labeled between the
insertion and removal of e = (v, v′), nothing is done and the procedure
continues with a new edge. Otherwise (v′ is unlabeled), there are two cases.
In case v′ ∈ adjCohBsnL(v), v′ receives label L(v) and v′ is added to bsnL(v);
adjCohBsnL(v) is replaced by its intersection with the neighborhood of v′

in the coherence graph; queue is extended with the edges between v′ and
its Voronoi-neighbors, provided that corresponding edge values exceed the
signi�cance threshold. In the other case, if v′ /∈ adjCohBsnL(v), v′ is not
labeled (yet). This procedure is repeated until queue is empty. Each basin
then corresponds to an FU.

The WB vertex clustering procedure is described below in pseudocode.
The operation insertEdgeSort(e(v, v′),queue) inserts edge e(v, v′) into the
appropriate position in a decreasingly sorted edge queue queue; similarly,
insertVSort(v,vqueue) inserts vertex v into the appropriate position in a de-
creasingly sorted vertex queue vqueue; dequeue(queue) returns and removes
the �rst edge from an edge queue queue; intersect(.,.) gives the intersection
of two sorted vertex sets. The size of a vertex set is denote by | . |.

The creation of the sorted edge queue (step 1) has time complexity
O(m log m) = O(n2 log n), where n denotes the number of vertices and
m = n(n−1)

2 the maximal number of edges. Then (step 2), for every edge e =
(v, v′) in the queue with unlabeled v′ (queue length O(m) = O(n2)), the
following steps are executed consecutively: (a) binary search (O(log n)) is
used to verify the presence of v′ in the set adjCohBsnL(v), a sorted set
of at most n vertices; (b) two sorted vertex sets (with maximum size n)
are intersected (O(n)); (c) Voronoi-neighbors of v (at most n) are inserted



Algorithm 1 WB pseudocode.

Input: V is the vertex set; marker(i) = marker i ;
c(v, v′) = coherence(v, v′) = c(v′, v); φ = sign. threshold
adjCohv = {v′ ∈ V | c(v,v′) ≥ φ};
adjVorv = {v′ ∈ V | v′ ∈ Vor.-neighborsv & v′ ∈ adjCohv};
{adjCohv, adjVorv are both sorted by vertex number}

Output: bsni is basin i (i.e., an FU) sorted by vertex number
Initialization:
1: queue ← ∅ {queue of edges}
2: for all v ∈ V do

3: L(v) ← 0 {L(v) = label of vertex v}
4: end for

5: for i = 1 to |marker| do
6: bsni ← marker(i); v ← marker(i); L(v) ← i
7: adjCohBsnL(v) ← adjCohv

8: for all v′ ∈ adjVorv do

9: insertEdgeSort(e(v,v′),queue)
10: end for

11: end for

Main:
12: while queue 6= ∅ do
13: e(v, v′) ← dequeue(queue)
14: if L(v′) = 0 then

15: if v′ ∈ adjCohBsnL(v) then

16: adjCohBsnL(v)←intersect(adjCohBsnL(v),adjCohv′)
17: L(v′) ← L(v); bsnL(v) ← insertVSort(v′,bsnL(v))
18: for all v∗ ∈ adjVorv′ do

19: if L(v∗) 6= 0 then

20: insertEdgeSort(e(v′, v∗),queue)
21: end if

22: end for

23: end if

24: end if

25: end while



into the edge queue (O(n log m) = O(n log n)). Step c has a higher time
complexity than a and b. However, step b and c are only executed O(n)
times, because at most n vertices can be added to a basin. Thus, the time
complexity for step 2 is O(n2 log n), as for step 1, which is therefore the
total time complexity.

5. FU Map

In a so-called FU map, each FU is visualized as a set of identically colored
Voronoi cells, with di�erent colors for adjacent FUs [14]. Given the FUs,
the inter-FU coherence c′ at frequency λ between two functional units W1

and W2 is de�ned as the sum of the coherence values between one vertex in
W1 and the other vertex in W2, scaled by the total number of edges between
W1 and W2 [14]:

c′λ(W1,W2) =

∑
i,j{cλ(vi, vj) | vi ∈W1, vj ∈W2}

|W1| · |W2|
. (2)

Here, |Wi| indicates the number of vertices in Wi. Note that coherences
between any pair of vertices are taken into account, to normalize for the size
of the FUs. A line is drawn between FU centers if the corresponding inter-
FU coherence exceeds a threshold. We consistently choose this threshold
to be equal to the signi�cance threshold (Eqn. 1), because we already used
this threshold to determine the coherence graph.

6. Results

We show FU maps for the MCB (Figure 2) and the WB (Figure 3) method,
for three datasets and two frequency bands. Because FU maps including
small FUs fail to give a good overview [14], only FUs larger than 5 cells are
considered.

MCB FU maps (Figure 2) were previously shown to agree with earlier
�ndings in the literature [14]. The number of connecting lines between FUs
was lower for a higher EEG frequency, in accordance with [9, 10]. Fur-
thermore, connections between anterior and posterior FUs were probably
associated with the two most important sources of brain activity for this
data type [3,4]. Here, the WB FU maps (Figure 3) con�rmed these �ndings.

Each WB FU map was compared to the corresponding MCB FU map
(compare Figure 3 to Figure 2). From a visual inspection, the biggest
dissimilarity appeared between the FU maps for dataset 2 and frequency
band 1-3Hz (Figure 2 and Figure 3: top row, middle). For this case, the
WB method showed more FUs (at positions where the MCB method has
no su�ciently large FUs) and more inter-FU connections than the MCB
method. However, the six inter-FU connections with the highest value in the
WB FU map corresponded to the six inter-FU connections in the MCB FU



dataset 1 dataset 2 dataset 3

1-3Hz

13-20Hz

Figure 2. MCB FU maps (top view of the head, nose at the top) with FUs larger
than 5 cells, for EEG frequency 1-3Hz (top row) and 13-20Hz (bottom row), for
three datasets and p = .05. Each FU is visualized as a set of identically colored
Voronoi cells, with di�erent gray values for adjacent FUs. White Voronoi cells
are part of FUs with |FU| ≤ 5. Geographic centers of FUs are visualized as a
circle with a cross inside, having a color corresponding to the FU. A line connects
FUs if the inter-FU coherence exceeds the signi�cance threshold (Eqn. 1), with its
color depending on the value (see color bar, with minimum corresponding to the
coherence threshold ≈ 0.15). Lines are drawn in the order from low to high inter-
FU coherence values. Above each FU map the number of FUs and the number of
connecting lines between FUs are displayed.

map. This became more clear by simultaneously increasing the signi�cance
threshold for both the coherence graph and the inter-FU connections in
the WB FU map (i.e., decreasing the p-value). The result showed only the
six highest inter-FU connections for p = .001 (Figure 4, right). Those six
connecting lines completely connected two anterior and two posterior FUs
for the WB method (Figure 4, right), which were in orientation very similar
to the six connecting lines for the MCB method (Figure 4, left). The two
anterior FUs in the MCB FU map did not correspond exactly with the two
anterior FUs obtained with the WB method, because the latter is a greedy
FU detection method. The same holds for the posterior FUs.

For the other cases, inter-FU connections between FUs which were no
spatial neighbors were usually similar for the MCB and WB method. Fur-
ther, the locations of the FUs were usually similar for the MCB and WB
method, especially for FUs connected with another FU which was not a



dataset 1 dataset 2 dataset 3

1-3Hz

13-20Hz

Figure 3. WB FU maps, with FUs larger than 5 cells, for the 1-3Hz EEG
frequency band (top row) and for 13-20Hz (bottom row), for three datasets and
p = .05.

spatial neighbor. For example, anterior and posterior FUs connected by a
line were similarly located for all cases.

Additionally, we compared the numbers of FUs obtained with both meth-
ods. In the range up to an FU size of 5 cells (not illustrated), the MCB

MCB: p = .05 WB: p = .05 WB: p = .001
Figure 4. FU maps for dataset 2 and frequency band 1-3Hz, |FU | > 5. Left:
MCB, p = .05. Middle: WB, p = .05. Right: WB, p = .001. The WB
FU map is more similar to the MCB FU map (left) when the the signi�cance
threshold (Eqn. 1) is increased (corresponding to decreasing p) for the WB
method (right).



method had on average 14 FUs and the WB method 6 FUs. In the range
above an FU size of 5 cells, both methods had on average 6 FUs (Figure 2
and Figure 3). Thus, the maximal clique method detected relatively more
small-size FUs.

For the FU maps created with both methods in Figure 2 and Figure 3,
we determined the CPU time consumed by FU detection. On average, the
(non-optimized) MCB and WB methods took 24 s and 0.06 s, respectively,
meaning that a speedup of factor 400 was obtained by the new WB method.

7. Discussion and Conclusions

EEG coherence analysis is de�ned as the study of coherence between func-
tional units (FUs). We previously introduced the maximal clique based
(MCB) method for data-driven visualization of high-density EEG coher-
ence [14], avoiding the visual clutter of conventional data-driven visual-
izations. This MCB method makes use of the concept of maximal clique
detection with time complexity O(3n/3) for n electrodes. In practice, perfor-
mance of maximal clique detection strongly depends on graph structure [16].
With an interactive visualization in mind, we have designed here a new wa-
tershed based (WB) method having time complexity O(n2 log n), based on
the watershed transform which is modi�ed to detect cliques in a greedy way.
The existing MCB and the new WB method both detect data-driven ROIs
represented by cliques consisting of spatially connected vertices, referred to
as FUs.

Comparing the MCB and the WB method, the greedy WB method di-
rectly results in uniquely labeled electrodes, contrary to the MCB method.
The existing MCB method shows a relatively larger number of smaller FUs
than the new WB method. The MCB and the WB method both depend
on three thresholds. The �rst two thresholds concern the initial coherence
graph and the inter-FU coherence. Both were chosen to be equal to the sig-
ni�cance threshold. The third threshold concerns the minimal FU size. FUs
and inter-FU connections were usually similar for the MCB and the greedy
WB method. If not, systematically adapting the signi�cance threshold re-
vealed a strong similarity between FU maps obtained with both FU detec-
tion methods. Thus, both methods visualize similar information. Further,
this information was found to agree with conventional �ndings [3, 4, 9, 10].

The watershed transform is generally known to su�er from over-segmenta-
tion, for which a solution may be based on the concept of dynamics [5]. How-
ever, dynamics are de�ned for vertex values, whereas the EEG coherence
graph has edge values. For EEG coherence, there are two straightforward
solutions for potential over-segmentation. First, two spatially neighboring
FUs may be merged if the union of the two corresponding vertex sets is a
clique. Second, determination of the markers can be based not only on (�rst
degree) Voronoi neighbors, but also on (second degree) Voronoi neighbors
of Voronoi neighbors.



Here, the new WB method is up to a factor 400 faster than the ex-
isting MCB method. The new method makes interactive visualization of
high-density EEG coherence feasible for the intended users, including EEG
researchers and clinical experts.
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