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Abstract— A typical data-driven visualization of electroen-
cephalography (EEG) coherence is a graph layout, with vertices
representing electrodes and edges representing signi�cant coher-
ences between electrode signals. A drawback of this layout is its
visual clutter for multichannel EEG. To reduce clutter, we de�ne
a functional unit (FU) as a data-driven region of interest (ROI).
An FU is a spatially connected set of electrodes recording pairwise
signi�cantly coherent signals, represented in the coherence graph
by a spatially connected clique. Earlier we presented two methods
to detect FUs, a maximal clique based (MCB) method (time
complexity O(3n= 3), with n the number of vertices) and a
more ef�cient watershed based (WB) method (time complexity
O(n2 log n)). To reduce the potential over-segmentation of the
WB method, we introduce an improved watershed based (IWB)
method (time complexity O(n2 log n)). The IWB method merges
basins representing FUs during the segmentation if they are
spatially connected and if their union is a clique. The WB and
IWB method both are up to a factor of 100,000 faster than the
MCB method for a typical multichannel setting with 128 EEG
channels, thus making interactive visualization of multichannel
EEG coherence possible. Results show that, considering theMCB
method as the gold standard, the difference between IWB and
MCB FU maps is smaller than between WB and MCB FU maps.
We also introduce two novel group maps for data-driven group
analysis as extensions of the IWB method. First, the group mean
coherence map preserves dominant features from a collection of
individual FU maps. Second, the group FU size map visualizes
the average FU size per electrode across a collection of individual
FU maps. Finally, we employ an extensive case study to evaluate
the IWB FU map and the two new group maps for data-driven
group analysis. Results, in accordance with conventional �ndings,
indicate differences in EEG coherence between younger and older
adults. However, they also suggest that an initial selection of
hypothesis-driven ROIs could be extended with additional data-
driven ROIs.

Index Terms— Information visualization, graphs and networks,
applications.

I. I NTRODUCTION

Electroencephalography (EEG) is a method to measure the
electrical activity of the brain using electrodes attachedto the
scalp at multiple locations. Synchronous electrical activity in
different brain regions is generally assumed to imply functional
relationships between these regions. A measure for this synchrony
is EEG coherence, calculated between pairs of electrode signals
as a function of frequency [1], [2].

Related studies of functional brain connectivity use othernon-
invasive neuroimaging techniques, including magnetoencephalog-
raphy (MEG) [3]–[5] and functional magnetic resonance imaging
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(fMRI) [6]–[9]. A typical visualization of EEG, MEG and fMRI
coherence, is a two-dimensional graph layout. Vertices repre-
sent electrodes, superconducting quantum interference devices
(SQUIDS), or fMRI regions of interest (ROIs), respectively.
Edges represent signi�cant coherences between electrode sig-
nals, SQUID signals, or fMRI-ROI time series, respectively.
Vertices are commonly visualized as dots and edges as lines.For
multichannel EEG (e.g., [10], [11]), MEG (e.g., [4], [5]), and
fMRI (e.g., [6], [8]), this layout may suffer from a large number
of overlapping edges, resulting in a cluttered visualization.

In the case of EEG, the reorganization of vertex positions [12]
to reduce clutter is not appropriate, because the electrodes have
meaningful positions. Other solutions reorganize edges orvary vi-
sual attributes of the edges [13], [14], but do not reduce thenum-
ber of edges. Several methods divide EEG electrodes [15], [16],
MEG SQUIDS [3], or fMRI voxels [9] into disjoint hypothesis-
driven ROIs and study coherences within or between ROIs. Other
methods set out ROIs representing EEG electrodes [10], [17],
MEG SQUIDS [5], or fMRI-ROIs [6] along rows and columns,
thus obtaining a square contingency table. By arranging ROIs
along rows and columns of a matrix, the spatial relations arelost.

Visualization of multichannel EEG (at least 64 electrodes)is
not always managed well [18]–[20]. Researchers often employ
a hypothesis-driven de�nition of certain ROIs in which all elec-
trodes are assumed to record similar signals because of volume
conduction effects [21]. As an alternative for the hypothesis-
driven approach, we previously presented two methods for the
detection of data-driven ROIs, referred to as functional units
(FUs) [20]. An FU is represented in the coherence graph by
a spatially connected clique. A clique is a vertex set in which
every two-element subset is connected by an edge. A cliqueC
is maximalwhen it is not contained in any larger clique (`larger'
meaning having more vertices). Within one FU, each pair of
vertices represents two signi�cantly coherent electrode signals. In
any group of vertices other than a clique, there are two vertices
representing two electrode signals which are not signi�cantly
coherent. Because larger ROIs are assumed to correspond to
stronger source signals, larger FUs are considered to be more
interesting. Therefore, we focus on maximal cliques, for which
vertex sets are as large as possible.

Our �rst FU detection method is a maximal clique based
(MCB) method [20]. The second method is a watershed based
(WB) method that detects spatially connected cliques in a greedy
way [22]. However, it suffers from potential over-segmentation
problems. Extending our earlier work, one of the novelties which
we present is an improved watershed based (IWB) method for FU
detection. It merges FUs if they are spatially connected andif their
union is a clique, thus reducing over-segmentation obtained with
the WB method.

In addition to individual dataset analysis, we introduce two new
group maps for data-driven group analysis of multichannel EEG
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coherence as extensions of the IWB method. They serve as a data-
driven alternative for the common hypothesis-driven selection of
coherences for group analysis [2], [16], [23]. First, the group mean
coherence map preserves dominant features from a collection of
individual FU maps. Second, the group FU size map visualizes
the average FU size per electrode across a collection of individual
FU maps. Results are reported for an extensive case study.

II. EEG COHERENCE

EEG can be recorded using currently up to 512 electrodes,
labeled uniquely by a combination of letters and digits (e.g.,
F3, Cz, P4, as in Fig. 1, right). A conductive gel is applied
between skin and electrodes to reduce impedance. The electrical
potential is measured at all electrodes simultaneously. The mea-
sured signals are ampli�ed, resulting in one recording channel
for every electrode. If there are many electrodes, the term `mul-
tichannel' or `high-density' EEG is used. As a result of volume
conduction [21], multiple electrodes can record a signal from a
single source in the brain. Therefore, nearby electrodes usually
record similar signals. Because sources of activity at different
locations may be synchronous, electrodes far apart can also
record similar signals. A measure for this synchrony is coherence,
calculated between pairs of signals as a function of frequency. The
coherencec� as a function of frequency� for two continuous
time signalsx and y is de�ned as the absolute square of the
cross-spectrumf xy normalized by the autospectraf xx and f yy

[1], having values in the interval[0; 1]: c� (x; y ) = j f xy ( � ) j 2

f xx ( � ) f yy ( � ) .
The cross-spectrum and auto-spectrum can be interpreted as
covariance and variance as a function of frequency, respectively.
An event-related potential (ERP) is an EEG recording of the brain
response to a sensory stimulus. To calculate the coherence for an
event-related potential (ERP) withL repetitive stimuli, the EEG
data can be segmented intoL segments, each containing one brain
response. A signi�cance threshold� for the estimated coherence
is then given by [1]

� = 1 � p1=(L � 1) ; (1)

wherep is a probability value associated with a con�dence level�
(p = 1 � � ). For an overview of other common linear (and
nonlinear) measures of synchrony, see [24].

III. R ELATED WORK

We discuss visualizations of functional brain connectivity
obtained using the noninvasive neuroimaging techniques EEG,
MEG, and fMRI. MEG commonly uses up to 512 SQUIDs
to measure magnetic �elds induced by electrical brain activity.
Similar to EEG coherence, MEG coherence is calculated between
pairs of SQUID signals. fMRI measures time series of changes
in cerebral blood oxygenation levels in the brain. Often, fMRI re-
searchers compute coherence (or other similarity) values between
mean time series for different ROIs which are commonly single
voxels or connected sets of voxels [7].

Although a comparison of different neuroimaging methods
should be made carefully [25], the common underlying data
representation for the different types of connectivity is agraph.
Therefore, we restrict ourselves to graph visualizations and focus
on hypothesis-driven and data-driven aspects. First, we consider
EEG and MEG with typically up to 512 vertices, whose spatial
relations can be represented by a planar graph. Later, we con-
sider fMRI with vertices commonly representing thousands of

voxels [7]. The overview also includes general graph drawing
solutions.

A. EEG and MEG

EEG and MEG coherence graphs have vertices representing
electrodes and SQUIDS, respectively. Most of the visualizations
of EEG are applicable to MEG, and vice versa. For a two-
dimensional visualization of the vertices, often planar projections
are used of the three-dimensional electrode or SQUID locations
on the surface of a head. Vertices are usually mapped to a top
view of a head (e.g., Fig. 1, right), sometimes to two separate side
views of the left and right hemisphere [11], [15]. Visualizations
with edges representing signi�cant coherences may suffer from
a large number of overlapping edges, resulting in a cluttered
visualization for multichannel EEG (e.g., [10], [11]; Fig.1, left)
or MEG (e.g., [4], [5], [26]). Existing solutions for the reduction
of clutter involve an adapted visualization of the verticesand the
edges.

The layout of the vertices can be changed, e.g., by using a
force-directed placement [12]. However, for EEG applications we
prefer to maintain the spatial relationship between the vertices
representing electrodes, because electrodes have meaningful po-
sitions. A different method uses an area dependent visualization
of vertices of variable size [27], but also does not preserve
vertex positions. Other solutions vary (combinations of) visual
attributes of vertices and edges, e.g., transparency [13],color [4]–
[6], [8], saturation [14], line width [9], [14], and line style [9].
Nevertheless, the presence of many overlapping edges may still
obscure other visualization elements, or the superposition of
differently colored lines might result in an undesired mix of
colors. Also the layout of the edges can be manipulated, e.g., by
interactively curving away edges from the focus of attention [13].
This has the undesirable side-effect that, in an already crowded
�eld of view, the area which is out of focus will be even more
crowded. Moreover, to get a complete overview of the graph,
every vertex (out of up to 512 vertices for EEG coherence)
has to be selected individually. Alternatively, elements (such as
edges) can be left out selectively [28]. Nevertheless, cluttered
visualizations are even obtained for restrictions to the top 5 %
coherences for only 66 MEG SQUIDS [4], or the top 10 % for 119
EEG electrodes (Fig. 1, left).

The main disadvantage of many existing analyses of multi-
channel EEG or MEG is the hypothesis-driven selection of the
number of ROIs and the positions of the ROIs, instead of a
data-driven selection. One method chooses a regularly distributed
subset of electrodes [2], ignoring the majority of the electrode sig-
nals. An MEG method divides channels into disjoint hypothesis-
driven ROIs and maps the average coherence within a ROI to
a color [3], ignoring coherences between ROIs. A similar EEG
method divides electrodes into four disjoint ROIs and studies
anterior-posterior connections between those ROIs [15]. Another
EEG method divides (the majority of the available) electrodes into
disjoint hypothesis-driven ROIs and studies coherences between
these ROIs across datasets [16], but it does not simultaneously
visualize which electrodes are part of which ROI.

An existing EEG approach which is data-driven sets out up
to 21 electrodes along both the rows and columns of a matrix
as a tiled display [10], [17]. The result is a square contingency
table showing coherence values for all possible electrode pairs.
Each table entry is a square in which coherence is displayed
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Fig. 1. Left: Layout of a coherence graph (EEG frequency band 1-3 Hz). Vertices represent electrodes, edges represent signi�cant coherences between
electrode signals, where the signi�cance threshold equals0:22 (corresponding top = 0 :01). Edges are visualized as gray lines, vertices as black dots. An
edge is light gray if its value is in the range0:22 < c � < 0:37, medium gray if its value is in the top 10 % of the coherences (0:37 � c� < 0:91), and
dark gray if its value is in the top 1 % (c� � 0:91). This corresponds to a common existing data-driven visualization, showing cluttered edges.Middle:
Histogram of the corresponding coherences to illustrate the coherence distribution. Vertical lines (dash, solid, dot) indicate signi�cance thresholds associated
with three probability levels (p = 0 :10; 0:05; 0:01, respectively).Right: Voronoi diagram with electrode labels in the correspondingcells. The convex hull
of all electrodes is shown as a boundary. To improve the readability, the Voronoi diagram is stretched horizontally. Because the coherence computation is
independent of distance, distances between electrodes do not need to be preserved. However, spatial relationships between electrodes are maintained.

between the two corresponding electrode signals as a function
of frequency. By arranging the electrodes along the rows andthe
columns of the matrix, the spatial relations are lost. As a result,
consecutive entries in the table do not need to imply coherence
between pairs of signals recorded at adjacent electrodes onthe
scalp. Similarly, a square contingency table is created for78 MEG
SQUIDS sorted into four hypothesis-driven ROIs [5] (left/right,
anterior/posterior). Each table entry is square with the coherence
of the corresponding signals mapped to a color. A different data-
driven EEG approach �rst localizes dipoles corresponding to
maximally independent components in the data, and then calcu-
lates and visualizes coherence between dipole activities [29]–[31].
However, dipole source solutions are not unique [32].

Another approach is restricted to local EEG coherence, which is
de�ned as the coherence between two spatially neighboring elec-
trodes [33], [34]. It requires additional methods to study coher-
ences between electrodes which are not direct spatial neighbors.
Another visualization creates a map of topographic submaps[35],
with one submap for each electrode visualizing the coherence
between itself and every other electrode. It does not explicitly
visualize coherence between electrodes by connecting lines. As
a consequence, every topographic submap (out of up to 512
submaps) needs to be studied separately to obtain a complete
overview. Another drawback is that local coherences dominate the
visualization [35]. A subselection of two topographic submaps out
of 128 is made in [23], without providing a complete overview
of all coherences.

B. fMRI

For fMRI coherence, usually a limited number of so-called seed
(or reference) voxels is selected on the basis of prior anatomical or
functional information. However, the anatomy may be abnormal,
and the choice of seed points may affect the results [7]. Nonethe-
less, either an individual seed point or a spatially connected
set of voxels including a seed point is considered as a ROI
having a (mean) time series. Vertices represent ROIs and canbe
visualized three-dimensionally [36] or two-dimensionally. A two-
dimensional visualization uses, e.g., a planar projectionof three-
dimensional ROI positions or an approximation of functional

distances by graphical distances using metric multidimensional
scaling [9]. An edge represents a signi�cant similarity between
two ROI time series. The visualization of edges as lines may lead
to clutter [6], [8], [9], [36].

Filtering edges may still lead to cluttered visualizations[6].
Other visualizations set out ROIs along the rows and columns,
thus obtaining a square contingency table. Each table entryis
a square with a similarity value between the two corresponding
signals mapped to a color [5], [6]. Existing data-driven graph
clustering algorithms include hierarchical cluster analysis [7]
and independent component analysis (ICA) [29], [30], [37].The
result of hierarchical cluster analysis can be visualized as a
dendrogram [9], showing the ROIs as leaves of a binary tree,
thus losing the spatial relations between the ROIs. Also, ROIs
can be visualized as colored volumes of interest [37] which
may occlude each other. For the same reason, we do not favor
three-dimensional EEG visualizations. Alternatively, ROIs can
be visualized on anatomical slices [7], [9], [38]. However,a
large number of two-dimensional slices is required to obtain a
complete overview of a three-dimensional volume. Sometimes,
instead of an explicit visualization of the connection between
ROIs (e.g., with a line), all ROIs in one cluster are colored
identically, with different colors and/or separate slicesfor different
clusters [9].

C. Conclusion

The overview of related work has concentrated on the require-
ments we posed on an EEG coherence visualization: it should
be (1) data-driven, (2) preserve electrode locations, (3) minimize
visual clutter, and (4) present an overview. Many of the discussed
methods still suffer from visual clutter or relocate vertices and
edges and therefore do not meet requirement (2) or (3). On the
other hand, existing methods which do meet requirements (2,3)
are hypothesis-driven, thus failing to meet our requirement (1). In
summary, the method proposed in this paper combines a number
of features which no single technique currently provides.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,VOL. 14, NO. 4, JULY/AUGUST 2008, PP. 756-771

IV. DATA REPRESENTATION

A. Experimental Setup

Brain responses from two groups of �ve younger (34� 10 years,
mean� standard deviation) and �ve older (62� 8 years) adults are
studied, which were recorded using an EEG cap with119 scalp
electrodes. During a so-called P300 experiment, each participant
was instructed to count target tones of2000Hz (probability0:15),
alternated with standard tones of1000Hz (probability0:85) which
were to be ignored. After the experiment, the participant had to
report the number of perceived target tones. For each dataset,
brain responses to 20 target tones were recorded inL = 20
segments of 1 s. EEG coherence is in�uenced by the choice of
reference. We chose to use an average reference, which is a close-
to-optimal approximation to a reference-free recording inthe case
of 128 electrodes [2], [39].

A procedure fromNeurospecwas adopted to compute the
coherence (www.neurospec.org ). We �rst averaged over
segments and then over adjacent spectral lines in prede�ned
frequency bands. Frequencies between 1 and 30 Hz are typi-
cally studied clinically. We calculated the average coherence
within �ve EEG frequency bands (1-3, 4-7, 8-12, 13-20, and
21-30 Hz), because EEG synchrony varies with frequency [2],
[39]. For 119 electrodes, in total 7021 coherence values were
computed per frequency band. If the conductive gel accidentally
connected two adjacent electrodes, very high coherences were
measured. Coherences higher than 0.99 were therefore ignored.
Typically, this threshold value eliminates approximately0.01%
of the coherences. Note also that using Eqn. 1 for determining
signi�cance levels is a coarse approximation, since it doesnot take
the number of spectral lines per band into account. However,this
approximation only overestimates the signi�cance level, and does
not in�uence the visualization method itself.

B. EEG Coherence Graph

The data are represented by an undirectedcoherence graph
with vertices representing electrodes. Coherences above the sig-
ni�cance threshold (Eqn. 1) are represented by edges, coherences
below the threshold are ignored. Vertices are not self-connected.
To determine spatial relationships between electrodes, a Voronoi
diagram is employed which partitions the plane into regionsof
points with the same nearest vertex. For EEG data, the vertexset
equals the set of electrode positions (Fig. 1, right). The vertices
are referred to as (Voronoi) centers, the region boundariesas
(Voronoi) polygons. The area enclosed by a polygon is called
a (Voronoi) cell. We call two cellsVoronoi neighborsif they
have a boundary in common. A collection of cellsC is called
Voronoi-connectedif for a pair � 0; � n 2 C there is a sequence
� 0; � 1; :::; � n of cells in C with each pair� i � 1; � i consisting
of Voronoi neighbors. Cells, vertices, and electrodes are inter-
changeable for the use with the terms `Voronoi neighbor' and
`Voronoi-connected'.

V. FU DETECTION

Whereas there are many unsupervised graph clustering meth-
ods, e.g., hierarchical clustering and ICA (see Section III), our
choice is motivated by the type of cluster we desire. As a result
of volume conduction [21], multiple electrodes can record asignal
from a single source. Consequently, a spatially connected set of
electrodes recording similar signals is considered as a data-driven

ROI (a cluster). Such a ROI is referred to as functional unit
(FU) and is represented in the EEG coherence graph by a clique
consisting of a set of spatially connected vertices [20].

Recall that larger ROIs are assumed to correspond to stronger
source signals and are considered to be more interesting. There-
fore, our �rst method for FU detection is primarily based on
the detection of maximal cliques [40], [41]. We adapted this
method to detect spatially connected sets of vertices [20].Our
second method for FU detection is based on watersheds, an
ef�cient method for detecting spatially connected segments [42].
We adapted this method to detected cliques in a greedy way [22].
Next, we �rst brie�y describe the two earlier developed FU detec-
tion methods, before introducing a novel improved method based
on watersheds which is designed to reduce over-segmentation.

A. Maximal Clique Based (MCB) Method

1) Maximal Cliques:Bron and Kerbosch (B&K) [40] devel-
oped a method to detect all maximal cliques in a graph. It �rst
branches the problem, and bounds unsuccessful branches. Its
recursive procedure maintains three dynamic vertex sets:

� the setcompsubcontains an increasing or decreasing clique;
� the setcandidatescontains vertices that are connected to all

vertices incompsuband that can be added tocompsub;
� the setnot contains vertices that are connected to all vertices

in compsuband that were added tocompsubpreviously.

At each call of the procedure, the vertexv from the set
candidatesis selected that has the largest number of connections
with the other vertices incandidates. If there are more such
vertices, then one of these is randomly selected. Further, it is
assured thatv is not connected to the vertex just added tonot.
The selected vertexv is added tocompsuband removed from
candidates. Next, newcandidatesis the intersection ofcandidates
and the neighborhood ofv. Similarly, newnotis the intersection
of not and the neighborhood ofv. If both newcandidatesand
newnotare empty,compsubis a maximal clique. This procedure
is repeated recursively with local setsnewcandidatesandnewnot,
until the candidate set is empty. In case the procedure is not
repeated withnewcandidatesandnewnot, the vertex most recently
added tocompsub(vertexv) is removed fromcompsuband added
to not. If any vertex in newnot is connected to all vertices in
newcandidates, then it is known that this vertex will never be
removed fromnot and this branch is bounded.

The worst-case time complexity for detecting all maximal
cliques isO(3n= 3), with n the number of vertices, because3n= 3

is the highest number of cliques [41]. In practice, performance
of maximal clique detection strongly depends on graph struc-
ture [43].

2) Voronoi-Connected Maximal Cliques:We extended the
method [40] such that it only detects maximal cliques consisting
of Voronoi-connected vertices [20]. The three dynamic vertex
sets are maintained, but the setcandidatesis split into a set
currentcandand a setcomplcand. The setcurrentcandcontains
the candidates that are Voronoi neighbor of at least one element
in compsub; only these can be added tocompsubat the current
step. The setcomplcandis the complement ofcurrentcand in
candidates. At each call, the element fromcurrentcandwhich
has the largest number of connections with the other candidates
(currentcand[ complcand) is added tocompsub. Let this element
be v0. The setnewcurrentcandis the intersection ofcurrentcand
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and the neighborhood ofv0 (in the coherence graph), united with
the Voronoi-neighbors ofv0 in complcand. The setnewcomplcand
is the intersection ofcomplcand and the neighborhood ofv0

(in the coherence graph), minus the Voronoi-neighbors ofv0 in
complcand. The set(new)not is maintained as before. This is
repeated untilnewcurrentcandis empty. If newnotis also empty,
thencompsubis a Voronoi-connected maximal clique.

Fig. 2 illustrates maximal clique detection with the B&K algo-
rithm (A and B) and Voronoi-connected maximal clique detection
with the MCB method (C), for a graph with the adjacency matrix
shown in Table I. The �rst B&K iteration has an emptynot
set (A). One of the later recursive iterations of the B&K method
returns to the initial situation with all vertices in thecandidatesset
(not shown), puts the selected vertex labeledc in the not set (B1),
and selects the vertex with the highest degree in thecandidatesset
(B2). Whereas the B&K method detects maximal cliques which
can consist of more than one spatial component (A5), the MCB
method detects spatially connected cliques instead (C4). (For the
MCB method, the use of thenot set is the same as for the B&K
method and is therefore not explicitly illustrated.)

The following detailed description contains (row, column)
references to Fig. 2.C5. Vertex positions. Vertices are spatial
neighbors if they are 4-connected (e.g., the spatial neighbors
of vertexd are verticesa, e, andg). A. Iteration of B&K maximal
clique detection with emptynot set. It starts with all nine vertices
in the set candidates (not illustrated).A1. Then the vertexc with
the highest degree (following Table I) is �rst added tocompsub;
its adjacent vertices are incandidates. (Vertices not part of any set
are shown as a black dot.)A2-A4. At every next step, the vertex
with the highest degree incandidates, let us sayv, is added to
compsub. (In the case of ties one vertex is selected randomly.)
Further, vertices not adjacent tov (denoted by� c(v)) are removed
from candidates. This continues untilcandidatesis empty. At
A2, v = b, � c(v) = f dg; at A3, v = g, � c(v) = f eg; at A4,
v = f , � c(v) = f hg; at A5, v = i , � c(v) = ; . Now, compsub=
f b; c; f; g; i g is a maximal clique, becausecandidates= ; (andnot=
; ). B. A later iteration for B&K maximal clique detection returns
to the situation preceding A1 with all vertices in the candidates
set, and puts the �rst selected vertexc into thenot set.B1. Vertexc
which was previously selected �rst (see A1) is now in thenot set.
B2-B4.Similar to A2-A4.B5. Different from A5, nowcandidates
= f b; f; g; i g, andnot = f cg. This implies that the maximal clique
f b; c; f; g; i g has been found before.C. MCB Voronoi-connected
maximal clique detection with same starting point as A (withnot
= ; ). C1. The vertexc with the highest degree is �rst added to
compsub; its adjacent vertices (see Table I) are incurrentcandif
they are a spatial neighbor (f b; f g), or otherwise incomplcand.
C2-C4. At every next step, the element fromcurrentcandwhich
has the largest number of connections with the other candidates
(currentcand [ complcand) is added tocompsub.The spatial
neighbors ofv0 in complcand(denoted by�( v0)) are moved from
complcandto currentcand. Further, vertices not adjacent tov0

(i.e., � c(v0)) are removed from bothcurrentcandandcomplcand.
This continues untilcurrentcandis empty. AtC2, v0 = b, �( v0) =
f eg, � c(v0) = f dg; at C3, v0 = f , �( v0) = f ig, � c(v0) = f hg; at
C4, v0 = i , �( v0) = ; , � c(v0) = f eg. C4. compsub= f b; c; f; i g
is a spatially connected maximal clique, becausecurrentcand=
; (and not = ; ). Remaining vertices incomplcandare in the
adjacency list of all vertices incompsubbut are not a spatial
neighbor of any vertex incompsub.

TABLE I

ADJACENCY MATRIX FOR VERTICESa THROUGH i IN FIG. 2 (1 (0)MEANS

(NOT) CONNECTED).

a b c d e f g h i
a 0 0 0 1 0 0 0 0 0
b 0 0 1 0 1 1 1 1 1
c 0 1 0 1 1 1 1 1 1
d 1 0 1 0 0 0 0 0 0
e 0 1 1 0 0 1 0 0 0
f 0 1 1 0 1 0 1 0 1
g 0 1 1 0 0 1 0 1 1
h 0 1 1 0 0 0 1 0 0
i 0 1 1 0 0 1 1 0 0

Fig. 2. Illustration of maximal clique detection with the B&K algorithm
for an iteration with an emptynot set (A) and an iteration with a non-empty
not set (B), and Voronoi-connected maximal clique detection with theMCB
method (C), for a graph with adjacency matrix as in Table I. For explanation,
see text.

3) FU Labeling: Every vertex can be part of multiple
(Voronoi-connected) maximal cliques. To assign a unique label to
every vertex, a quantitytotal strengthis de�ned for a (sub)graph
G = ( V; E) as the sum of all edge values [20]. This value is not
normalized for the size ofE . Consequently, if two graphs have
an equal average coherence, the graph with more vertices hasa
higher total strength. Next, all cliques are queued in decreasing or-
der by their total strength. Then the following labeling procedure
is repeated, until there are no more cliques or until all vertices
are labeled. The �rst clique is removed from the queue, and all
its vertices are assigned a unique label and are removed from
the other cliques. If necessary, the changed cliques are separated
into Voronoi-connected components. For all changed cliques, the
total strength is recomputed before they are put in the appropriate
position in the sorted queue. After completion of the labeling
procedure, every set of identically labeled vertices is an FU.

B. Watershed Based (WB) Method

The watershed based (WB) method is an alternative to the
standard MCB method [22]. It is a greedy method approximating
spatially connected maximal cliques on the basis of an edge-based
watershed transform. The WB method de�nes as markers those
vertices which are locally maximally similar to their spatially
neighboring vertices. To obtain the markers, a coherence value
is assigned to each vertex by computing the average of the edge
values between this vertex and all its Voronoi neighbors. Then, all
vertices which are local maxima are considered as markers tobe
associated with basins. (A similar edge-based watershed method,
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which is not restricted to detect cliques, instead selects pairs of
vertices as markers which are incident with an edge which is a
local minimum [44].)

The WB method for greedy Voronoi-connected clique detection
maintains the following dynamic vertex sets.

� bsni contains a sorted list of the vertices in basini .
� L (v) contains the basin label of vertexv.
� adjCBsni contains a list of vertices (sorted by vertex number)

which are adjacent toeach of the vertices inbsni in the
coherence graph.

� queuecontains edges in decreasing order. When vertexv
receives a label, an edgee = ( v; v0) is added toqueue
for each unlabeled Voronoi neighborv0 of v, provided
that the corresponding edge value exceeds the signi�cance
threshold (Eqn. 1).

Whereas the usual queue-based implementation of the water-
shed transform applied to digital images uses avertex queue
sorted in increasing order of value [45], we use anedgequeue
sorted in decreasing order of coherence value. (The vertex values
are only used for de�ning the markers.) In case the coherence
graph has multiple identical edge values (which did not occur
for our datasets), an ordered queue consisting of queues with
identically valued elements can be used [45]. We now turn to a
more precise analysis of the algorithm.

(Step 1) The edge queue is initialized with edges (correspond-
ing with a signi�cant coherence) between markers and their
Voronoi neighbors. The �rst edge(v; v0) in this queue corresponds
to the highest similarity (coherence) between any vertexv0 outside
and a Voronoi neighboring vertexv inside a basin. Therefore,
vertexv0 is the �rst candidate to be added to a basin.

(Step 2) The main procedure consists of the following steps.
Remove the �rst edge, saye = ( v; v0) from queue. In case
vertex v0 was also labeled between the insertion and removal
of e = ( v; v0), nothing is done and the procedure continues with
a new edge. Otherwise (v0 is unlabeled), there are two cases.
(i) In casev0 2 adjCohBsnL (v) (line 20), v0 receives labelL (v)
and (ii) adjCohBsnL (v) is replaced by its intersection with the
neighborhood ofv0 in the coherence graph (line 22); (iii)v0 is
added tobsnL (v) (line 23); (iv) queueis extended with the edges
betweenv0 and its Voronoi-neighbors (line 24-28), provided that
corresponding edge values exceed the signi�cance threshold. In
the other case, ifv0 =2 adjCohBsnL (v) , v0 is not labeled (yet).
This procedure is repeated untilqueueis empty. Each basin then
corresponds to an FU.

The time complexity of the WB method isO(n2 log n), with
n the number of vertices [22].

C. Improved Watershed Based (IWB) Method

Over-segmentation is a potential problem of the WB method.
To reduce over-segmentation we here implement the �rst solution
suggested in [22], by merging two spatially neighboring FUs
if their union is a clique in the coherence graph. To obtain
the improved watershed based (IWB) algorithm (Alg. 1) we
insert lines 12-16 and lines 30-43 in the pseudocode of the
WB algorithm (see also [22]). In words, the difference between
the WB and IWB method is the following. In case vertexv0

was labeled between the insertion and removal ofe = ( v; v0),
nothing is done if the label ofv0 is equal to the label ofv.
Otherwise (L (v0) 6= L (v)), see line 30), the following steps are

executed consecutively (for notation purposes, de�ne asL (v0)):
(i) check if all vertices inbsnL (v) are in adjCohBsn , and vice
versa (line 33). (ii) ReplacebsnL (v) by the union of itself with
bsn , because their union is a spatially connected clique in the
coherence graph (line 34); (iii) all vertices inbsn receive the
label L (v) (lines 35-37); (iv)adjCohBsnL (v) is replaced by the
intersection of itself withadjCohBsn (line 38); (v) bsn and
adjCohBsn are made empty (line 39).

In the algorithm, the operationinsertEdgeSort(e(v; v0),queue)
inserts edgee(v; v0) into the appropriate position in a edge queue
queue which is decreasingly sorted by edge value; similarly,
insertVSort(v,vqueue)inserts vertexv into the appropriate po-
sition in vertex queuevqueuewhich is decreasingly sorted by
vertex number;dequeue(queue)returns and removes the �rst edge
from an edge queuequeue; intersect(.,.)gives the intersection of
two sorted vertex sets;merge(.,.)gives the union of two sorted
vertex sets (without duplicates);setInSet(V ,V 0) returns `true' if
the sorted vertex setV is a subset of the sorted vertex setV 0,
and `false' if not. The size of a vertex set is denoted byj : j.

One adaptation further improves the average performance in
practice. A matrixbsnMat is created with the basins set out
along the rows and the columns, and is initialized with only
ones (lines 12-16). If two spatially neighboring basinsbi and bj
together are not a clique, thenbsnMat(bi ; bj ) andbsnMat(bj ; bi )
are set to zero (line 41). In that case, basinsbi and bj cannot
be merged later either, and lines 32-42 are skipped the next time
that bi andbj are candidates to be merged.

The difference between the WB and the IWB method affects
the time complexity as follows. (i) line 33: the check to see if
one sorted list is part of another has time complexityO(n). Each
of the next steps also has time complexityO(n) for sorted lists
of vertices of at most lengthn: (ii) line 34: taking the union
of two sorted lists, (iii) lines 35-37: labeling a list, (iv)line 38:
intersecting two sorted lists, (v) line 39: making lists empty. Steps
(i)-(v) are executedO(n) times (recall that the order of the number
of edges between Voronoi neighbors inqueueis O(n)). Thus, the
time complexity of the IWB adaptation isO(n2) and the time
complexity for the complete IWB algorithm is the same as for
the WB method, i.e.,O(n2 log n).

Fig. 3. IWB FU map (EEG frequency band1-3 Hz, dataset young 5). Top
view, nose on top.Left: A circle with a cross inside indicates the geographic
center of all Voronoi centers belonging to one FU.Middle: The same FU
map, but only with FUs larger than5 cells. White Voronoi cells are part
of smaller FUs.Right: Lines connect FU centers if the inter-FU coherence
exceeds the signi�cance threshold (Eqn. 1). The color of theline depends on
the inter-FU coherence (see color bar, with minimum corresponding to the
coherence threshold� � 0:22 for p = :01).

VI. FU V ISUALIZATION

A. FU Map for Individual Dataset Analysis

Given the FUs, theinter-FU coherencec0
� at frequency�

between two FUsW1 and W2 is de�ned as the sum of the
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Algorithm 1 IWB pseudocode. Lines 12-16 and 30-43 were
inserted into the WB method to obtain the IWB method.
INPUT: V is the vertex set;marker(i) = markeri;

c(v; v0) = coherence(v; v0) = c(v0; v);
adjCohv = f v0 2 V j c(v,v0) � � g; � = sign. threshold
adjVorv = f v0 2 V j v0 2 Vor.-neighborsv & v0 2 adjCohv g;
f adjCohv , adjVorv are both sorted by vertex numberg

OUTPUT: bsni is basini (i.e., an FU) sorted by vertex number
INITIALIZATION :

1: queue ; f queue of edgesg
2: for all v 2 V do
3: L (v)  0 f L (v) = label of vertexvg
4: end for
5: for i = 1 to jmarkerj do
6: bsni  marker(i ); v  marker(i ); L (v)  i
7: adjCBsnL (v)  adjCohv
8: for all v0 2 adjVorv do
9: insertEdgeSort(e(v,v0),queue)

10: end for
11: end for
12: for i = 1 to jmarkerj do
13: for j = 1 to jmarkerj do
14: bsnMat(i; j )  1 f IWB modi�cationg
15: end for
16: end for
MAIN :
17: while queue6= ; do
18: e(v; v0)  dequeue(queue)
19: if L (v0) = 0 then
20: if v0 2 adjCBsnL (v) then
21: L (v0)  L (v)
22: adjCBsnL (v)  intersect(adjCBsnL (v) ,adjCohv0)
23: bsnL (v)  insertVSort(v0,bsnL (v) )
24: for all v� 2 adjVorv0 do
25: if L (v� ) = 0 then
26: insertEdgeSort(e(v0; v� ),queue)
27: end if
28: end for
29: end if
BEGIN IWB
30: else
31: if (L (v0) 6= L (v)) and(bsnMat(L (v0); L (v)) 6= 0 ) then
32:   L (v0)
33: if setInSet(bsnL (v) ,adjCBsn ) and

setInSet(bsn ,adjCBsnL (v) ) then
34: bsnL (v)  merge(bsnL (v) ,bsn )
35: for all w0 2 bsn do
36: L (w0)  L (v)
37: end for
38: adjCBsnL (v)  intersect(adjCBsnL (v) ,adjCBsn )
39: bsn = ; ; adjCBsn = ;
40: else
41: bsnMat(L (v);  )  0; bsnMat( ; L (v))  0
42: end if
43: end if
END IWB
44: end if
45: end while

coherence values between one vertex inW1 and the other vertex
in W2, scaled by the maximal number of edges betweenW1 and
W2 [20]:

c0
� (W1; W2) =

P
i;j f c� (vi ; vj ) j vi 2 W1; vj 2 W2g

jW1j � j W2j
: (2)

Note that coherences betweenany pair of vertices are taken into
account to normalize for the size of the FUs.

An FU map visualizes each FU as a set of Voronoi cells
with identical gray value, with different gray values for adjacent
FUs [20], see Fig. 3. Note that the geographic center of an FU can
be located in a cell not belonging to the corresponding FU. A line
is drawn between FU centers if the corresponding inter-FU coher-
ence exceeds a threshold (Fig. 3, right). We consistently choose
this threshold to be equal to the signi�cance threshold (Eqn. 1), as
we already used this threshold to determine the coherence graph.

Because larger FUs are considered to be more interesting, only
FUs larger than 5 cells are considered. White Voronoi cells are
part of smaller FUs.

B. Data-Driven Group Analysis

FU maps differ from individual to individual, making group
analysis dif�cult. Therefore, we present a data-driven method for
group coherence analysis which detects common features in a
collection of individual FU maps. Group coherence analysesare
commonly based on group means of coherences of interest. We
show how our data-driven ROIs, i.e., the FUs, lead to a data-
driven selection of coherences of interest.

1) Group Mean Coherence Map:We de�ne a group mean
coherence graph as the graph containing the mean coherence
for every electrode pair computed across a group. To obtain a
data-driven coherence visualization for a group, the groupmean
coherence graph is thresholded, maintaining only the edgeswith
a value exceeding the coherence threshold (Eqn. 1). Next, anFU
map is created for the group mean coherence graph, referred to
asgroup mean coherence map.

2) Group FU Size Map:A group FU size map visualizes the
average FU size for every electrode across a group, based on the
FU maps for every individual dataset. The average FU sizes of
an electrodev is computed as

s(v) =
X

all datasets

fj W j j v 2 W g
# datasets

: (3)

with W the FU containingv in every FU map. The values for an
electrode is mapped to the gray value of its corresponding Voronoi
cell, with lighter gray for higher average FU sizes, similarto a
(gray scale) topographic map [19]. Consequently, a light Voronoi
cell indicates that the corresponding electrode is on average part
of large FUs.

VII. R ESULTS

Throughout this section, we usep = 0 :01. The corresponding
coherence threshold is� � 0:22 (Eqn. 1).

A. FU Map

For a comparison of FU maps obtained with the three different
FU detection methods, see Fig. 4. FU maps for the �ve datasets
in each group and each of the �ve frequency bands are shown in
Fig. 5 to 8 for the MCB and IWB method.
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Fig. 4. Illustration of FU maps (top view, nose on top) obtained with the three
FU detection methods for seven (i-vii ) selected datasets and frequency bands.
Left: MCB method (see also Fig. 5 and Fig. 6).Middle: WB method with
over-segmentation.Right: IWB method with over-segmentation reduction (see
also Fig. 7 and Fig. 8). Datasets:(i) young 1, 4-7 Hz; (ii) young 1, 8-12 Hz;
(iii) young 3, 4-7 Hz;(iv) young 5, 4-7 Hz;(v) old 2, 1-3 Hz;(vi) old 4, 1-3 Hz;
(vii) old 4, 8-12 Hz. For every dataset, the IWB FU map shows a number of
FUs and a number of inter-FU connections closer to the MCB FU maps than
the WB FU maps.

FU detection with the (non-optimized) MCB method was faster
for smaller FU sizes, taking approximately 1 s for datasets with
small FUs, up to 2 h for a dataset with the largest FU. FU de-
tection with the (non-optimized) WB method took around0:04�
0:02s (max. 0.14 s) and with the (non-optimized) IWB method
around0:05� 0:04s (max. 0.25 s). Consequently, the WB and IWB
methods are up to a factor of 100,000 faster than the MCB method
for this typical multichannel EEG setting with 128 channels.

Because the MCB method is assumed to obtain the most
interesting FUs corresponding to the strongest source signals
(Section V), it is here considered as the gold standard. We com-
pared the WB and the IWB method with the MCB method, and
made an illustrative selection of seven (out of �fty) cases (Fig. 4).
The selection includes those settings (a combination of participant

and frequency band) which result in the largest difference between
the MCB, WB, and IWB methods. The order of the seven
illustrations is chosen such that it facilitates the discussion.

i. The one anterior FU detected by the MCB method is
represented by two (smaller) spatially connected anterior
FUs by the WB method, whereas the IWB method merges
two anterior FUs. Because the WB and IWB methods both
follow a greedy approach, the anterior FUs do not correspond
exactly to the anterior FU of the MCB FU map. Because
the IWB method merges FUs during segmentation (and not
afterwards, such as with hierarchical watersheds [44]), the
vertices in the large anterior FU of the IWB FU map do not
exactly correspond to the vertices that are part of the smaller
anterior FUs obtained by the WB method.

ii. Although multiple anterior FUs are obtained with the WB
method, they are smaller than the minimum size and there-
fore not shown, whereas the IWB method merges smaller
FUs into an anterior FU identical to the anterior FU found
with the MCB method.

iii. This is one of the occurrences of the maximal absolute
difference in the number of FUs between the MCB (6 FUs)
and IWB method (3 FUs). Nevertheless, the connection
between an anterior and posterior region which is visible
in the MCB FU map is preserved in the IWB FU map.

iv. This is one of the occurrences of the maximal absolute
difference in the number of FUs between the MCB (5 FUs)
and WB method (10 FUs). Whereas the WB method shows
visually cluttered edges, the IWB method gives a better
overview more similar to the MCB method.

v. The signi�cance threshold used is apparently too low, as one
very large FU is found with the MCB method and two very
large FUs are found with the IWB method; the WB method,
however, results in 6 FUs completely connected by 15 lines
and does not (directly) make clear that the used threshold is
too low.

vi. Both FUs found with the MCB and the IWB method are
identical. The WB method has more FUs in the same region
instead.

vii. The large anterior FUs found with the MCB and the IWB
method are identical. The WB method has multiple FUs in
the same region instead.

In all cases, the number of FUs and their size and locations are
highly similar for the MCB FU maps and the corresponding IWB
FU maps (Figs. 5–8). The absolute difference in the number of
FUs between the WB and the MCB methods is on average1:8
with a maximum difference of �ve FUs (four occurrences). The
same difference between the IWB and the MCB is clearly smaller:
0:9 with a maximum of three FUs difference (two occurrences).
As for the connections between FUs, those found with the MCB
method are generally also found in the corresponding IWB FU
maps. In particular, connections between a middle anteriorand
a middle posterior FU are present in the MCB FU map if and
only if they are present in the corresponding IWB FU map, with
one exception: for datasetold 5, 21-30 Hz, the inter-FU coherence
is just above the threshold for the IWB method, contrary to the
MCB method. For datasetsold 2 and the frequencies 1-3 Hz, the
connection between anterior and posterior regions is explicit in the
IWB FU map (Fig. 8) and implicit in the MCB FU map (Fig. 6:
the fact that one large FU consists of nearly all vertices implies
that most anterior and most posterior vertices are completely
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Fig. 5. Standard MCB FU maps, younger adults. Top view, nose on top. FU maps (jF U j > 5, p = 0 :01) for �ve younger adults for �ve frequency bands
(1-3, 4-7, 8-12, 13-20, 21-30 Hz). Each FU is visualized as a set of Voronoi cells with identical gray value, with different gray values for adjacent FUs. White
Voronoi cells are part of FUs withjF U j � 5. A line connects FUs if the inter-FU coherence exceeds the signi�cance threshold, with its color depending on
the value (see color bar, bottom right, with minimum corresponding to the coherence threshold� � 0:22 for p = 0 :01; the color bar is the same for all FU
maps). Above each group mean coherence map, the number of FUsand the number of connecting lines between FUs are displayed.

connected).

B. Group Analysis

Group mean coherence maps (Fig. 9) and group FU size maps
(Fig. 10) were obtained as extensions of the IWB FU detection
method. They are shown for the two groups of younger and older
adults and the �ve frequency bands.

1) Individual FU Maps versus Group Mean Coherence Maps:
The largest FUs for individual datasets of younger adults
(Figs. 5, 7) are mostly located anteriorly and posteriorly in
the middle. This feature is also preserved in the corresponding
group mean coherence maps (Fig. 9, left column). FU maps for
older adults (Figs. 6, 8) usually show more lateral FUs, which
are preserved in the corresponding group mean coherence maps
(Fig. 9, right). For both younger and older adults, the number
of FUs usually does not change much across frequency bands
in the individual dataset FU maps (Figs. 5–8, compare rows),
as well as in the group mean coherence maps (Fig. 9, compare
rows). In four out of �ve frequency bands, inter-FU connections
between a middle anterior and middle posterior FU are present in
the group mean coherence map (Fig. 9) if they are present in the

majority of the individual dataset FU maps in the corresponding
frequency bands (Figs. 5–8). The only exception is the 8-12 Hz
band, with anterior-posterior connections just above the threshold
for a majority of three (out of �ve) younger adults, and with
anterior-posterior connections above the threshold for a minority
of two (out of �ve) older adults (with one relatively high value).
Thus, generally the common features from the individual FU maps
are preserved well in the group mean coherence maps.

2) Group Mean Coherence Map: Comparison Between
Groups: For all frequencies (1-30 Hz), the number of FUs is lower
for younger than for older adults in the corresponding frequency
band (Fig. 9, compare left with right column). This probably
corresponds to earlier �ndings [2], indicating more, especially
interhemispheric, coherence for older than for younger adults.
Similarly, the number of white cells (corresponding to electrodes
not part of any suf�ciently large FU) is larger for younger than
for older adults in every frequency band, again con�rming the
presence of more coherence for older than for younger adults[2].

For lower frequencies, there is a connecting line between an
anterior and a posterior FU in most group mean coherence maps
for younger adults (Fig. 9, 1-7 Hz) and older adults (Fig. 9, 1-
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Fig. 6. Standard MCB FU maps, older adults. Same parameters as in Fig. 5.

12 Hz). This is possibly associated with the two most important
sources of brain activity for this type of experiment, located
anteriorly (known as P3a) and posteriorly (known as P3b) [46].

FU maps show more lateral FUs (on both sides of the head) for
older adults than for younger adults in the same frequency band
(Fig. 9). This may indicate more bilateral activation for older than
for younger adults, as was also observed in [2].

3) Group FU Size Map: Comparison Between Groups:For
younger adults (Fig. 10, left), average FU sizes are highestin a
posterior region and an anterior region, for all frequencies. The
lateral regions on both left and right sides have the lowest average
FU size.

Similarly, for older adults (Fig. 10, right), the highest average
FU sizes occur in a posterior and an anterior region, although for
older adults those regions are more widespread than for younger
adults. Whereas the average FU sizes are lower on the sides than
in the middle for both younger and older adults (Fig. 10), thedif-
ference between lower and higher average FU sizes is smallerfor
older than younger adults. This indicates more bilateral activation
for older than younger adults, in correspondence with [2].

Cells for younger adults are generally part of FUs with a lower
average size than corresponding cells for older adults (Fig. 10,
compare color bars of the left and right column), once more
con�rming the observation of higher coherence for older than

younger adults [2]. Moreover, the average FU size decreaseswith
increasing frequency, in agreement with the presence of simulta-
neous activity at a more global scale for lower EEG frequencies
and at a more local scale for higher EEG frequencies [39].

4) Comparison of Hypothesis-Driven and Data-Driven Ap-
proaches: For the same type of data, a hypothesis-driven sub-
selection of 12 out of 119 scalp electrodes (Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, O3, O4; see Fig. 1, right) and 15
coherences was made [2]. In contrast to this hypothesis-driven
approach, FU maps together with group mean coherence maps
and group FU size maps all contribute to a data-driven selection of
electrodes of interest. In addition to the coherences studied in [2],
our data-driven results suggest to include left and right temporal
electrodes (e.g., T7 and T8), and to include both intrahemispheric
and interhemispheric connections between anterior and posterior
regions.

VIII. D ISCUSSION ANDCONCLUSIONS

EEG coherence analysis is the study of coherence between
functional units. Most current analyses use hypothesis-driven
ROIs. Existing data-driven graph visualizations for EEG coher-
ence commonly visualize vertices representing electrodesas dots
and coherences as edges, resulting in clutter for multichannel EEG
with up to 512 electrodes. However, without a hypothesis, all
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Fig. 7. Novel IWB FU maps, younger adults.Same parameters as in Fig. 5

coherences should be considered. Therefore, we presented adata-
driven visualization method for multichannel EEG coherence,
which strongly reduces clutter and is referred to as functional
unit (FU) map. An FU is a spatially connected set of electrodes
recording pairwise signi�cantly coherent signals, represented in
the graph by a spatially connected clique. The visualization of an
FU is a simpli�ed representation of a spatially connected clique
which does not explicitly visualize all edges within a clique.

We earlier developed two methods to detect FUs, a maximal
clique based (MCB) method (time complexityO(3n= 3), with n
the number of vertices) [20], and a more ef�cient watershed
based (WB) method (O(n2 log n)) [22]. One of the novelties
introduced in this paper is an improved watershed based (IWB)
method (O(n3)), merging two spatially neighboring FUs if their
union is a clique in the coherence graph. We did not choose
one of the common solutions for over-segmentation which uses
the concept of dynamics [47], because dynamics are de�ned for
vertex values, whereas the EEG coherence graph has edge values.
Moreover, the IWB method merges FUs during segmentation (and
not afterwards, such as with hierarchical watersheds [44]). FU
detection with the WB and IWB method (taking about 0.04 s and
0.05s, respectively) is up to a factor of 100,000 faster than the
MCB method, and makes interactive visualization of multichannel
EEG coherence possible.

The greedy WB and IWB methods directly result in uniquely
labeled electrodes, contrary to the standard MCB method. All
methods depend on the same thresholds: one for the initial
coherence graph, one for the inter-FU coherence, and one forthe
minimal FU size. The MCB, WB, and IWB methods �nd FUs in
approximately the same locations, and the inter-FU connections
present in the MCB FU maps are generally also present in the
WB and IWB FU maps. However, the average difference between
WB and the MCB method regarding the number of FUs is 1.8
(for the parameters used). For the IWB and the MCB methods
the difference has decreased to 0.9, for the case study that was
presented here.

Additionally, as an alternative to hypothesis-driven group anal-
ysis methods for multichannel EEG coherence, we proposed two
novel data-driven group maps for visual group analysis. They are
both extensions of the ef�cient IWB FU detection method. One
is a group mean coherence map, which is a data-driven FU map
based on the group mean coherence. The other is a group FU
size map, showing for each electrode the average FU size across
a collection of individual FU maps.

Because conventional data-driven multichannel EEG coherence
analysis is cumbersome, comparable conventional �ndings are
rare. Nevertheless several conventional �ndings are con�rmed by
observations in the new data-driven visualizations.(a) Coherence
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Fig. 8. Novel IWB FU maps, older adults. Same parameters as in Fig. 5.

is lower for younger than older adults [2]. Accordingly, the
number of FUs in group mean coherence maps is lower for
younger than for older adults for 1-30 Hz, group mean coherence
maps show a larger number of white cells not part of any
suf�ciently large FU for younger adults than older adults, and
group FU size maps show larger average FU sizes for older
than for younger adults.(b) Older adults have more bilateral
activation than younger adults [2]. Accordingly, for olderadults
FU maps and group mean coherence maps display more FUs
in lateral regions, the average FU size is generally higher and
the difference between lower and higher average FU sizes is
smaller.(c) There is simultaneous activity at a more global scale
for lower EEG frequencies and at a more local scale for higher
EEG frequencies [39]. Indeed, group FU size maps indicate that
the average FU size decreases with increasing frequency.(d) The
two most important sources of brain activity for this type ofdata
are located anteriorly (known as P3a) and posteriorly (known
as P3b) [46]. Accordingly, FU maps and group mean coherence
maps show connections between anterior and posterior FUs for
lower frequencies.

Thus, the detection of data-driven ROIs for multichannel EEG
coherence on the basis of the IWB method results in similar
information as the MCB method, and this information is found
to agree with conventional �ndings. Also, the two new data-

driven group maps, referred to as group mean coherence map and
group FU size map, yield results in accordance with conventional
�ndings. Yet, our results suggest to expand an earlier selection
of hypothesis-driven ROIs [2] with additional data-drivenROIs.
This demonstrates the usefulness of the IWB FU map, and both
new data-driven group maps.

FU maps, group mean coherence maps, and group FU size
maps all contribute to a data-driven subselection of electrodes
of interest (EOIs): the number of EOIs, their location, and their
region of in�uence can be derived directly from the combination
of FU maps, group mean coherence maps, and group FU size
maps. In other words, the novel IWB method together with the
two new group maps make a data-driven subselection of the
available electrophysiological signals possible. This can be used
as a data-driven starting point for conventional quantitative group
analysis. Our methods are currently applied to a multichannel
EEG coherence study of mental fatigue [48] by researchers from
the Department of Experimental Psychology of the University
of Groningen. In this study, the ROIs are obtained in a data-
driven way since no strong hypotheses can be formulated based on
existing evidence. Our approach overcomes the severe limitations
of conventional hypothesis-driven methods and takes full advan-
tage of all the available recordings. The presented visualization
of (group) FU maps provides a very economical data summary
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Fig. 9. Group mean coherence mapsfor younger (left) and older (right)
adults, per frequency band (from top to bottom). Top view, nose on top. The
line color depends on the inter-FU coherence (see color bar,bottom right, with
minimum corresponding to the coherence threshold� � 0:22 for p = 0 :01;
the color bar is the same for all FU maps). Above each group mean coherence
map, the number of FUs and the number of connecting lines between FUs
are displayed.

of extensive experimental results, which otherwise would be very
dif�cult and time-consuming to assess. Initial responses from the
psychologists using our visualization methods are very favorable.

The IWB method will be available inFUmaplab on
http://www.rug.nl/informatica/onderzoek/
programmas/svcg/demos .
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