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Data-Driven Visualization and Group Analysis of
Multichannel EEG Coherence with Functional Units
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Abstract— A typical data-driven visualization of electroen-
cephalography (EEG) coherence is a graph layout, with vertes
representing electrodes and edges representing signifidacoher-
ences between electrode signals. A drawback of this layous its
visual clutter for multichannel EEG. To reduce clutter, we define
a functional unit (FU) as a data-driven region of interest (ROI).
An FU is a spatially connected set of electrodes recording jravise
significantly coherent signals, represented in the coher@e graph
by a spatially connected clique. Earlier we presented two nteods
to detect FUs, a maximal clique based (MCB) method (time
complexity O(3"/3), with n the number of vertices) and a
more efficient watershed based (WB) method (time complexity
O(n*logn)). To reduce the potential over-segmentation of the
WB method, we introduce an improved watershed based (IWB)
method (time complexity O(n? logn)). The IWB method merges
basins representing FUs during the segmentation if they are
spatially connected and if their union is a clique. The WB and
IWB method both are up to a factor of 100,000 faster than the
MCB method for a typical multichannel setting with 128 EEG
channels, thus making interactive visualization of multibannel
EEG coherence possible. Results show that, considering thCB
method as the gold standard, the difference between IWB and
MCB FU maps is smaller than between WB and MCB FU maps.
We also introduce two novel group maps for data-driven group
analysis as extensions of the IWB method. First, the group naa
coherence map preserves dominant features from a collectioof

individual FU maps. Second, the group FU size map visualizes

the average FU size per electrode across a collection of iniilual

FU maps. Finally, we employ an extensive case study to evakea
the IWB FU map and the two new group maps for data-driven
group analysis. Results, in accordance with conventionalrfdings,

indicate differences in EEG coherence between younger andder

adults. However, they also suggest that an initial selectio of

hypothesis-driven ROIs could be extended with additional dta-

driven ROIs.

Index Terms— Information visualization, graphs and networks,
applications.

|. INTRODUCTION

(fMRI) [6]-[9]. A typical visualization of EEG, MEG and fMRI
coherence, is a two-dimensional graph layout. Verticeserep
sent electrodes, superconducting quantum interferengeese
(SQUIDS), or fMRI regions of interest (ROIs), respectively
Edges represent significant coherences between electigde s
nals, SQUID signals, or fMRI-ROI time series, respectively
Vertices are commonly visualized as dots and edges as kioes.
multichannel EEG (e.g., [10], [11]), MEG (e.g., [4], [B])h@&
fMRI (e.g., [6], [8]), this layout may suffer from a large niver
of overlapping edges, resulting in a cluttered visualoati

In the case of EEG, the reorganization of vertex positior2§ [1
to reduce clutter is not appropriate, because the elecrbdee
meaningful positions. Other solutions reorganize edgesor vi-
sual attributes of the edges [13], [14], but do not reducentira-
ber of edges. Several methods divide EEG electrodes [16], [1
MEG SQUIDS [3], or fMRI voxels [9] into disjoint hypothesis-
driven ROIs and study coherences within or between ROIlseiOth
methods set out ROIs representing EEG electrodes [10], [17]
MEG SQUIDS [5], or fMRI-ROIs [6] along rows and columns,
thus obtaining a square contingency table. By arrangingsROI
along rows and columns of a matrix, the spatial relationdase

Visualization of multichannel EEG (at least 64 electrodiss)
not always managed well [18]-[20]. Researchers often eynplo
a hypothesis-driven definition of certain ROIs in which déce
trodes are assumed to record similar signals because aheolu
conduction effects [21]. As an alternative for the hypoifies
driven approach, we previously presented two methods fer th
detection of data-driven ROls, referred to as functionaitsun
(FUs) [20]. An FU is represented in the coherence graph by
a spatially connected clique. A clique is a vertex set in Wwhic
every two-element subset is connected by an edge. A cligue
is maximal when it is not contained in any larger clique (‘larger’
meaning having more vertices). Within one FU, each pair of
vertices represents two significantly coherent electragieass. In
any group of vertices other than a clique, there are two cesti

Electroencephalography (EEG) is a method to measure t@resenting two electrode signals which are not signifigan

electrical activity of the brain using electrodes attachedhe
scalp at multiple locations. Synchronous electrical dgtivn
different brain regions is generally assumed to imply fiorl
relationships between these regions. A measure for thishsgny

coherent. Because larger ROIs are assumed to correspond to
stronger source signals, larger FUs are considered to be mor
interesting. Therefore, we focus on maximal cliques, foiiclvh
vertex sets are as large as possible.

is EEG coherence, calculated between pairs of electrodrlsig  Our first FU detection method is a maximal clique based

as a function of frequency [1], [2].

Related studies of functional brain connectivity use otham-
invasive neuroimaging techniques, including magnetgemaieg-
raphy (MEG) [3]-[5] and functional magnetic resonance imgg
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(MCB) method [20]. The second method is a watershed based
(WB) method that detects spatially connected cliques iready
way [22]. However, it suffers from potential over-segméiota
problems. Extending our earlier work, one of the noveltidsciv
we present is an improved watershed based (IWB) method for FU
detection. It merges FUs if they are spatially connectedifethéir
union is a clique, thus reducing over-segmentation obthimich
the WB method.

In addition to individual dataset analysis, we introduce tvew
group maps for data-driven group analysis of multichanrieGE
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coherence as extensions of the IWB method. They serve aga dabxels [7]. The overview also includes general graph drgwin
driven alternative for the common hypothesis-driven g@acof solutions.

coherences for group analysis [2], [16], [23]. First, theugr mean

coherence map preserves dominant features from a coliectio A. EEG and MEG

Lr;dmdual FUFLT aps. Secc:ndt, tk&e group FU slllze tmaiﬁvﬁ?hzesEEG and MEG coherence graphs have vertices representing
FS averag(; ﬁ'ze pere ect rg fe across ta cofiection wud electrodes and SQUIDS, respectively. Most of the visuttina
maps. Results are reported for an extensive case sudy. ot eeg are applicable to MEG, and vice versa. For a two-
Il. EEG COHERENCE dimensional visualization of the vertices, often planajgctions

are used of the three-dimensional electrode or SQUID logati

EEG car_1 be recorded u5|_ng gurrently up to 512 _el_ectrod%% the surface of a head. Vertices are usually mapped to a top
labeled unlquely_ by a comt_)lnatlon of Ietter; and d_lglts '(e_'g\/iew of a head (e.g., Fig. 1, right), sometimes to two sepasitte
F3, Cz, P4, as in Fig. 1, right). A conductive gel is appliedie\ys of the left and right hemisphere [11], [15]. Visuatipas
between skin and electrodes to reduce impedance. Theiedtctr, i, edges representing significant coherences may sufen f
potential is measured at all electrodes simultaneouslg Miea- large number of overlapping edges, resulting in a clutere
sured signals are amplified, resulting in one recording ©&RN \is\,alization for multichannel EEG (e.g., [10], [11]; Fig, left)
for every electrode. If there are many electrodes, the tenul-' |- \iEc (e.g., [4], [5], [26]). Existing solutions for the rection

tichanne_l’ or ‘high-de_nsity’ EEG is used. As a resuIF of volel ¢ .|utter involve an adapted visualization of the vertieesl the
conduction [21], multiple electrodes can record a signainfra edges.

single source in. the brain. Therefore, nearby elggtrodaa!hjs The layout of the vertices can be changed, e.g., by using a
recor.d similar signals. Because sources of activity atetd#ffit ¢,.-o_directed placement [12]. However, for EEG applimai we
locations may be synchronous, electrodes far apart can aliter to maintain the spatial relationship between thdices

record similar signals. A measure for this syn(_:hrony is cehee, representing electrodes, because electrodes have midrpog
calculated between pairs of signals as a function of frequefhe  gitions. A different method uses an area dependent visimiz

coherencec, as a function of frequency: for two CONtiNUOUS ot yertices of variable size [27], but also does not preserve
time signalsa and y is defined as the absolute square of thGe ey positions. Other solutions vary (combinations d§ual
cross-spectrunys, normalized by the autospectifa. arld Jvv  attributes of vertices and edges, e.g., transparency b8 [4]-
[1], having values in the intervl, 1: ex(z,y) = 7253205 [6], [8], saturation [14], line width [9], [14], and line s [9].
The cross-spectrum and auto-spectrum can be interpretedNasertheless, the presence of many overlapping edges riflay st
covariance and variance as a function of frequency, relspéct obscure other visualization elements, or the superpasitib
An event-related potential (ERP) is an EEG recording of ttzénb differently colored lines might result in an undesired mik o
response to a sensory stimulus. To calculate the coherenemf colors. Also the layout of the edges can be manipulated, leyg.
event-related potential (ERP) with repetitive stimuli, the EEG interactively curving away edges from the focus of attemfit3].
data can be segmented intcsegments, each containing one braiThis has the undesirable side-effect that, in an alreadyded
response. A significance threshajdfor the estimated coherencefield of view, the area which is out of focus will be even more
is then given by [1] crowded. Moreover, to get a complete overview of the graph,
¢ =1-pt/E-D 0 every vertex (out o.f up to 512 verticgs for EEG coherence)
has to be selected individually. Alternatively, elemergach as
wherep is a probability value associated with a confidence level edges) can be left out selectively [28]. Nevertheless,tetetl
(p = 1 — a). For an overview of other common linear (andvisualizations are even obtained for restrictions to the 5o

nonlinear) measures of synchrony, see [24]. coherences for only 66 MEG SQUIDS [4], or the top 10 % for 119
EEG electrodes (Fig. 1, left).
lll. RELATED WORK The main disadvantage of many existing analyses of multi-

We discuss visualizations of functional brain connedtivitchannel EEG or MEG is the hypothesis-driven selection of the
obtained using the noninvasive neuroimaging technique§,EEnumber of ROIs and the positions of the ROIls, instead of a
MEG, and fMRI. MEG commonly uses up to 512 SQUIDglata-driven selection. One method chooses a regularlyituited
to measure magnetic fields induced by electrical brain i#gtiv subset of electrodes [2], ignoring the majority of the elede sig-
Similar to EEG coherence, MEG coherence is calculated twenals. An MEG method divides channels into disjoint hypoites
pairs of SQUID signals. fMRI measures time series of changdsven ROIs and maps the average coherence within a ROI to
in cerebral blood oxygenation levels in the brain. OftenRiMe- a color [3], ignoring coherences between ROIs. A similar EEG
searchers compute coherence (or other similarity) valeesden method divides electrodes into four disjoint ROIs and ssadi
mean time series for different ROIs which are commonly singhnterior-posterior connections between those ROIs [15bther
voxels or connected sets of voxels [7]. EEG method divides (the majority of the available) elect®hto

Although a comparison of different neuroimaging methoddisjoint hypothesis-driven ROIs and studies coherencésdam
should be made carefully [25], the common underlying dataese ROIls across datasets [16], but it does not simultaheou
representation for the different types of connectivity igraph. visualize which electrodes are part of which ROI.

Therefore, we restrict ourselves to graph visualization facus An existing EEG approach which is data-driven sets out up
on hypothesis-driven and data-driven aspects. First, wsider to 21 electrodes along both the rows and columns of a matrix
EEG and MEG with typically up to 512 vertices, whose spatias a tiled display [10], [17]. The result is a square contiruye
relations can be represented by a planar graph. Later, we ctable showing coherence values for all possible electrades.p
sider fMRI with vertices commonly representing thousanéls &ach table entry is a square in which coherence is displayed
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Fig. 1. Left: Layout of a coherence graph (EEG frequency band 1-3 Hz).icdsrtrepresent electrodes, edges represent significaeteraes between
electrode signals, where the significance threshold eduals (corresponding t = 0.01). Edges are visualized as gray lines, vertices as black dais
edge is light gray if its value is in the ran@e22 < c) < 0.37, medium gray if its value is in the top 10 % of the coherende87 < c) < 0.91), and
dark gray if its value is in the top 1%:{ > 0.91). This corresponds to a common existing data-driven vigatibn, showing cluttered edgebliddle:
Histogram of the corresponding coherences to illustragecttherence distribution. Vertical lines (dash, solid) dodicate significance thresholds associated
with three probability levelsy( = 0.10,0.05, 0.01, respectively).Right: Voronoi diagram with electrode labels in the correspondietis. The convex hull
of all electrodes is shown as a boundary. To improve the Blitgathe Voronoi diagram is stretched horizontally. Bese the coherence computation is
independent of distance, distances between electrodestdrerd to be preserved. However, spatial relationshipseest electrodes are maintained.

between the two corresponding electrode signals as a @unctdistances by graphical distances using metric multidinoead
of frequency. By arranging the electrodes along the rowsthed scaling [9]. An edge represents a significant similaritywssn
columns of the matrix, the spatial relations are lost. Assulte two ROI time series. The visualization of edges as lines reay |
consecutive entries in the table do not need to imply coleererto clutter [6], [8], [9], [36].

between pairs of signals recorded at adjacent electrodefieon  Filtering edges may still lead to cluttered visualizatided
scalp. Similarly, a square contingency table is created8VIEG  Other visualizations set out ROIs along the rows and colymns
SQUIDS sorted into four hypothesis-driven ROIs [5] (left, thus obtaining a square contingency table. Each table éstry
anterior/posterior). Each table entry is square with theecence g square with a similarity value between the two correspundi
of the corresponding signals mapped to a color. A differeéd signals mapped to a color [5], [6]. Existing data-driven pira
driven EEG approach first localizes dipoles corresponding ¢lustering algorithms include hierarchical cluster asiy[7]
maximally independent components in the data, and themical@nd independent component analysis (ICA) [29], [30], [3tie
lates and visualizes coherence between dipole activR®s[31]. result of hierarchical cluster analysis can be visualizedaa
However, dipole source solutions are not unique [32]. dendrogram [9], showing the ROIls as leaves of a binary tree,
Another approach is restricted to local EEG coherence, wisic thys |osing the spatial relations between the ROIs. Also|sRO
defined as the coherence between two spatially neighboking e can be visualized as colored volumes of interest [37] which
trodes [33], [34]. It requires additional methods to studer- may occlude each other. For the same reason, we do not favor
ences between electrodes which are not direct spatial beigh three-dimensional EEG visualizations. Alternatively, IR@an
Another visualization creates a map of topographic subrf&fis pe visualized on anatomical slices [7], [9], [38]. However,
with one submap for each electrode visualizing the coherer]grge number of two-dimensional slices is required to obti
between itself and every other electrode. It does not edglic complete overview of a three-dimensional volume. Sometime
visualize coherence between electrodes by connecting.lifg jnstead of an explicit visualization of the connection begw
a consequence, every topographic submap (out of up to 53®js (e.g., with a line), all ROIs in one cluster are colored

submaps) needs to be studied separately to obtain a complgtically, with different colors and/or separate slitmsdifferent
overview. Another drawback is that local coherences doteitiee  cjysters [9].

visualization [35]. A subselection of two topographic sw@#ps out
of 128 is made in [23], without providing a complete overview
of all coherences.
C. Conclusion

B. fMRI

For fMRI coherence, usually a limited number of so-callegilse  The overview of related work has concentrated on the require
(or reference) voxels is selected on the basis of prior amatd or ments we posed on an EEG coherence visualization: it should
functional information. However, the anatomy may be abradym be (1) data-driven, (2) preserve electrode locations, (8)mize
and the choice of seed points may affect the results [7]. Maae visual clutter, and (4) present an overview. Many of the used
less, either an individual seed point or a spatially coreectmethods still suffer from visual clutter or relocate vesscand
set of voxels including a seed point is considered as a R@dges and therefore do not meet requirement (2) or (3). On the
having a (mean) time series. Vertices represent ROIs andeanother hand, existing methods which do meet requiremeng (2,
visualized three-dimensionally [36] or two-dimensiogal two-  are hypothesis-driven, thus failing to meet our requirenig&h In
dimensional visualization uses, e.g., a planar projeatiotihree- summary, the method proposed in this paper combines a number
dimensional ROI positions or an approximation of functionaof features which no single technique currently provides.
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IV. DATA REPRESENTATION ROI (a cluster). Such a ROI is referred to as functional unit
A. Experimental Setup (FU) and is represented in the EEG coherence graph by a clique
consisting of a set of spatially connected vertices [20].

Recall that larger ROIs are assumed to correspond to stronge
source signals and are considered to be more interestirggeTh
fore, our first method for FU detection is primarily based on
the detection of maximal cliques [40], [41]. We adapted this
method to detect spatially connected sets of vertices [@Qi.
second method for FU detection is based on watersheds, an
efficient method for detecting spatially connected segmgff].

e adapted this method to detected cliques in a greedy wdy [22
No%xt, we first briefly describe the two earlier developed Ftéde
tion methods, before introducing a novel improved methagetda
on watersheds which is designed to reduce over-segmentatio

Brain responses from two groups of five younge&t«10 years,
mean+ standard deviation) and five older(-8 years) adults are
studied, which were recorded using an EEG cap with scalp
electrodes. During a so-called® experiment, each participant
was instructed to count target tones2000 Hz (probability 0.15),
alternated with standard tones1d00 Hz (probability0.85) which
were to be ignored. After the experiment, the participard tea
report the number of perceived target tones. For each data
brain responses to 20 target tones were recorded ig 20
segments of 1s. EEG coherence is influenced by the choice
reference. We chose to use an average reference, whichasex cl
to-optimal approximation to a reference-free recordinthicase
of 128 electrodes [2], [39].

A procedure fromNeurospec was adopted to compute theA. Maximal Clique Based (MCB) Method

coherence viww. neurospec..org). We first gveraged OVer 1) Maximal Cliques: Bron and Kerbosch (B&K) [40] devel-
segments and then over adjacent spectral lines in predefinedhy 5 method to detect all maximal cliques in a graph. It first

frequency bands. Frequencies between 1 and 30Hz are tygisnches the problem, and bounds unsuccessful brancises. It
cally studied clinically. We calculated the average coheee roqjye procedure maintains three dynamic vertex sets:

within five EEG frequency bands (1-3, 4-7, 8-12, 13-20, and . . . . .
e the setcompsub contains an increasing or decreasing clique;

21-30Hz), because EEG synchrony varies with frequency [2], ! ) ’

[39]. For 119 electrodes, in total 7021 coherence valueswer * the _setca_nd|dat$ contains vertices that are connected 1o all
computed per frequency band. If the conductive gel accadlgnt vertices |ncomps_;ub and_ that can be added tompsub; .
connected two adjacent electrodes, very high coherences we ® the setot contains vertices that are connected to all vertices
measured. Coherences higher than 0.99 were thereforeeijnor In compsub and that were added &Dmpsub previously.
Typically, this threshold value eliminates approximatélp1% At each call of the procedure, the vertex from the set

of the coherences. Note also that using Eqn. 1 for deterg,iniﬁandidateﬁ is selected that has the largest number of connections
significance levels is a coarse approximation, since it doesake With the other vertices ircandidates. If there are more such
the number of spectral lines per band into account. Howehizr, Vertices, then one of these is randomly selected. Furthes, i

approximation only overestimates the significance leved, does assured that is not connected to the vertex just addednts.
not influence the visualization method itself. The selected vertex is added tocompsub and removed from

candidates. Next, newcandidates is the intersection ofandidates
and the neighborhood af. Similarly, newnot is the intersection
B. EEG Coherence Graph ] of not and the neighborhood of. If both newcandidates and
The data are represented by an undireatekerence graph  naynot are empty,compsub is a maximal clique. This procedure
with vertices representing electrodes. Coherences aeveig- s yepeated recursively with local setavcandidates and newnot,
nificance threshold (Eqn. 1) are represented by edges,&®S il the candidate set is empty. In case the procedure is not
below the threshold are ignored. Vertices are not self-eot®l. opeated witmewcandidates andnewnot, the vertex most recently
To determine spatial relationships between electrodesirandi  544eq tacompsub (vertexv) is removed fromcompsub and added
diagram is employed which partitions the plane into regions o not. If any vertex innewnot is connected to all vertices in
points with the same nearest vertex. For EEG data, the VeeEX neycandidates, then it is known that this vertex will never be
equals the set of electrode positions (Fig. 1, right). Theic&s omoved fromnot and this branch is bounded.
are referred to as (Voronoi) centers, the region bound@®s The worst-case time complexity for detecting all maximal
(\Voronoi) polygons. The area enclosed py a polygo.n is Ca”‘i‘ﬂques isO(3"/3), with n the number of vertices, becaus®/?
a (Voronoi) cell. We call two cellsvoronoi neighbors if they s the highest number of cliques [41]. In practice, perfanoe

have a boundary in common. A collection of ceflsis called 4t maximal clique detection strongly depends on graph struc
\Voronoi-connected if for a pair ¢o, ¢n € C there is a sequence ;o [43].
0, ¢1,-.., ¢n Of Cells in C with each pairg;_1,¢; CONSISNg 5 \pronoj-Connected Maximal Cliques. We extended the
of Voronoi neighbors. Cells, vertices, and electrodes ateri  ihod [40] such that it only detects maximal cliques cditgjs
changegble for the use with the terms *Voronoi neighbor’ angt \oronoi-connected vertices [20]. The three dynamic esert
‘Voronoi-connected'. sets are maintained, but the sendidates is split into a set
currentcand and a settomplcand. The setcurrentcand contains
V. FU DETECTION the candidates that are Voronoi neighbor of at least oneeiem
Whereas there are many unsupervised graph clustering metheompsub; only these can be added tompsub at the current
ods, e.g., hierarchical clustering and ICA (see Sectiop dur step. The setomplcand is the complement oturrentcand in
choice is motivated by the type of cluster we desire. As alresgandidates. At each call, the element froraurrentcand which
of volume conduction [21], multiple electrodes can recosignal has the largest number of connections with the other catedida
from a single source. Consequently, a spatially conneateafs (currentcand U complcand) is added taompsub. Let this element
electrodes recording similar signals is considered asadtaten be+’. The setnewcurrentcand is the intersection oturrentcand



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 14, NO. 4, JULY/AUGUST 2008, PP. 756-771

TABLE |
ADJACENCY MATRIX FOR VERTICESa THROUGH? IN FIG. 2 (1 (O)MEANS
(NOT) CONNECTED).

and the neighborhood af (in the coherence graph), united with
the Voronoi-neighbors of’ in complcand. The sehewcomplcand
is the intersection ofcomplcand and the neighborhood of’
(in the coherence graph), minus the Voronoi-neighbors’aih

a b ¢ d e f g h i

complcand. The set(new)not is maintained as before. This is al0 0 0 1 0 0 0 0 O
repeated untihewcurrentcand is empty. If newnot is also empty, bio o0 1 0 1 1 1 1 1
thencompsub is a Voronoi-connected maximal clique. g’ 2 (1) (1) (1) (1) (1) (1) é (1)

Fig. 2 illustrates maximal clique detection with the B&K aig ej0 1 1 0 0 1 0 0 O
rithm (A and B) and Voronoi-connected maximal clique detett f 8 i i 8 é (1) é 2 i
with the MCB method (C), for a graph with the adjacency matrix ﬂ 0 1 1.0 0 0 1 0 o0
shown in Table I. The first B&K iteration has an empigpt ilo 1 1 o 0 1 1 0 O
set (A). One of the later recursive iterations of the B&K nmeth
returns to the initial situation with all vertices in thandidates set
(not shown), puts the selected vertex labeléd the not set (B1), ! 2 3 + >
and selects the vertex with the highest degree ircéinelidates set ooo poo ooo OO0 00
(B2). Whereas the B&K method detects maximal cliques which A | BEQ QO a8 188 168
can consist of more than one spatial component (A5), the MCB
method detects spatially connected cliques instead (€4y.the » | Ba8 ©88 °"8 9.8 °.28
MCB method, the use of theot set is the same as for the B&K po= -0% -0+ -0 o
method and is therefore not explicitly illustrated.) .

+4+ +4+4 +:0 +-0Q ghi

The following detailed description contains (row, column) | *i8 :88 :83 :o8 de!
references to Fig. 2C5. Vertex positions. Vertices are spatial
neighbors if they are 4-connected (e.g., the spatial neighb O compsub not + complcand
of vertexd are vertices:, e, andg). A. lteration of B&K maximal o candidates © currentcand

clique detection with emptyot set. It starts with all nine vertices

in the set candidates (not illustrated)l. Then the vertex with
Fig. 2. lllustration of maximal clique detection with the B&algorithm

the highest degree (following Table ) is first addedctonpsub; Lo ) e -
. . . . - . for an iteration with an emptyot set A) and an iteration with a non-empty
its adjacent vertices are oandidates. (Vertices not part of any set ot set @), and Voronoi-connected maximal clique detection with KEB

are shown as a black do#2-A4. At every next step, the vertex method C), for a graph with adjacency matrix as in Table |. For explama
with the highest degree inandidates, let us sayw, is added to See text

compsub. (In the case of ties one vertex is selected randomly.)

Further, vertices not adjacenttqdenoted by*“(v)) are removed
from candidates. This continues untilcandidates is empty. At
A2, v = b, I'°(v) = {d}; at A3, v = g, I'°(v) = {e}; at A4,
v=f, I'°(v) = {h}; at A5, v =i, I'°(v) = 0. Now, compsub=
{b,¢c, f, 9,4} is a maximal clique, becausandidates= () (andnot=

0). B. A later iteration for B&K maximal cliqgue detection returns
to the situation preceding Al with all vertices in the caiadiés
set, and puts the first selected vertgrto thenot set.B1. Vertexc
which was previously selected first (see Al) is now innbeset.
B2-B4. Similar to A2-A4.B5. Different from A5, nowcandidates
={b, f,g,i}, andnot = {c}. This implies that the maximal clique
{b,¢, f,g,i} has been found befor€. MCB Voronoi-connected
maximal clique detection with same starting point as A (with
= (). C1. The vertexc with the highest degree is first added t
compsub; its adjacent vertices (see Table 1) arecimrentcand if
they are a spatial neighbof# f}), or otherwise incomplcand.
C2-C4. At every next step, the element frocarrentcand which
has the largest number of connections with the other catetida

(currentcand U complcand) is added tocompsub. The spatial B. Watershed Based (WB) Method

neighbors ofv” in complcand (denoted byA(v')) are moved from  The watershed based (WB) method is an alternative to the
complcand to currentcand. Further, vertices not adjacent 6 standard MCB method [22]. It is a greedy method approxingatin
(i.e.,I'(v")) are removed from botburrentcand andcomplcand.  spatially connected maximal cliques on the basis of an eédged

This continues untiturrentcand is empty. AtC2, v' = b, A(v/) = watershed transform. The WB method defines as markers those
{e}, T¢(v) = {d}; atC3, v’ = f, A(v)) = {i}, T°(v') = {Rh}; at vertices which are locally maximally similar to their sty

C4, v' =i, A(v") = 0, T¢(v') = {e}. C4. compsub= {b,c, f,i} neighboring vertices. To obtain the markers, a coherenteeva

is a spatially connected maximal clique, becauseentcand = is assigned to each vertex by computing the average of the edg
¢ (and not = 0). Remaining vertices ircomplcand are in the values between this vertex and all its Voronoi neighborenT fall
adjacency list of all vertices irompsub but are not a spatial vertices which are local maxima are considered as markeoe to
neighbor of any vertex icompsub. associated with basins. (A similar edge-based watershekoahe

3) FU Labeling: Every vertex can be part of multiple
(Voronoi-connected) maximal cliques. To assign a unigbell&o
every vertex, a quantityotal strength is defined for a (sub)graph
G = (V, E) as the sum of all edge values [20]. This value is not
normalized for the size off. Consequently, if two graphs have
an equal average coherence, the graph with more verticea has
higher total strength. Next, all cliques are queued in desirgy or-
der by their total strength. Then the following labeling gedure
is repeated, until there are no more cliques or until allivest
are labeled. The first clique is removed from the queue, ahd al
its vertices are assigned a unique label and are removed from
the other cliques. If necessary, the changed cliques asratep
into Voronoi-connected components. For all changed ciqtiee
Yotal strength is recomputed before they are put in the gpjate
position in the sorted queue. After completion of the latmpli
procedure, every set of identically labeled vertices is &n F
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which is not restricted to detect cliques, instead seleatsspf executed consecutively (for notation purposes, defire L(v")):
vertices as markers which are incident with an edge which is(iq check if all vertices inbsn;(, are inadjCohBsn,,, and vice

local minimum [44].) versa (line 33). (i) Replacésn;,y by the union of itself with
The WB method for greedy Voronoi-connected clique detectidosn,,, because their union is a spatially connected clique in the
maintains the followin namic vertex sets. coherence gra ine ; (i) all vertices receive the
intains the following dy i h graph (line 34); (iii) all i bsn,, ive th
e bsn; contains a sorted list of the vertices in basin label L(v) (lines 35-37); (iv)adjCohBsn,,, is replaced by the
e L(v) contains the basin label of vertex intersection of itself withadjCohBsn,, (line 38); (v) bsn, and
« adjCBsn; contains a list of vertices (sorted by vertex numbeddiCohBsn,, are made empty (line 39). ,
which are adjacent teach of the vertices inbsn; in the In the algorithm, the operatiomsertEdgeSort(e(v, v'),queue)
coherence graph. inserts edge(v,v’) into the appropriate position in a edge queue

e queue contains edges in decreasing order. When vertex dueue which is decreasingly sorted by edge value; similarly,
receives a label, an edge = (v,+') is added toqueue insertVSort(v,vqueue) inserts vertexv into the appropriate po-
for each unlabeled Voronoi neighbar of v, provided Sition in vertex queue/queue which is decreasingly sorted by

that the corresponding edge value exceeds the significarf§&tex numberdequeue(queue) returns and removes the first edge
threshold (Eqn. 1). from an edge queugueue; intersect(.,.) gives the intersection of

%Vrg sorted vertex setsnerge(.,.) gives the union of two sorted

sh\é\(/jh?rrzr?:f(;?:; fu?:eguf:e&??tsjdir:gpleesmﬁgéﬁgle(m Lh:u::avertex sets (without duplicates$etinSet(V/,V’) returns ‘true’ if
PP 9 9 d the sorted vertex set is a subset of the sorted vertex gét,

sorted in increasing order of value [45], we useealge queue and ‘false’ if not. The size of a vertex set is denoted|by|.

sorted in decreasing order of coherence value. (The vediees . . .
. One adaptation further improves the average performance in
are only used for defining the markers.) In case the coherence

. ) ) . . factice. A matrixbsnMat is created with the basins set out
graph has multiple identical edge values (which did not occg

for our datasets), an ordered queue consisting of queuds wi ong the rows and the columns, and is initialized with only
. . ). q 9 d onhes (lines 12-16). If two spatially neighboring basisand b;
identically valued elements can be used [45]. We now turn to,a .

. : : together are not a clique, thdassnMat(b;,b;) andbsnMat(b;, b;)
more precise analysis of the algorithm.

O . are set to zero (line 41). In that case, badipsnd b; cannot
(Step 1) The edge queue is iniialized with edges (corran“rporbe merged later either, and lines 32-42 are skippethhe megt t
ing with a significant coherence) between markers and their,, "~ 4. oo cand,idates to be merged
Voronoi neighbors. The first edde, ') in this queue corresponds ™ 1.5 yifference between the WB and the IWB method affects
to the highest similarity (coherence) between any vesteutside

da Vi " neiahbori insid basin. Theref the time complexity as follows. (i) line 33: the check to sée i
and a Iqron0| neignboring vertex inside a basin. [NErelore, 5ne sorted list is part of another has time complexity:). Each
vertexv’ is the first candidate to be added to a basin.

. - ) of the next steps also has time complexityn) for sorted lists
(Step 2) The main procedure consists of the following S5 vertices of at most length: (i) line 34: taking the union

: _ /
Re;nove/ the f'rISt eldgbe,l Za%_t (v, ihfrqm th‘,eue' lnd CaS€ of two sorted lists, (iii) lines 35-37: labeling a list, (iline 38:
vertexw w/as aiso labeled between (he insertion an remo_\ﬁﬁltersecting two sorted lists, (v) line 39: making lists emSteps
of e = (v,v"), nothing is done and the procedure continues wi

R i)-(v) are executed (n) times (recall that the order of the number
a new edge. OtherW|sa;(|s ur_llabeled), there_ are two Casesy¢ edges between Voronoi neighborsgueue is O(n)). Thus, the
(i) In casev’ € adjCohBsny () (line 20), v" receives label (v)

OO . o . - time complexity of the IWB adaptation i©(n?) and the time
and (ii) adjCohBsn, ) is replaced by its intersection with the o \evity for the complete IWB algorithm is the same as for
neighborhood ofv’ in the coherence graph (line 22); (iiif is the WB method, i.e.0(n? log n).
added tobsn;(,,y (line 23); (iv) queue is extended with the edges '
betweeny’ and its Voronoi-neighbors (line 24-28), provided tha
corresponding edge values exceed the significance thoesimol
the other case, i’ ¢ adjCohBsny,, v' is not labeled (yet).
This procedure is repeated ungiieue is empty. Each basin then
corresponds to an FU.

The time complexity of the WB method i©(n? logn), with
n the number of vertices [22].

ANTERICR =

s
Q
i
=
g
[

w

C. Improved Watershed Based (IWB) Method Fig. 3. IWB FU map (EEG frequency banid3 Hz, dataset young 5). Top

. . . view, nose on topLeft: A circle with a cross inside indicates the geographic
Over-segmentation is a potential problem of the WB metho nter of all Voronoi centers belonging to one AJiddle: The same FU

To reduce over-segmentation we here implement the firstisolu map, but only with FUs larger than cells. White Voronoi cells are part
suggested in [22], by merging two spatially neighboring FUS smaller FUsRight: Lines connect FU centers if the inter-FU coherence

. . . : f : .exceeds the significance threshold (Eqgn. 1). The color ofitieedepends on
if their union is a clique in the coherence graph. To Obtaﬁ(e inter-FU coherence (see color bar, with minimum cowedmg to the

the improved watershed based (IWB) algorithm (Alg. 1) Wgoherence threshold ~ 0.22 for p = .01).
insert lines 12-16 and lines 30-43 in the pseudocode of the
WB algorithm (see also [22]). In words, the difference betwe
the WB and IWB method is the following. In case vertek
was labeled between the insertion and removak 6t (v,’), A FU Map for Individual Dataset Analysis

nothing is done if the label of’ is equal to the label of. Given the FUs, theinter-FU coherence ¢ at frequency\
Otherwise ((v) # L(v)), see line 30), the following steps arebetween two FUsIV; and W5 is defined as the sum of the

VI. FU VISUALIZATION
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coherence values between one verteXlin and the other vertex

Algorithm 1 IWB pseudocode. Lines 12-16 and 30-43 weréh 15, scaled by the maximal number of edges betwdgnand

inserted into the WB method to obtain the IWB method.
INPUT: V is the vertex setmarker(i) = markeri;
c(v,v’) = coherence( v’) = c(v,v);
adjCoh, = {v' € V| c(v,v) > ¢}; ¢ = sign. threshold
adjVor, = {v' € V | v' € Vor.-neighbors & ' € adjCoh,};
{adjCoh,, adj\or, are both sorted by vertex number
OUTPUT: bsn; is basin: (i.e., an FU) sorted by vertex number
INITIALIZATION :
1: queue— @ {queue of edggs
:forall veV do
L(v) <« 0 {L(v) = label of vertexv}
end for
: for i =1 to |markef do
bsny «— marker(); v <« marker(); L(v) « i
adjCBsry, () < adjCoh,
for all v € adjVor, do
insertEdgeSort(e,v’),queue)
end for
: end for
: for i =1 to |markef do
for 7 =1 to |markef do
bsnMati, j) — 1 {IWB modification:
15:  end for
16: end for
MAIN:
17: while queue# () do

© NGO WD

N
Aw bR o

18 e(v,v’) « dequeue(queue)

19: if L(v") = 0then

20: if v € adjCBsn, then

21 L(v") « L(v)

22: adjCBsr, (., —intersect(adjCBspy,,),adjCoh,)

23: bsny () — insertvVSort{’,bsry,,))

24: for all »* € adjVor,, do

25: if L(v*) = 0 then

26: insertEdgeSort(@’, v*),queue)

27: end if

28: end for

29: end if

BEGIN IWB

30: else

31 if (L(v") # L(v)) and(bsnMatL(v'), L(v)) # 0) then

32: ¢ «— L(v')

33 if setinSet(bspy,),adjCBsn,) and
setinSet(bsp,adjCBsn, ,,) then

34: bsry, () < merge(bsp,,),bsn,)

35: for all w’ € bsn, do

36: L(w") « L(v)

37 end for

38: adjCBsrn,(, « intersect(adjCBsyy.,,),adjCBsn,)

39: bsn, = 0; adjCBsn, = 0

40: else

41 bsnMatL(v),v) « 0; bsnMatwy, L(v)) < 0

42: end if

43: end if

END IWB

44: end if

45: end while

Wao [20]

Zi’j{c/\(vi,vj) | v; € Wl,vj S WQ} (2)
(Wi - W2

Note that coherences betweany pair of vertices are taken into

account to normalize for the size of the FUs.

An FU map visualizes each FU as a set of Voronoi cells
with identical gray value, with different gray values forjackent
FUs [20], see Fig. 3. Note that the geographic center of andfJ c
be located in a cell not belonging to the corresponding FUNA |
is drawn between FU centers if the corresponding inter-Hueco
ence exceeds a threshold (Fig. 3, right). We consistenibpsd
this threshold to be equal to the significance threshold (Ejjras
we already used this threshold to determine the cohereragahgr

Because larger FUs are considered to be more interestihg, on
FUs larger than 5 cells are considered. White Voronoi celts a
part of smaller FUs.

A (W1, Wa) =

B. Data-Driven Group Analysis

FU maps differ from individual to individual, making group
analysis difficult. Therefore, we present a data-drivenhoetfor
group coherence analysis which detects common features in a
collection of individual FU maps. Group coherence analyees
commonly based on group means of coherences of interest. We
show how our data-driven ROIs, i.e., the FUs, lead to a data-
driven selection of coherences of interest.

1) Group Mean Coherence Map: We define a group mean
coherence graph as the graph containing the mean coherence
for every electrode pair computed across a group. To obtain a
data-driven coherence visualization for a group, the gnmgan
coherence graph is thresholded, maintaining only the editbs
a value exceeding the coherence threshold (Egn. 1). Nex&Uan
map is created for the group mean coherence graph, refesred t
asgroup mean coherence map.

2) Group FU Sze Map: A group FU size map visualizes the
average FU size for every electrode across a group, basdteon t
FU maps for every individual dataset. The average FU siné
an electrodey is computed as

S(U)I Z {|W| | UGW}.

#datasets
all datasets

with W the FU containing in every FU map. The value for an
electrode is mapped to the gray value of its correspondimgrm
cell, with lighter gray for higher average FU sizes, similara
(gray scale) topographic map [19]. Consequently, a lighbKoi
cell indicates that the corresponding electrode is on gecpmrt
of large FUs.

®3)

VIl. RESULTS

Throughout this section, we uge= 0.01. The corresponding
coherence threshold is~ 0.22 (Eqgn. 1).

A. FU Map

For a comparison of FU maps obtained with the three different
FU detection methods, see Fig. 4. FU maps for the five datasets
in each group and each of the five frequency bands are shown in
Fig. 5 to 8 for the MCB and IWB method.
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MCE WB IWE

ZFUR Vi comie. SPU Swgn cam, 2P sg o) and frequency band) which result in the largest differeretevben
the MCB, WB, and IWB methods. The order of the seven
illustrations is chosen such that it facilitates the disows.

i. The one anterior FU detected by the MCB method is
represented by two (smaller) spatially connected anterior
FUs by the WB method, whereas the IWB method merges
two anterior FUs. Because the WB and IWB methods both
follow a greedy approach, the anterior FUs do not correspond
exactly to the anterior FU of the MCB FU map. Because
the IWB method merges FUs during segmentation (and not
afterwards, such as with hierarchical watersheds [44}), th
vertices in the large anterior FU of the IWB FU map do not
exactly correspond to the vertices that are part of the small
anterior FUs obtained by the WB method.

ii. Although multiple anterior FUs are obtained with the WB

SPUskssmeomis), 0 FUS27 s comk. & FU) sk com(s method, they are smaller than the minimum size and there-

fore not shown, whereas the IWB method merges smaller
FUs into an anterior FU identical to the anterior FU found
with the MCB method.

iii. This is one of the occurrences of the maximal absolute
difference in the number of FUs between the MCB (6 FUs)
and IWB method (3 FUs). Nevertheless, the connection
between an anterior and posterior region which is visible
in the MCB FU map is preserved in the IWB FU map.

iv. This is one of the occurrences of the maximal absolute
difference in the number of FUs between the MCB (5 FUs)
and WB method (10 FUs). Whereas the WB method shows
visually cluttered edges, the IWB method gives a better
overview more similar to the MCB method.

V. The significance threshold used is apparently too low, as one
very large FU is found with the MCB method and two very

u large FUs are found with the IWB method; the WB method,

05 however, results in 6 FUs completely connected by 15 lines

i and does not (directly) make clear that the used threshold is

pe too low.

vi. Both FUs found with the MCB and the IWB method are

Fig. 4. lllustration of FU maps (top view, nose on top) obegimwith the three !dentlcal' The WB method has mare FUs in the same region

FU detection methods for seveRi) selected datasets and frequency bands.  Instead.

Left: MCB method (see also Fig. 5 and Fig. ®Jiddle: WB method with  Vvii. The large anterior FUs found with the MCB and the IWB

Orer-ls:egn;egggi%rii?igg)t gggg%?og inthloze;i'ezg_fggntiﬂgn ;e%UitziOSZ(_SGG method are identical. The WB method has multiple FUs in

(i) YOUNG 3. A7 Ha () young 5, 4.7 Hz-(4) ol 2, 1.3 He: (vl old 4, 1-3 Ho. the same region instead.

(vii) old 4, 8-12 Hz. For every dataset, the IWB FU map shows a number of In all cases, the number of FUs and their size and locatiams ar

FUs and a number of inter-FU connections closer to the MCB Fpsithan highly similar for the MCB FU maps and the corresponding IWB

the WB FU maps. FU maps (Figs. 5-8). The absolute difference in the number of

FUs between the WB and the MCB methods is on average
with a maximum difference of five FUs (four occurrences). The
FU detection with the (non-optimized) MCB method was fastejame difference between the IWB and the MCB is clearly smalle
for smaller FU sizes, taking approximately 1s for dataseth w g.9 with a maximum of three FUs difference (two occurrences).
small FUs, up to 2h for a dataset with the largest FU. FU des for the connections between FUs, those found with the MCB
tection with the (non-optimized) WB method took around4 + method are generally also found in the corresponding IWB FU
0.02s (max. 0.14s) and with the (non-optimized) IWB methoghaps. In particular, connections between a middle antenior
aroundo.05+0.04 s (max. 0.25s). Consequently, the WB and IWB, middle posterior FU are present in the MCB FU map if and
methods are up to a factor of 100,000 faster than the MCB r'detl“@q|y if they are presen[ in the Corresponding IWB FU map, with
for this typical multichannel EEG setting with 128 channels  one exception: for dataseld 5, 21-30 Hz, the inter-FU coherence
Because the MCB method is assumed to obtain the madstjust above the threshold for the IWB method, contrary &® th
interesting FUs corresponding to the strongest sourcealsignMCB method. For dataset$d 2 and the frequencies 1-3Hz, the

(Section V), it is here considered as the gold standard. W coconnection between anterior and posterior regions is@kplithe

pared the WB and the IWB method with the MCB method, antwB FU map (Fig. 8) and implicit in the MCB FU map (Fig. 6:

made an illustrative selection of seven (out of fifty) cadég.(4). the fact that one large FU consists of nearly all verticesligsp

The selection includes those settings (a combination diggaeint that most anterior and most posterior vertices are corniplete

2FUfs); 1sign. conn(s).  @FU(s); 15sign. conn(si. 2 FU(s}; 1 sign. conn(s)

@FUR) asign conn(s).  10FU(sk 23sign. connls). 7 FU(s}; 7 sign. conn(s)

vii
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Frequency (Hzg)
1-3 47 8-12 13-20 21-30
2 FU(s); 0 sign. conn (s} 2 FU(s); 1 sign. conn(s) 2 FU(s); 0 sign. connis). 2 FU(s); 15ign. conn(s) 3 FU(s); 0 sign. conn(s).

5]

4 FU(s); 0 sign. conn(s)

0.7
0.6
0.5
0.4
0.3

Fig. 5. Standard MCB FU maps, younger adults Top view, nose on top. FU mapEHU| > 5, p = 0.01) for five younger adults for five frequency bands
(1-3, 4-7, 8-12, 13-20, 21-30 Hz). Each FU is visualized astao&Voronoi cells with identical gray value, with differegray values for adjacent FUs. White
Voronoi cells are part of FUs with7U| < 5. A line connects FUs if the inter-FU coherence exceeds teifeiance threshold, with its color depending on
the value (see color bar, bottom right, with minimum cormgfing to the coherence threshaid=~ 0.22 for p = 0.01; the color bar is the same for all FU
maps). Above each group mean coherence map, the number ddrielthe number of connecting lines between FUs are displayed

connected). majority of the individual dataset FU maps in the correspogd
frequency bands (Figs. 5-8). The only exception is the 842 H
B. Group Analysis band, with anterior-posterior connections just above tineshold

Group mean coherence maps (Fig. 9) and group FU size mg‘% a majority of three (out of five) younger adults, and with
(Fig. 10) were obtained as extensions of the IWB FU detectigiterior-posterior connections above the threshold forireority
method. They are shown for the two groups of younger and old&two (out of five) older adults (with one relatively high va).
adults and the five frequency bands. Thus, generally the common features from the individual Fapsn

1) Individual FU Maps versus Group Mean Coherence Maps. ~ aré preserved well in the group mean coherence maps.

The largest FUs for individual datasets of younger adults2) Group Mean Coherence Map: Comparison Between
(Figs. 5, 7) are mostly located anteriorly and posteriony iGroups: For all frequencies (1-30 Hz), the number of FUs is lower
the middle. This feature is also preserved in the correspgnd for younger than for older adults in the corresponding fesy
group mean coherence maps (Fig. 9, left column). FU maps feand (Fig. 9, compare left with right column). This probably
older adults (Figs. 6, 8) usually show more lateral FUs, Whiccorresponds to earlier findings [2], indicating more, egjlic

are preserved in the corresponding group mean coherence niaferhemispheric, coherence for older than for youngeritadu
(Fig. 9, right). For both younger and older adults, the numb&imilarly, the number of white cells (corresponding to &ledes

of FUs usually does not change much across frequency bam@é part of any sufficiently large FU) is larger for youngearh

in the individual dataset FU maps (Figs. 5-8, compare rowd$dr older adults in every frequency band, again confirming th
as well as in the group mean coherence maps (Fig. 9, compgaresence of more coherence for older than for younger a@llts
rows). In four out of five frequency bands, inter-FU connacsi For lower frequencies, there is a connecting line between an
between a middle anterior and middle posterior FU are ptésen anterior and a posterior FU in most group mean coherence maps
the group mean coherence map (Fig. 9) if they are presentin for younger adults (Fig. 9, 1-7Hz) and older adults (Fig. 9, 1
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Frequency (Hzg)

13 47 8-12

13-20 21-30

5]

4 FU(s); 2 sign. conn(s) 2 FU(s); 0 sign. conn(s) 4 FU(s); 1 sign. conn{s), 3 FU(s); 0.sign. conn(s) 3 FU(s); 0 sign. conn(s).

0.7
0.6
0.5
0.4
0.3

Fig. 6. Standard MCB FU maps, older adults Same parameters as in Fig. 5.

12 Hz). This is possibly associated with the two most impartayounger adults [2]. Moreover, the average FU size decreaiks
sources of brain activity for this type of experiment, l@mht increasing frequency, in agreement with the presence ail&m
anteriorly (known as P3a) and posteriorly (known as P3b).[46 neous activity at a more global scale for lower EEG frequesici
FU maps show more lateral FUs (on both sides of the head) ford at a more local scale for higher EEG frequencies [39].
older adults than for younger adults in the same frequenoyl ba 4) Comparison of Hypothesis-Driven and Data-Driven Ap-

(Fig. 9). This may indicate more bilateral activation fodei than
for younger adults, as was also observed in [2].

3) Group FU Sze Map: Comparison Between Groups. For
younger adults (Fig. 10, left), average FU sizes are higimeat
posterior region and an anterior region, for all frequesiciehe
lateral regions on both left and right sides have the lowesteaye
FU size.

Similarly, for older adults (Fig. 10, right), the highesteasge
FU sizes occur in a posterior and an anterior region, althdag

proaches. For the same type of data, a hypothesis-driven sub-
selection of 12 out of 119 scalp electrodes (Fpl, Fp2, F3, F4,
C3, C4, P3, P4, 01, 02, 03, 04, see Fig. 1, right) and 15
coherences was made [2]. In contrast to this hypothesigiri
approach, FU maps together with group mean coherence maps
and group FU size maps all contribute to a data-driven seteof
electrodes of interest. In addition to the coherences estuidi [2],

our data-driven results suggest to include left and righiperal
electrodes (e.g., T7 and T8), and to include both intrahgineisc

older adults those regions are more widespread than forgesun@nd interhemispheric connections between anterior antepas
adults. Whereas the average FU sizes are lower on the siges ti#9'0NS.

in the middle for both younger and older adults (Fig. 10), die

ference between lower and higher average FU sizes is snfadler

older than younger adults. This indicates more bilateravaiion
for older than younger adults, in correspondence with [2].

VIII. D1scUsSION ANDCONCLUSIONS

EEG coherence analysis is the study of coherence between
functional units. Most current analyses use hypothesie«dr

Cells for younger adults are generally part of FUs with a loweROls. Existing data-driven graph visualizations for EEGem®

average size than corresponding cells for older adults. (F0g

ence commonly visualize vertices representing electradedots

compare color bars of the left and right column), once moind coherences as edges, resulting in clutter for multichldBEG
confirming the observation of higher coherence for oldemthavith up to 512 electrodes. However, without a hypothesis, all
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Frequency (Hzg)
1-3 47 8-12 13-20 21-30

2 FlU(s); 0 sign. conn(s) 2 FU(s); 1 sign. conn(s) 2 FU(s); 0 sign. conn(s). 2 FU(s); 1 5ign. conn(s) 1 FU(s): 0 sign. conn(s).

5]

3 FU(s); 0 sign. conn(s)

0.7
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0.3

Fig. 7. Novel IWB FU maps, younger adults.Same parameters as in Fig. 5

coherences should be considered. Therefore, we presedtgd-a The greedy WB and IWB methods directly result in uniquely
driven visualization method for multichannel EEG coherenclabeled electrodes, contrary to the standard MCB method. Al
which strongly reduces clutter and is referred to as funetio methods depend on the same thresholds: one for the initial
unit (FU) map. An FU is a spatially connected set of electsodeoherence graph, one for the inter-FU coherence, and ortador
recording pairwise significantly coherent signals, repnésd in  minimal FU size. The MCB, WB, and IWB methods find FUs in
the graph by a spatially connected clique. The visualipatiban approximately the same locations, and the inter-FU coimmest

FU is a simplified representation of a spatially connectéguel present in the MCB FU maps are generally also present in the
which does not explicitly visualize all edges within a clqu WB and IWB FU maps. However, the average difference between
m4B and the MCB method regarding the number of FUs is 1.8

clique based (MCB) method (time complexi(y(3"/3), with n,  (for the parameters used). For the IWB and the MCB methods

the number of vertices) [20], and a more efficient watershdf difference has decreased to 0.9, for the case study gmt w
based (WB) method({(n?logn)) [22]. One of the novelties Presented here.

introduced in this paper is an improved watershed based JIwB Additionally, as an alternative to hypothesis-driven gramnal-
method O(n?)), merging two spatially neighboring FUs if theirysis methods for multichannel EEG coherence, we proposed tw
union is a clique in the coherence graph. We did not choo8ével data-driven group maps for visual group analysisyTdre

one of the common solutions for over_segmentation whicls usaoth extensions of the efficient IWB FU detection method. One
the concept of dynamics [47], because dynamics are defimed i®@ group mean coherence map, which is a data-driven FU map
vertex values, whereas the EEG coherence graph has edgs.vaf@sed on the group mean coherence. The other is a group FU
Moreover, the IWB method merges FUs during segmentatioth (afize map, showing for each electrode the average FU sizesacro
not afterwards, such as with hierarchical watersheds [44]) @ collection of individual FU maps.

detection with the WB and IWB method (taking about 0.04 s and Because conventional data-driven multichannel EEG colcere
0.05s, respectively) is up to a factor of 100,000 faster than thenalysis is cumbersome, comparable conventional findimgs a
MCB method, and makes interactive visualization of muktizhel rare. Nevertheless several conventional findings are coadirby
EEG coherence possible. observations in the new data-driven visualizatidia$.Coherence

We earlier developed two methods to detect FUs, a maxi
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Frequency (Hz)
1-3 47 8-12 13-20 21-30
4 FU(s); 2 sign. conn(s) 3 FU(s); 1 sign. conn(s) 4 FU(s); 1 sign. conn(s) 4 FU(s); 1 sign. conn(s) 3FU(s); 0 sign, conn(s)
'-f

< A

5.7

2 FU(s); 1 sign. conn(s). 5 FU(s); 1 sign. conn(s).

[

5 FU(s) 8 sign. conn(s) 5 FU(s); 8 sign. conn(s)

2 FUis); 1 sign. conn (s}, 4 FU(s); 3 sign. connis)

6 FU(s); B sign. conn(s) B FU(s); 7 sign. connis).

0.7
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0.5
0.4
0.3

Fig. 8. Novel IWB FU maps, older adults Same parameters as in Fig. 5.

is lower for younger than older adults [2]. Accordingly, thedriven group maps, referred to as group mean coherence ndap an
number of FUs in group mean coherence maps is lower fgroup FU size map, yield results in accordance with conoeati
younger than for older adults for 1-30 Hz, group mean colerenfindings. Yet, our results suggest to expand an earlier Sahec
maps show a larger number of white cells not part of amyf hypothesis-driven ROIs [2] with additional data-drivR®lIs.
sufficiently large FU for younger adults than older adultsd a This demonstrates the usefulness of the IWB FU map, and both
group FU size maps show larger average FU sizes for oldeew data-driven group maps.

than for younger adults(b) Older adults have more bilateral g, maps, group mean coherence maps, and group FU size
activation than younger adults [2]. Accordingly, fpr oldeaults maps all contribute to a data-driven subselection of elees

,FU maps anq group mean coherenpe maps display more FYSnterest (EQIs): the number of EOIs, their location, ahdirt

n Iatgral regions, the average FU SIze 1S generally h'gm 8region of influence can be derived directly from the combarat

the difference between lower and higher average FU sizes iS¢, maps, group mean coherence maps, and group FU size
smaller.(c) There is simultaneous activity at a more global Scak‘?laps. In other words, the novel IWB method together with the

for lower EEG frequencies and at a more local scale for highgr ) o\ group maps make a data-driven subselection of the

EEG frequencies_[39]. Indeed, group FU siz_e maps indica@e thy gijaple electrophysiological signals possible. This ba used
the average FU size decreases with increasing frequédicyhe 55 3 gata-driven starting point for conventional quartiagroup

two most importar?t sources of brain activity for this 'predatta analysis. Our methods are currently applied to a multicebnn
are located anteriorly (known as P3a) and posteriorly (MNOW-g G conerence study of mental fatigue [48] by researchers fr
as P3b) [46]. Accordingly, FU maps and group mean coherengg, pepartment of Experimental Psychology of the Universit
maps show connections between anterior and posterior AUS §¢ Groningen. In this study, the ROIs are obtained in a data-
lower frequencies. driven way since no strong hypotheses can be formulatedilmse
Thus, the detection of data-driven ROIs for multichannelGEEexisting evidence. Our approach overcomes the severetions
coherence on the basis of the IWB method results in similaf conventional hypothesis-driven methods and takes fiWha-
information as the MCB method, and this information is founthge of all the available recordings. The presented vizaiidin
to agree with conventional findings. Also, the two new dataf (group) FU maps provides a very economical data summary
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Freq. (Hz) oLo

4FU(s):4 sign. conn(s)

Young

2FU(s): 1 sign. conn(s).

47

21-30

Fig. 9. Group mean coherence mapdgor younger (left) and older (right)
adults, per frequency band (from top to bottom). Top viewsenon top. The
line color depends on the inter-FU coherence (see colobb#om right, with
minimum corresponding to the coherence threshphkt 0.22 for p = 0.01;
the color bar is the same for all FU maps). Above each groumroeherence
map, the number of FUs and the number of connecting lines degtwUs
are displayed.

of extensive experimental results, which otherwise wowd/éry

difficult and time-consuming to assess. Initial responses fthe

psychologists using our visualization methods are vergrtvle.
The IWB method will be available inFUmaplab on

http://ww. rug.nl/informatica/ onderzoek/

progr amas/ svcg/ denos.
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