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Data-Driven Visualization and Group Analysis of
Multichannel EEG Coherence with Functional Units
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Abstract— A typical data-driven visualization of electroen-
cephalography (EEG) coherence is a graph layout, with verties
representing electrodes and edges representing signi carcoher-
ences between electrode signals. A drawback of this layous its
visual clutter for multichannel EEG. To reduce clutter, we de ne
a functional unit (FU) as a data-driven region of interest (ROI).
An FU is a spatially connected set of electrodes recording jravise
signi cantly coherent signals, represented in the coherece graph
by a spatially connected clique. Earlier we presented two nteods
to detect FUs, a maximal clique based (MCB) method (time
complexity O(3™32), with n the number of vertices) and a
more ef cient watershed based (WB) method (time complexity
O(n?logn)). To reduce the potential over-segmentation of the
WB method, we introduce an improved watershed based (IWB)
method (time complexity O(n? logn)). The IWB method merges
basins representing FUs during the segmentation if they are
spatially connected and if their union is a clique. The WB and
IWB method both are up to a factor of 100,000 faster than the
MCB method for a typical multichannel setting with 128 EEG
channels, thus making interactive visualization of multibannel
EEG coherence possible. Results show that, considering thCB
method as the gold standard, the difference between IWB and
MCB FU maps is smaller than between WB and MCB FU maps.
We also introduce two novel group maps for data-driven group
analysis as extensions of the IWB method. First, the group naa
coherence map preserves dominant features from a collectioof
individual FU maps. Second, the group FU size map visualizes
the average FU size per electrode across a collection of iniiual
FU maps. Finally, we employ an extensive case study to evalea
the IWB FU map and the two new group maps for data-driven
group analysis. Results, in accordance with conventionalndings,
indicate differences in EEG coherence between younger andder
adults. However, they also suggest that an initial selectio of
hypothesis-driven ROIs could be extended with additional dta-
driven ROls.

Index Terms— Information visualization, graphs and networks,
applications.

|. INTRODUCTION

(fMRI) [6]-[9]. A typical visualization of EEG, MEG and fMRI
coherence, is a two-dimensional graph layout. Verticeserep
sent electrodes, superconducting quantum interferengeeasde
(SQUIDS), or fMRI regions of interest (ROIs), respectively
Edges represent signi cant coherences between electragde s
nals, SQUID signals, or fMRI-ROI time series, respectively
Vertices are commonly visualized as dots and edges as koes.
multichannel EEG (e.g., [10], [11]), MEG (e.g., [4], [B])h@
fMRI (e.g., [6], [8]), this layout may suffer from a large niver
of overlapping edges, resulting in a cluttered visualoati

In the case of EEG, the reorganization of vertex positior2§ [1
to reduce clutter is not appropriate, because the elecrbdee
meaningful positions. Other solutions reorganize edgesor vi-
sual attributes of the edges [13], [14], but do not reducentira-
ber of edges. Several methods divide EEG electrodes [16], [1
MEG SQUIDS [3], or fMRI voxels [9] into disjoint hypothesis-
driven ROIs and study coherences within or between ROIlseiOth
methods set out ROIs representing EEG electrodes [10], [17]
MEG SQUIDS [5], or fMRI-ROls [6] along rows and columns,
thus obtaining a square contingency table. By arrangingsROlI
along rows and columns of a matrix, the spatial relationdase

Visualization of multichannel EEG (at least 64 electrodiss)
not always managed well [18]-[20]. Researchers often eynplo
a hypothesis-driven de nition of certain ROIs in which alee-
trodes are assumed to record similar signals because afheolu
conduction effects [21]. As an alternative for the hypoifies
driven approach, we previously presented two methods fer th
detection of data-driven ROls, referred to as functionaitsun
(FUs) [20]. An FU is represented in the coherence graph by
a spatially connected clique. A clique is a vertex set in Wwhic
every two-element subset is connected by an edge. A clitjue
is maximalwhen it is not contained in any larger clique ('larger’
meaning having more vertices). Within one FU, each pair of
vertices represents two signi cantly coherent electradeas. In
any group of vertices other than a clique, there are two cesti

Electroencephalography (EEG) is a method to measure th@resenting two electrode signals which are not signitlyan

electrical activity of the brain using electrodes attachedhe
scalp at multiple locations. Synchronous electrical dgtivn
different brain regions is generally assumed to imply fioral
relationships between these regions. A measure for thishsgny
is EEG coherence, calculated between pairs of electrodelsig
as a function of frequency [1], [2].

Related studies of functional brain connectivity use otham-
invasive neuroimaging techniques, including magnetgemaieg-
raphy (MEG) [3]-[5] and functional magnetic resonance imgg
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coherent. Because larger ROIs are assumed to correspond to
stronger source signals, larger FUs are considered to be mor
interesting. Therefore, we focus on maximal cliques, foiiclvh
vertex sets are as large as possible.

Our rst FU detection method is a maximal clique based
(MCB) method [20]. The second method is a watershed based
(WB) method that detects spatially connected cliques iready
way [22]. However, it suffers from potential over-segméiota
problems. Extending our earlier work, one of the noveltidsciv
we present is an improved watershed based (IWB) method for FU
detection. It merges FUs if they are spatially connectedifathéir
union is a clique, thus reducing over-segmentation obdhimich
the WB method.

In addition to individual dataset analysis, we introduce tvew
group maps for data-driven group analysis of multichanrieGE
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coherence as extensions of the IWB method. They serve aga dabxels [7]. The overview also includes general graph drgwin
driven alternative for the common hypothesis-driven g@acof solutions.

coherences for group analysis [2], [16], [23]. First, theugr mean

coherence map preserves dominant features from a coliectio A, EEG and MEG

individual FU maps. Second, the group FU size map visualizesEEG and MEG coherence graphs have vertices representing
the average FU size per electrode across a collection ofidhuil electrodes and SQUIDS, respectively. Most of the visutibpa
FU maps. Results are reported for an extensive case study. of EEG are applicable ’to MEG, and vice versa. For a two-
Il. EEG COHERENCE dimensional visualizatiqn of the vertices, often planaljemtions.
) are used of the three-dimensional electrode or SQUID lonati
EEG can be recorded using (_:urrently up to 512 _el_ectrod%?‘ the surface of a head. Vertices are usually mapped to a top
labeled uniquely by a combination of letters and digits .(e.Q,ie\ of a head (e.g., Fig. 1, right), sometimes to two sepasite

F3, Cz, P4, as in Fig. 1, right). A conductive gel is appliedie\ys of the left and right hemisphere [11], [15]. Visuatipas
between skin and electrodes to reduce impedance. Theiedtctr, ;1. edges representing signi cant coherences may suftemf

potential is measured at all electrodes simultaneouslg Mea- large number of overlapping edges, resulting in a cluftere

sured signals are ampli ed, resulting in one recording <|:fm‘n visualization for multichannel EEG (e.g., [10], [11]; Fig, left)
for every electrode. If there are many electrodes, the tenul-" . \iEc (e.g., [4], [5], [26]). Existing solutions for the rection

tichanne_l' or ‘high-de_nsity' EEG is used. As a resul_t of voll ¢ | tter involve an adapted visualization of the vertieesl the
conduction [21], multiple electrodes can record a signainfra edges.

single source in the brain. Therefore, nearby electrodesllys 110 layout of the vertices can be changed, e.g., by using a

recor.d similar signals. Because sources of activity atetdffit (..o girected placement [12]. However, for EEG applimati we
locations may be synchronous, electrodes far apart can aliter to maintain the spatial relationship between thdices

record similar signals. A measure for this syn(_:hrony is cehee, representing electrodes, because electrodes have midrpog
calculated between pairs of signals as a function of frequeFhe  gitions. A different method uses an area dependent visuimiz

coherencec  as a function of frequency for two continuous ot yertices of variable size [27], but also does not preserve

time signalsx andy is dened as the absolute square of thgertex positions. Other solutions vary (combinations dfual
cross-spectruniy normalized by the autospectf@; andfyy  attributes of vertices and edges, e.g., transparency §o&]r [4]—
[1], having values in the intervdd; 11: ¢ (y) = 5. [6], [8], saturation [14], line width [9], [14], and line s [9].
The cross-spectrum and auto-spectrum can be interpretedNesertheless, the presence of many overlapping edges riflay st
covariance and variance as a function of frequency, resp8ct obscure other visualization elements, or the superpasitd
An event-related potential (ERP) is an EEG recording of ttzénb  differently colored lines might result in an undesired mik o
response to a sensory stimulus. To calculate the coherene@mf colors. Also the layout of the edges can be manipulated, leyg.
event-related potential (ERP) with repetitive stimuli, the EEG interactively curving away edges from the focus of attemf{it3].
data can be segmented intsegments, each containing one braiThis has the undesirable side-effect that, in an alreadwded
response. A signi cance thresholdfor the estimated coherence eld of view, the area which is out of focus will be even more
is then given by [1] crowded. Moreover, to get a complete overview of the graph,
-1 p1=(L 1. 0 every vertex (out of up to 512 vertices for EEG coherence)
has to be selected individually. Alternatively, elemergach as
wherep is a probability value associated with a con dence level edges) can be left out selectively [28]. Nevertheless,tetetl

(p=1 ). For an overview of other common linear (andsisualizations are even obtained for restrictions to the 5%
nonlinear) measures of synchrony, see [24]. coherences for only 66 MEG SQUIDS [4], or the top 10 % for 119
EEG electrodes (Fig. 1, left).
lll. RELATED WORK The main disadvantage of many existing analyses of multi-

We discuss visualizations of functional brain connedfivitchannel EEG or MEG is the hypothesis-driven selection of the
obtained using the noninvasive neuroimaging technique§,EEnumber of ROIs and the positions of the ROIls, instead of a
MEG, and fMRI. MEG commonly uses up to 512 SQUIDglata-driven selection. One method chooses a regularlytulistd
to measure magnetic elds induced by electrical brain &gtiv subset of electrodes [2], ignoring the majority of the eled¢ sig-
Similar to EEG coherence, MEG coherence is calculated twenals. An MEG method divides channels into disjoint hypoites
pairs of SQUID signals. fMRI measures time series of changdsven ROIs and maps the average coherence within a ROI to
in cerebral blood oxygenation levels in the brain. OftenRiMe- a color [3], ignoring coherences between ROIs. A similar EEG
searchers compute coherence (or other similarity) valeesden method divides electrodes into four disjoint ROIs and ssadi
mean time series for different ROIs which are commonly singhnterior-posterior connections between those ROIs [16bther
voxels or connected sets of voxels [7]. EEG method divides (the majority of the available) elecé®thto

Although a comparison of different neuroimaging methoddisjoint hypothesis-driven ROIs and studies coherencésdam
should be made carefully [25], the common underlying dataese ROIls across datasets [16], but it does not simultaheou
representation for the different types of connectivity igraph. visualize which electrodes are part of which ROI.

Therefore, we restrict ourselves to graph visualization facus An existing EEG approach which is data-driven sets out up
on hypothesis-driven and data-driven aspects. First, wsider to 21 electrodes along both the rows and columns of a matrix
EEG and MEG with typically up to 512 vertices, whose spatias a tiled display [10], [17]. The result is a square contiruye
relations can be represented by a planar graph. Later, we ctable showing coherence values for all possible electraes.p
sider fMRI with vertices commonly representing thousanfls &ach table entry is a square in which coherence is displayed
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Fig. 1. Left: Layout of a coherence graph (EEG frequency band 1-3 Hz).icdsrtrepresent electrodes, edges represent signi cargrenbes between
electrode signals, where the signi cance threshold eqQz2 (corresponding t@ = 0:01). Edges are visualized as gray lines, vertices as black dats
edge is light gray if its value is in the ran@e22 < ¢ < 0:37, medium gray if its value is in the top 10 % of the coherend®87 c¢ < 0:91), and
dark gray if its value is in the top 1%c(  0:91). This corresponds to a common existing data-driven vigai@bn, showing cluttered edgebliddle:
Histogram of the corresponding coherences to illustragecttherence distribution. Vertical lines (dash, solid,) dodicate signi cance thresholds associated
with three probability levelsg = 0:10; 0:05; 0:01, respectively).Right: Voronoi diagram with electrode labels in the correspondietis. The convex hull
of all electrodes is shown as a boundary. To improve the k8litsiathe Voronoi diagram is stretched horizontally. Bese the coherence computation is
independent of distance, distances between electrodestdrerd to be preserved. However, spatial relationshipsdest electrodes are maintained.

between the two corresponding electrode signals as a @unctdistances by graphical distances using metric multidirioead
of frequency. By arranging the electrodes along the rowsthed scaling [9]. An edge represents a signi cant similarity veeen
columns of the matrix, the spatial relations are lost. Assulte two ROI time series. The visualization of edges as lines reay |
consecutive entries in the table do not need to imply colwererto clutter [6], [8], [9], [36].

between pairs of signals recorded at adjacent electrodefieon  Filtering edges may still lead to cluttered visualizatided
scalp. Similarly, a square contingency table is created8MEG  Other visualizations set out ROIs along the rows and colymns
SQUIDS sorted into four hypothesis-driven ROIs [5] (left, thus obtaining a square contingency table. Each table éstry
anterior/posterior). Each table entry is square with theecence g square with a similarity value between the two correspundi
of the corresponding signals mapped to a color. A differet@d signals mapped to a color [5], [6]. Existing data-driven pira
driven EEG approach rst localizes dipoles corresponding fclustering algorithms include hierarchical cluster asiy[7]
maximally independent components in the data, and themicalgnd independent component analysis (ICA) [29], [30], [3Tie
lates and visualizes coherence between dipole activB®s[31]. result of hierarchical cluster analysis can be visualizedaa
However, dipole source solutions are not unique [32]. dendrogram [9], showing the ROIls as leaves of a binary tree,
Another approach is restricted to local EEG coherence, wisic thys |osing the spatial relations between the ROIs. AlsolsRO
de ned as the coherence between two spatially neighborieg-e can be visualized as colored volumes of interest [37] which
trodes [33], [34]. It requires additional methods to studher- may occlude each other. For the same reason, we do not favor
ences between electrodes which are not direct spatial beigh three-dimensional EEG visualizations. Alternatively, IR@an
Another visualization creates a map of topographic subrf&fis pe visualized on anatomical slices [7], [9], [38]. However,
with one submap for each electrode visualizing the coheren@rge number of two-dimensional slices is required to obti
betWeen |tse|f and every Other e|eCtI’Ode. It doeS not eﬂphc Complete overview of a three_dimensional V0|ume_ Somalme
visualize coherence between electrodes by connecting.lifg jnstead of an explicit visualization of the connection betw
a consequence, every topographic submap (out of up to 53djs (e.g., with a line), all ROIs in one cluster are colored

submaps) needs to be studied separately to obtain a complgtically, with different colors and/or separate slitmsdifferent
overview. Another drawback is that local coherences doteitiee  cjysters [9].

visualization [35]. A subselection of two topographic sw&#ps out
of 128 is made in [23], without providing a complete overview
of all coherences.
C. Conclusion

B. fMRI

For fMRI coherence, usually a limited number of so-callegilse  The overview of related work has concentrated on the require
(or reference) voxels is selected on the basis of prior amatd or ments we posed on an EEG coherence visualization: it should
functional information. However, the anatomy may be abradym be (1) data-driven, (2) preserve electrode locations, (Bjmize
and the choice of seed points may affect the results [7]. Naae visual clutter, and (4) present an overview. Many of the uksed
less, either an individual seed point or a spatially coreectmethods still suffer from visual clutter or relocate vesscand
set of voxels including a seed point is considered as a R@dges and therefore do not meet requirement (2) or (3). On the
having a (mean) time series. Vertices represent ROIs andeanother hand, existing methods which do meet requiremeng (2,
visualized three-dimensionally [36] or two-dimensiogalA two-  are hypothesis-driven, thus failing to meet our requiremn&h In
dimensional visualization uses, e.g., a planar projeatiotinree- summary, the method proposed in this paper combines a humber
dimensional ROI positions or an approximation of functionaof features which no single technique currently provides.
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IV. DATA REPRESENTATION ROI (a cluster). Such a ROI is referred to as functional unit
A. Experimental Setup (FU) and is represented in the EEG coherence graph by a clique
consisting of a set of spatially connected vertices [20].

Recall that larger ROIs are assumed to correspond to stronge
source signals and are considered to be more interestirggeTh
fore, our rst method for FU detection is primarily based on
the detection of maximal cliques [40], [41]. We adapted this
method to detect spatially connected sets of vertices [QQi:.
second method for FU detection is based on watersheds, an
ef cient method for detecting spatially connected segradig].

We adapted this method to detected cliques in a greedy wdy [22
Ig?xt, we rst brie y describe the two earlier developed FUtele-
tion methods, before introducing a novel improved methaseda
on watersheds which is designed to reduce over-segmeantatio

Brain responses from two groups of ve young8&#( 10 years,
mean standard deviation) and ve olde6Z 8 years) adults are
studied, which were recorded using an EEG cap WitB scalp
electrodes. During a so-calle®®0 experiment, each participant
was instructed to count target tones2000Hz (probability 0:15),
alternated with standard tonesXf0O0Hz (probability0:85) which
were to be ignored. After the experiment, the participard tea
report the number of perceived target tones. For each data
brain responses to 20 target tones were recorded in 20
segments of 1s. EEG coherence is in uenced by the choice
reference. We chose to use an average reference, whichasex cl
to-optimal approximation to a reference-free recordinthimcase
of 128 electrodes [2], [39].

A procedure fromNeurospecwas adopted to compute theA. Maximal Clique Based (MCB) Method

coherence Www.neurospec.org ). We rst averaged over 1) Maximal Cliques:Bron and Kerbosch (B&K) [40] devel-

segments and then over adjacent spectral lines in prede ngoq 5 method to detect all maximal cliques in a graph. It rst

frequency bands. Frequencies between 1 and 30Hz are tyisnches the problem, and bounds unsuccessful brancises. It
cally studied clinically. We calculated the average coheee ioqjye procedure maintains three dynamic vertex sets:

within ve EEG frequency bands (1-3, 4-7, 8-12, 13-20, and . . . , .
the setcompsukcontains an increasing or decreasing clique;

21-30Hz), because EEG synchrony varies with frequency [2], h candidat i i that ted to all

[39]. For 119 electrodes, in total 7021 coherence valuesewer et_se and aescg: ‘Z'TE \;er |cets) addarg gn())nnec edloa

computed per frequency band. If the conductive gel accidignt vertices incompsuband that can be added tompsub
the setot contains vertices that are connected to all vertices

connected two adjacent electrodes, very high coherences we . tand th dded ious|
measured. Coherences higher than 0.99 were thereforeemjnor in compsuband that were added wpmpsubpreviously.

Typically, this threshold value eliminates approximatélyp1% At each call of the procedure, the vertex from the set
of the coherences. Note also that using Eqn. 1 for deterginifandidatess selected that has the largest number of connections
Signi cance levels is a coarse approximation, since it domgake with the other vertices ircandidates If there are more such
the number of spectral lines per band into account. Howehizr, Vertices, then one of these is randomly selected. Furthes, i

approximation only overestimates the signi cance levelj does assured that is not connected to the vertex just addedntat
not in uence the visualization method itself. The selected vertex is added tocompsuband removed from

candidates Next, newcandidatess the intersection ofandidates
and the neighborhood of. Similarly, newnotis the intersection
B. EEG Coherence Graph ) of not and the neighborhood of. If both newcandidatesand
The data are represented by an undireatetierence graph newnotare emptycompsubis a maximal clique. This procedure
with vertices representing electrodes. Coherences a&vsig- s repeated recursively with local setewcandidatesnd newnot
ni cance threshold (Eqn. 1) are represented by edges, eobes il the candidate set is empty. In case the procedure is not
below the threshold are ignored. Vertices are not self-eot®U. gpeated witmewcandidateandnewnot the vertex most recently
To determine spatial relationships between electrodesirandi  544eq tacompsul{vertexv) is removed froncompsutand added
diagram is employed which partitions the plane into regions o not If any vertex innewnotis connected to all vertices in
points with the same nearest vertex. For EEG data, the VeelEX neycandidatesthen it is known that this vertex will never be
equals the set of electrode positions (Fig. 1, right). Theic&s omoved fromnot and this branch is bounded.
are referred to as (Voronoi) centers, the region bounda@®s The worst-case time complexity for detecting all maximal
(Voronoi) polygons. The area enclosed by a polygon is Ca"‘i‘ﬁques isSO(3"=3), with n the number of vertices, becaus® 3
a (Voronoi) cell. We call two cellsvoronoi neighborsif they s the highest number of cliques [41]. In practice, perfanoe

have a boundary in common. A collection of ce@sis called 4t maximal clique detection strongly depends on graph struc
Voronoi-connectedf for a pair o; n 2 C there is a sequence ;o [43].
0; 1;:5 n Of cells in C with each pair j 1; j consisting 5y \jpronoj-Connected Maximal CliquesiVe extended the
of Voronoi neighbors. Cells, vertices, and electrodes ateri  ihod [40] such that it only detects maximal cliques cdimgs
E:hangegble for the use with the terms “Voronoi neighbor' ang \/ronoi-connected vertices [20]. The three dynamic esert
Voronoi-connected'. sets are maintained, but the sedndidatesis split into a set
currentcandand a setcomplcand The setcurrentcandcontains
V. FU DETECTION the candidates that are Voronoi neighbor of at least oneesiem
Whereas there are many unsupervised graph clustering metheompsub only these can be added tompsubat the current
ods, e.g., hierarchical clustering and ICA (see Sectiop dur step. The setomplcandis the complement oturrentcandin
choice is motivated by the type of cluster we desire. As alresgandidates At each call, the element fromurrentcandwhich
of volume conduction [21], multiple electrodes can recosignal has the largest number of connections with the other catetida
from a single source. Consequently, a spatially conneateafs (currentcand] complcand is added taompsubLet this element
electrodes recording similar signals is considered asadfaten be v°. The setnewcurrentcands the intersection oturrentcand
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TABLE |
ADJACENCY MATRIX FOR VERTICESA THROUGHI IN FIG. 2 (1 (O)MEANS
(NOT) CONNECTED).

and the neighborhood of (in the coherence graph), united with
the Voronoi-neighbors of°in complcand The sehewcomplcand
is the intersection oftomplcandand the neighborhood o0§°
(in the coherence graph), minus the Voronoi-neighbors%ih

a b c¢c d e f g h i

complcand The set(new)notis maintained as before. This is al0 0 0 1 0 0 0 0 O
repeated untihewcurrentcands empty. If newnotis also empty, bio o0 1 0 1 1 1 1 1
thencompsubis a Voronoi-connected maximal clique. g’ 2 (1) (1) (1) é (1) (1) é (1)

Fig. 2 illustrates maximal clique detection with the B&K alg ej0 1 1 0 0 1 0 0 O
rithm (A and B) and Voronoi-connected maximal clique detett f 8 i i 8 é (1) é 2 i
with the MCB method (C), for a graph with the adjacency matrix ﬂ 0 1 1.0 0 0 1 0 0
shown in Table I. The rst B&K iteration has an emptyot ilo 1 1 o 0 1 1 0 O
set (A). One of the later recursive iterations of the B&K nmeth
returns to the initial situation with all vertices in tbandidatesset
(not shown), puts the selected vertex labedéd the not set (B1), ! 2 3 + >
and selects the vertex with the highest degree ircmelidateset ooo poo ooo OO0 00
(B2). Whereas the B&K method detects maximal cliques which A | BEQ QO a8 188 168
can consist of more than one spatial component (A5), the MCB
method detects spatially connected cliques instead (€4y.the » | Ba8 ©88 °"8 9.8 °.28
MCB method, the use of theot set is the same as for the B&K po= -0% -0+ -0 o
method and is therefore not explicitly illustrated.) .

+4+ +4+4 +:0 +-0Q ghi

The following detailed description contains (row, column) | *i8 :88 :83 :o8 de!
references to Fig. 2C5. Vertex positions. Vertices are spatial
neighbors if they are 4-connected (e.g., the spatial neighb O compsub not + complcand
of vertexd are vertices, e, andg). A. lteration of B&K maximal o candidates © currentcand

clique detection with emptypot set. It starts with all nine vertices

in the set candidates (not illustrated)l. Then the vertex with

the highest degree (following Table 1) is rst added compsub Fig. 2. Illgstratipn of maximal clique detectiqn wi_th the_ B&algorithm

. . . . . . for an iteration with an emptyot set A) and an iteration with a non-empty
its adjacent vertices are gandidates (Vertices not part of any set ot set @), and Voronoi-connected maximal clique detection with eB
are shown as a black do#)2-A4. At every next step, the vertex method C), for a graph with adjacency matrix as in Table I. For explama
with the highest degree inandidates let us sayv, is added to See text

compsub (In the case of ties one vertex is selected randomly.)

Further, vertices not adjacent¥qdenoted by €(v)) are removed
from candidates This continues untilcandidatesis empty. At
A2,v="b ©v)= fdg, at A3, v =g, ©(v) = feg, at A4,
v=1"f, ¢v)=fhg atA5 v =1, °(v)= ;. Now, compsub
fb;c;f;g;igis a maximal clique, becausandidates ; (andnot=
;). B. A later iteration for B&K maximal clique detection returns
to the situation preceding Al with all vertices in the caradiés
set, and puts the rst selected verteinto thenotset.B1. Vertexc
which was previously selected rst (see Al) is now in that set.
B2-B4. Similar to A2-A4.B5. Different from A5, nowcandidates
=fb;f;g;ig, andnot = fcg. This implies that the maximal clique
fb;c;f;g;ig has been found befor€. MCB Voronoi-connected
maximal clique detection with same starting point as A (with

= ;). C1. The vertexc with the highest degree is rst added to
compsubits adjacent vertices (see Table 1) arecimrentcandif
they are a spatial neighbofi; fg), or otherwise incomplcand
C2-C4. At every next step, the element froourrentcandwhich
has the largest number of connections with the other catetida

(currentcand[ complcandl is added tocompsub.The spatial B. Watershed Based (WB) Method

neighbors of/®in complcand(denoted by( v%) are moved from  The watershed based (WB) method is an alternative to the
complcandto currentcand Further, vertices not adjacent t& standard MCB method [22]. It is a greedy method approxingatin
(i.e., ¢(v%) are removed from bothurrentcandandcomplcand  spatially connected maximal cliques on the basis of an édged

3) FU Labeling: Every vertex can be part of multiple
(Voronoi-connected) maximal cliques. To assign a unigbell&o
every vertex, a quantityotal strengthis de ned for a (sub)graph
G = (V;E) as the sum of all edge values [20]. This value is not
normalized for the size oE. Consequently, if two graphs have
an equal average coherence, the graph with more verticea has
higher total strength. Next, all cliques are queued in desirgy or-
der by their total strength. Then the following labeling gedure
is repeated, until there are no more cliques or until allivest
are labeled. The rst clique is removed from the queue, amd al
its vertices are assigned a unique label and are removed from
the other cliques. If necessary, the changed cliques asratep
into Voronoi-connected components. For all changed clqtiee
total strength is recomputed before they are put in the gpjarte
position in the sorted queue. After completion of the lafgli
procedure, every set of identically labeled vertices is &n F

This continues untiturrentcandis empty. AtC2,v°= b, ( v& =  watershed transform. The WB method de nes as markers those
feg, S(v% = fdg; atC3,v°=f, (v = fig, S(v% = fhg; at vertices which are locally maximally similar to their spdly
Cc4,v0=i, (V% =, ¢% = feg. C4. compsub fb;c;f;ig neighboring vertices. To obtain the markers, a coherenageva

is a spatially connected maximal clique, becauserentcand= is assigned to each vertex by computing the average of the edg
; (and not = ;). Remaining vertices ircomplcandare in the values between this vertex and all its Voronoi neighborenl fall
adjacency list of all vertices irompsubbut are not a spatial vertices which are local maxima are considered as markepe to
neighbor of any vertex icompsub associated with basins. (A similar edge-based watershekoahe
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which is not restricted to detect cliques, instead seleatssf executed consecutively (for notation purposes, de nasL (v%)):
vertices as markers which are incident with an edge which is(ia check if all vertices inbsn (,y are inadjCohBsn, and vice

local minimum [44].) versa (line 33). (ii) Replacésn (,y by the union of itself with
The WB method for greedy Voronoi-connected clique detectidsn , because their union is a spatially connected clique in the
maintains the following dynamic vertex sets. coherence graph (line 34); (iii) all vertices bsn receive the
bsn contains a sorted list of the vertices in bagin label L (v) (lines 35-37); (iv)adjCohBsp ) is replaced by the
L(v) contains the basin label of vertex intersection of itself withadjCohBsn (line 38); (v) bsn and
adjCBsn contains a list of vertices (sorted by vertex numbediCohBsn are made empty (line 39).
which are adjacent t@ach of the vertices inbsn in the N the algorithm, the operatiomsertEdgeSort(: v¥),queue)
coherence graph. inserts edgexv; vY into the appropriate position in a edge queue

queuecontains edges in decreasing order. When ventexdueue which is decreasingly sorted by edge value; similarly,
receives a label, an edge = (v;v% is added toqueue insertVSorty,vqueue)inserts vertexv into the appropriate po-
for each unlabeled Voronoi neighba® of v, provided Sition in vertex queuevqueuewhich is decreasingly sorted by

that the corresponding edge value exceeds the signi can¥@/tex numberdequeue(queuggturns and removes the rst edge
threshold (Eqn. 1). from an edge queugueug intersect(.,.)gives the intersection of

{wo sorted vertex setsnerge(.,.)gives the union of two sorted
er- . . —
vertex sets (without duplicatesyetinSet ,\v9 returns “true' if
the sorted vertex sef is a subset of the sorted vertex 3¢,

Whereas the usual queue-based implementation of the wa
shed transform applied to digital images usewestex queue
sorted in increasing order of value [45], we useeagequeue

. . and “false' if not. The size of a vertex set is denoted by.
sorted in decreasing order of coherence value. (The veetees . . .
. One adaptation further improves the average performance in
are only used for de ning the markers.) In case the coherence

) ) - ) . ractice. A matrixbsnMat is created with the basins set out
graph has multiple identical edge values (which did not occg

for our datasets), an ordered queue consisting of queuds wi| ong the rows and the columns, and is initialized with only
. . ): q 9 d onhes (lines 12-16). If two spatially neighboring basisand b
identically valued elements can be used [45]. We now turn to,a - ; .

. ; ; together are not a clique, thdssnMath ;) andbsnMath ; )
more precise analysis of the algorithm.

LT . are set to zero (line 41). In that case, badinsand b cannot
(Step 1) The edge queue is initialized with edges (corredrrporbe merged later (either, zind lines 32-42 are skippe(? the meet t

ing with a signi cant coherence) between markers and thel]ﬁath andh are candidates to be merged
Voronoi_neighbc_;rs_. T_he rst edggy; v in this queue corresppnds The difference between the WB and the IWB method affects
to the highest similarity (coherence) between any verfeutside the time complexity as follows. (i) line 33: the check to sée i

a”Ot‘ a \gc')rotrrl]m ne;ghbznggt V?”EK mg(ljded? baim. .Therefore, one sorted list is part of another has time complegitn). Each
versexv és ﬁ rst candi az 0 be adde ? ?] ?SIIIn. . of the next steps also has time complex@yn) for sorted lists
(Step 2) The main procedure consists of the following S5 vertices of at most lengtim: (ii) line 34: taking the union

Remove the rst edge, sag = (v;v) from queue In case of o corted lists, (jii) lines 35-37: labeling a list, (e 38:

0 . .
vertex v- was also labeled between the insertion and remo_\ﬁ"ﬁltersecting two sorted lists, (v) line 39: making lists éynSteps

of e = (v;v9), nothing Is done and the procedure continues With ) are executed(n) times (recall that the order of the number
a new edge. Otherwise/{ is unlabeled), there are two cases

. 0 . . 0 i of edges between Voronoi neighborsguaeueis O(n)). Thus, the
(i) In casev” 2 adjCohBsp ) (line 20), v- receives label (v)

time complexity of the IWB adaptation i©(n?) and the time
and (i) adjCohBsp  is replaced by its intersection with the piexty P (n°)

. 0 i - .o. complexity for the complete IWB algorithm is the same as for
neighborhood of/® in the coherence graph (line 22); (i) is the WB method, i.e.0(n? log n).

added tabsn () (line 23); (iv) queueis extended with the edges
betweenv® and its Voronoi-neighbors (line 24-28), provided tha
corresponding edge values exceed the signi cance thrdstol
the other case, if® 2 adjCohBsp ), v is not labeled (yet).
This procedure is repeated ungiieueis empty. Each basin then
corresponds to an FU.

The time complexity of the WB method i®(n? logn), with
n the number of vertices [22].

ANTERICR =

s
Q
i
=
g
[

w

C. Improved Watershed Based (IWB) Method Fig. 3. IWB FU map (EEG frequency barid3 Hz, dataset young 5). Top

. . . view, nose on topLeft: A circle with a cross inside indicates the geographic
Over-segmentation is a potential problem of the WB metho nter of all Voronoi centers belonging to one AJiddle: The same FU

To reduce over-segmentation we here implement the rstt&mlu map, but only with FUs larger thab cells. White Voronoi cells are part
suggested in [22], by merging two spatially neighboring FU smaller FUsRight: Lines connect FU centers if the inter-FU coherence

. . . : f : .exceeds the signi cance threshold (Eqn. 1). The color oflithe depends on
if their union is a clique in the coherence graph. To Obtaﬁ(e inter-FU coherence (see color bar, with minimum cowedmg to the

the improved watershed based (IWB) algorithm (Alg. 1) Wgoherence threshold  0:22 for p = :01).
insert lines 12-16 and lines 30-43 in the pseudocode of the
WB algorithm (see also [22]). In words, the difference betwe
the WB and IWB method is the following. In case verteX
was labeled between the insertion and removakaf (v;v®, A. FU Map for Individual Dataset Analysis

nothing is done if the label of° is equal to the label of. Given the FUs, thenter-FU coherencec® at frequency
Otherwise ((v9 6 L(v)), see line 30), the following steps arebetween two FUsW; and W, is de ned as the sum of the

VI. FU VISUALIZATION
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coherence values between one verteXMp and the other vertex
Algorithm 1 IWB pseudocode. Lines 12-16 and 30-43 weréh W,, scaled by the maximal number of edges betwaanand

inserted into the WB method to obtain the IWB method. W> [20]:
INPUT: V is the vertex setmarker(i) = markeri; . : .
Lofe (visv i 2 Wpvi 2 W
C(V;V% - COherenCG(; VO) - C(VO; V), CO (Wj_,Wz) — ] (Vl Vj ) Vi 1,Vj Zg: (2)

JWaj jWoj
Note that coherences betweany pair of vertices are taken into

account to normalize for the size of the FUs.
An FU map visualizes each FU as a set of Voronoi cells

adjColy = fv°2 VjcwVv®) g = sign. threshold

adjVor, = fv22 Vv jv°2 Vor.-neighbors & v°2 adjCohg;

fadjCoh,, adjVor, are both sorted by vertex number
OuTPUT: bsn is basini (i.e., an FU) sorted by vertex number

INITIALIZATION : with identical gray value, with different gray values forjackent
1. queue ; f queue of edges FUs [20], see Fig. 3. Note that the geographic center of andfJ c
2: for all v2V do be located in a cell not belonging to the corresponding FUNA |
3 L(v) OfL(v) = label of vertexvg is drawn between FU centers if the corresponding inter-Hueco
4: end for ence exceeds a threshold (Fig. 3, right). We consistenthpsd
5. for i =1 to jmarkej do this threshold to be equal to the signi cance threshold (Eignas
6: bsn  marker(); v marker(); L(v) i we already used this threshold to determine the coherermghgr
7: adjiCBsn (v adjColky Because larger FUs are considered to be more interestihg, on
8. for all v°2 adjVor, do FUs larger than 5 cells are considered. White Voronoi ceks a
9 insertEdgeSort(e,vY),queue) part of smaller FUs.
10:  end for
11:endfor _ B. Data-Driven Group Analysis
E: forfolr—j 1:t10]tz)njar:1§{<:iodo FU maps differ from individual to individual, making group
14: bsnMafi;j) 1 fIWB modi cationg analysis dif cult. Therefor_e, we present a data-driven moei for _
15: end for ' group _cohergnc_e_analy&s which detects common features in a
16: end for collection of individual FU maps. Group coherence arjalwm
M,.AIN' commonly based on group means of coherences of interest. We
17 Wr.1ile queues ; do shpw how ogr data-driven ROls, .|.e., the FUs, lead to a data-
18: e(v: V) déqueue(queue) driven selection of coherences of interest.
19: it L,(vo) — 0 then 1) Group Mean Coherence MapWe.d.e ne a group mean
20: if V02 adiCBsn ., then coherence graph as the graph containing the mean coher.ence
21: LV L(v)L(V) for every electrode pa|r.comlput.ed across a group. To obtain a
0. adiCBsn () _ intersect(adiCBsyy, .adiCoke) data-driven coherf_ence visualization for a group, the gnoean
- bsn insertvSort¢® s () coherence graph is thresholded, maintaining only the eddibs
on for a(I]I)v 2 adVor,e do L) a value exceeding the coherence threshold (Eqn. 1). Nes&lan
25: if L(v)=0 the\rl1 map is created fo:] the group mean coherence graph, refesred t
: ; asgroup mean coherence map
;3 enlgsifrtEdgeSort(ao,v ).queue) 2) Group F_U Size Map:A group FU size map visualizes the
28: end for average FU size for_ every electrode across a group, base_meon t
29: end if FU maps for every individual dataset. The average FU siné
BE.GIN IWB an electrodes is computed as
30 else sw= o fiwijvawg @
31 if (L(v) & L(v)) and(bsnMatL(v%;L(v)) 6 0) then I d # datasets
. L9 all datasets
33: if setinSet(bsryy),adiCBsn) and with W th«_—:t FU containings in every FU map. The value_for an
setinSet(bsn,adjCBsn () then electro_de is mapped to the gray value of its corr(_aspond_lrlgr\m
3a: bsn (v) merge(bsn(,) .bsn ) cell, with lighter gray fpr higher average FU sizes, §|m|lara_1
35: for all w2 bsn do (gray sgale) topographic map [19].. Consequent!y, a lightowoi
36: LW  L(v) cell indicates that the corresponding electrode is on geepmrt
37: end for of large FUs.
38: adjCBsn (y  intersect(adjCBsn,y,adjCBsn )
39: bsn = ;;adjCBsn = ; VII. RESULTS
40: else Throughout this section, we uge= 0:01. The corresponding
41 bsnMatL (v); ) 0; bsnMat ;L (v)) O coherence threshold is  0:22 (Egn. 1).
42: end if
43: end if A. FU Map
END IWB . . . .
a2 end if For a comparison of FU maps obtained with the three different
45 end while FU detection methods, see Fig. 4. FU maps for the ve datasets

in each group and each of the ve frequency bands are shown in
Fig. 5 to 8 for the MCB and IWB method.
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MCE WB IWE

ZFUR Vi comie. SPU Swgn cam, 2P sg o) and frequency band) which result in the largest differeretevben
the MCB, WB, and IWB methods. The order of the seven
illustrations is chosen such that it facilitates the disows.

i. The one anterior FU detected by the MCB method is
represented by two (smaller) spatially connected anterior
FUs by the WB method, whereas the IWB method merges
two anterior FUs. Because the WB and IWB methods both
follow a greedy approach, the anterior FUs do not correspond
exactly to the anterior FU of the MCB FU map. Because
the IWB method merges FUs during segmentation (and not
afterwards, such as with hierarchical watersheds [44}), th
vertices in the large anterior FU of the IWB FU map do not
exactly correspond to the vertices that are part of the small
anterior FUs obtained by the WB method.

ii. Although multiple anterior FUs are obtained with the WB

SPUskssmeomis), 0 FUS27 s comk. & FU) sk com(s method, they are smaller than the minimum size and there-
fore not shown, whereas the IWB method merges smaller
FUs into an anterior FU identical to the anterior FU found
with the MCB method.

iii. This is one of the occurrences of the maximal absolute
difference in the number of FUs between the MCB (6 FUs)
and IWB method (3 FUs). Nevertheless, the connection
between an anterior and posterior region which is visible
in the MCB FU map is preserved in the IWB FU map.

iv. This is one of the occurrences of the maximal absolute

2Ry fsign comis) @ FUs: s cennish 2 FUs) 4 i connts) difference in the number of FUs between the MCB (5 FUSs)

and WB method (10 FUs). Whereas the WB method shows
visually cluttered edges, the IWB method gives a better
overview more similar to the MCB method.

v. The signi cance threshold used is apparently too low, as one
very large FU is found with the MCB method and two very

u large FUs are found with the IWB method; the WB method,

05 however, results in 6 FUs completely connected by 15 lines

i and does not (directly) make clear that the used threshold is

pe too low.

vi. Both FUs found with the MCB and the IWB method are

Fig. 4. lllustration of FU maps (top view, nose on top) obegiwith the three !dentlcal' The WB method has more FUs in the same region

FU detection methods for sevehv{i) selected datasets and frequency bands.  Instéad.

Left: MCB method (see also Fig. 5 and Fig. ®Jiddle: WB method with  Vvii. The large anterior FUs found with the MCB and the IWB

Orer-ls:egn;egﬁgi%rii?igg)t gggsrg%rog V\r/]ith f\ff?-zezg_fgsntgtign T%Uitziogz(_see method are identical. The WB method has multiple FUs in

(i) young 3 A7 Ha(v) young 5 4.7 Hz-(4) old 2. 1.3 He: () old 4, 1-3 Ha. the same region instead.

(vii) old 4, 8-12 Hz. For every dataset, the IWB FU map shows a number of In all cases, the number of FUs and their size and locatiams ar

FUs and a number of inter-FU connections closer to the MCB Fpsithan highly similar for the MCB FU maps and the corresponding IWB

the WB FU maps. FU maps (Figs. 5-8). The absolute difference in the number of

FUs between the WB and the MCB methods is on average
with a maximum difference of ve FUs (four occurrences). The
FU detection with the (non-optimized) MCB method was fastejame difference between the IWB and the MCB is clearly smalle
for smaller FU sizes, taking approximately 1s for dataseth w 0:9 with a maximum of three FUs difference (two occurrences).
small FUs, up to 2h for a dataset with the largest FU. FU des for the connections between FUs, those found with the MCB
tection with the (non-optimized) WB method took around4 ~ method are generally also found in the corresponding IWB FU
0:02s (max. 0.14s) and with the (non-optimized) IWB methoghaps. In particular, connections between a middle anteniut
around0:05 0:04s (max. 0.25s). Consequently, the WB and IWE, middle posterior FU are present in the MCB FU map if and
methods are up to a factor of 100,000 faster than the MCB meﬂ'@'ﬂy if they are present in the Corresponding IWB FU map, with
for this typical multichannel EEG setting with 128 channels  one exception: for dataseld 5, 21-30 Hz, the inter-FU coherence
Because the MCB method is assumed to obtain the madstjust above the threshold for the IWB method, contrary ® th
interesting FUs corresponding to the strongest sourcealsignMCB method. For datasetdd 2 and the frequencies 1-3Hz, the

(Section V), it is here considered as the gold standard. Wie- coconnection between anterior and posterior regions is @kplithe

pared the WB and the IWB method with the MCB method, antwB FU map (Fig. 8) and implicit in the MCB FU map (Fig. 6:

made an illustrative selection of seven (out of fty) casEgy(4). the fact that one large FU consists of nearly all verticesligsp

The selection includes those settings (a combination diggaaint that most anterior and most posterior vertices are coniplete

@FUR) asign conn(s).  10FU(sk 23sign. connls). 7 FU(s}; 7 sign. conn(s)

vii
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Frequency (Hzg)
1-3 47 8-12 13-20 21-30
2 FU(s); 0 sign. conn (s} 2 FU(s); 1 sign. conn(s) 2 FU(s); 0 sign. connis). 2 FU(s); 15ign. conn(s) 3 FU(s); 0 sign. conn(s).

5]

4 FU(s); 0 sign. conn(s)

0.7
0.6
0.5
0.4
0.3

Fig. 5. Standard MCB FU maps, younger adults Top view, nose on top. FU mapg=Uj > 5, p = 0:01) for ve younger adults for ve frequency bands
(1-3, 4-7, 8-12, 13-20, 21-30 Hz). Each FU is visualized astafVoronoi cells with identical gray value, with differegray values for adjacent FUs. White
Voronoi cells are part of FUs witfFUj 5. A line connects FUs if the inter-FU coherence exceeds tipei sance threshold, with its color depending on
the value (see color bar, bottom right, with minimum cormgfing to the coherence threshold 0:22 for p = 0:01; the color bar is the same for all FU
maps). Above each group mean coherence map, the number clrielthe number of connecting lines between FUs are displayed

connected). majority of the individual dataset FU maps in the correspagd
frequency bands (Figs. 5-8). The only exception is the 842 H
B. Group Analysis band, with anterior-posterior connections just above lineshold

Group mean coherence maps (Fig. 9) and group FU size m;;% a majority of three (out of ve) younger adults, and with
(Fig. 10) were obtained as extensions of the IWB FU detectiGiterior-posterior connections above the threshold forirerity
method. They are shown for the two groups of younger and old& two (out of ve) older adults (with one relatively high vas).
adults and the ve frequency bands. Thus, generally the common features from the individual Fapsn

1) Individual FU Maps versus Group Mean Coherence Map&'€ preserved well in the group mean coherence maps.

The largest FUs for individual datasets of younger adults 2) Group Mean Coherence Map: Comparison Between
(Figs. 5, 7) are mostly located anteriorly and posteriony iGroups: For all frequencies (1-30 Hz), the number of FUs is lower
the middle. This feature is also preserved in the correspgnd for younger than for older adults in the corresponding fesy
group mean coherence maps (Fig. 9, left column). FU maps feand (Fig. 9, compare left with right column). This probably
older adults (Figs. 6, 8) usually show more lateral FUs, Whiccorresponds to earlier ndings [2], indicating more, edpbyg

are preserved in the corresponding group mean coherence niagerhemispheric, coherence for older than for youngeritadu
(Fig. 9, right). For both younger and older adults, the numb&imilarly, the number of white cells (corresponding to &ledes

of FUs usually does not change much across frequency bam@é part of any suf ciently large FU) is larger for youngerath

in the individual dataset FU maps (Figs. 5-8, compare rowd$dr older adults in every frequency band, again con rming th
as well as in the group mean coherence maps (Fig. 9, compgaresence of more coherence for older than for younger af@lts
rows). In four out of ve frequency bands, inter-FU connecis For lower frequencies, there is a connecting line between an
between a middle anterior and middle posterior FU are ptésen anterior and a posterior FU in most group mean coherence maps
the group mean coherence map (Fig. 9) if they are presentin for younger adults (Fig. 9, 1-7Hz) and older adults (Fig. 9, 1
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Frequency (Hzg)

13 47 8-12

13-20 21-30

5]

4 FU(s); 2 sign. conn(s) 2 FU(s); 0 sign. conn(s) 4 FU(s); 1 sign. conn{s), 3 FU(s); 0.sign. conn(s) 3 FU(s); 0 sign. conn(s).

0.7
0.6
0.5
0.4
0.3

Fig. 6. Standard MCB FU maps, older adults Same parameters as in Fig. 5.

12 Hz). This is possibly associated with the two most impartayounger adults [2]. Moreover, the average FU size decreaiks
sources of brain activity for this type of experiment, l@mht increasing frequency, in agreement with the presence ail&m
anteriorly (known as P3a) and posteriorly (known as P3b).[46 neous activity at a more global scale for lower EEG frequesici
FU maps show more lateral FUs (on both sides of the head) ford at a more local scale for higher EEG frequencies [39].
older adults than for younger adults in the same frequenogl ba 4) Comparison of Hypothesis-Driven and Data-Driven Ap-

(Fig. 9). This may indicate more bilateral activation fodei than
for younger adults, as was also observed in [2].

3) Group FU Size Map: Comparison Between Groupor
younger adults (Fig. 10, left), average FU sizes are higimeat
posterior region and an anterior region, for all frequesiciehe
lateral regions on both left and right sides have the lowesteaye
FU size.

Similarly, for older adults (Fig. 10, right), the highesteasge
FU sizes occur in a posterior and an anterior region, althdag

proaches: For the same type of data, a hypothesis-driven sub-
selection of 12 out of 119 scalp electrodes (Fpl, Fp2, F3, F4,
C3, C4, P3, P4, 01, 02, 03, 04, see Fig. 1, right) and 15
coherences was made [2]. In contrast to this hypothesigiri
approach, FU maps together with group mean coherence maps
and group FU size maps all contribute to a data-driven defeof
electrodes of interest. In addition to the coherences st [2],

our data-driven results suggest to include left and righiperal
electrodes (e.g., T7 and T8), and to include both intrahgineisc

older adults those regions are more widespread than forggsun@nd interhemispheric connections between anterior anteipas
adults. Whereas the average FU sizes are lower on the sigies t##9!0NS.

in the middle for both younger and older adults (Fig. 10), die

ference between lower and higher average FU sizes is snfadler

older than younger adults. This indicates more bilateravaiion
for older than younger adults, in correspondence with [2].

VIII. D1scUsSSION ANDCONCLUSIONS

EEG coherence analysis is the study of coherence between
functional units. Most current analyses use hypothesiedr

Cells for younger adults are generally part of FUs with a loweROls. Existing data-driven graph visualizations for EEGem®

average size than corresponding cells for older adults. (Fig

ence commonly visualize vertices representing electradedots

compare color bars of the left and right column), once moind coherences as edges, resulting in clutter for multicfldBEG
conrming the observation of higher coherence for oldernthawith up to 512 electrodes. However, without a hypothesis, all
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Fig. 7. Novel IWB FU maps, younger adults.Same parameters as in Fig. 5

coherences should be considered. Therefore, we presedtgd-a The greedy WB and IWB methods directly result in uniquely
driven visualization method for multichannel EEG cohergnclabeled electrodes, contrary to the standard MCB method. Al
which strongly reduces clutter and is referred to as funetio methods depend on the same thresholds: one for the initial
unit (FU) map. An FU is a spatially connected set of electsodeoherence graph, one for the inter-FU coherence, and ortador
recording pairwise signi cantly coherent signals, regm®d in minimal FU size. The MCB, WB, and IWB methods nd FUs in
the graph by a spatially connected clique. The visualipatiban approximately the same locations, and the inter-FU coimmest
FU is a simpli ed representation of a spatially connecteide# present in the MCB FU maps are generally also present in the
which does not explicitly visualize all edges within a clqu WB and IWB FU maps. However, the average difference between
We earlier developed two methods to detect FUs, a maxim\édB and the MCB method regarding the number of FUs is 1.8
clique based (MCB) method (time complexi(3™=2), with n (for the parameters used). For the IWB and the MCB methods
the number of vertices) [20], and a more efcient watersheli® difference has decreased to 0.9, for the case study @mat w
based (WB) methodQ(n?logn)) [22]. One of the novelties Presented here.
introduced in this paper is an improved watershed based JIwB Additionally, as an alternative to hypothesis-driven gramnal-
method O(n®)), merging two spatially neighboring FUs if theirysis methods for multichannel EEG coherence, we proposed tw
union is a clique in the coherence graph. We did not choogével data-driven group maps for visual group analysisyTdre
one of the common solutions for over_segmentation whicls us@Oth extensions of the ef cient IWB FU detection method. One
the concept of dynamics [47], because dynamics are de ned 6 @ group mean coherence map, which is a data-driven FU map
vertex values, whereas the EEG coherence graph has edgs.vaf@sed on the group mean coherence. The other is a group FU
Moreover, the IWB method merges FUs during segmentatioth (afize map, showing for each electrode the average FU sizesacro
not afterwards, such as with hierarchical watersheds [44]) @ collection of individual FU maps.
detection with the WB and IWB method (taking about 0.04 s and Because conventional data-driven multichannel EEG colcere
0.05s, respectively) is up to a factor of 100,000 faster than thenalysis is cumbersome, comparable conventional ndings a
MCB method, and makes interactive visualization of mukiichel rare. Nevertheless several conventional ndings are coed by
EEG coherence possible. observations in the new data-driven visualizatiq@a3.Coherence
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Fig. 8. Novel IWB FU maps, older adults Same parameters as in Fig. 5.

is lower for younger than older adults [2]. Accordingly, thedriven group maps, referred to as group mean coherence ndap an
number of FUs in group mean coherence maps is lower fgroup FU size map, yield results in accordance with conoeeati
younger than for older adults for 1-30 Hz, group mean colmren ndings. Yet, our results suggest to expand an earlier $ielec
maps show a larger number of white cells not part of anyf hypothesis-driven ROIs [2] with additional data-drivR®Is.

suf ciently large FU for younger adults than older adultsida This demonstrates the usefulness of the IWB FU map, and both
group FU size maps show larger average FU sizes for oldeew data-driven group maps.

than for younger adults(b) Older adults have more bilateral g, maps, group mean coherence maps, and group FU size
activation than younger adults [2]. Accordingly, for oldeaults maps all contribute to a data-driven subselection of ebees

,FU maps anq group mean coherenpe maps display more R Snterest (EQIs): the number of EOIs, their location, ahdirt

n Iatgral regions, the average FU Slze 1S generally h|gm 8region of in uence can be derived directly from the combioat

the difference between lower and higher average FU sizes iS¢, maps, group mean coherence maps, and group FU size
smaller.(c) There is simultaneous activity at a more global Scaﬁaps. In other words, the novel IWB method together with the
for lower EEG frequencies and at a more local scale for highgry new group maps make a data-driven subselection of the

EEG frequencies_[39]. Indeed, group FU siz_e maps indicae ty gijaple electrophysiological signals possible. This ba used
the average FU size decreases with increasing frequéicyhe 55 3 gata-driven starting point for conventional quariagroup

two most importarllt sources of brain activity for this 'predaita analysis. Our methods are currently applied to a multicebnn
are located anteriorly (known as P3a) and posteriorly (MNOW-g G conerence study of mental fatigue [48] by researchers fr

as P3b) [46]. Accordingly, FU maps and group mean coherengg, pepartment of Experimental Psychology of the Universit
maps show connections between anterior and posterior FUs @ Groningen. In this study, the ROIs are obtained in a data-

lower frequencies. driven way since no strong hypotheses can be formulateditmase
Thus, the detection of data-driven ROIs for multichannelGEEexisting evidence. Our approach overcomes the severetions

coherence on the basis of the IWB method results in similaf conventional hypothesis-driven methods and takes filha-

information as the MCB method, and this information is founthge of all the available recordings. The presented vizaiidin

to agree with conventional ndings. Also, the two new dataef (group) FU maps provides a very economical data summary
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Fig. 9. Group mean coherence mapdgor younger (left) and older (right)
adults, per frequency band (from top to bottom). Top viewsenon top. The
line color depends on the inter-FU coherence (see colobb#om right, with
minimum corresponding to the coherence threshold 0:22 for p = 0:01;
the color bar is the same for all FU maps). Above each groumroeherence
map, the number of FUs and the number of connecting lines degtwUs
are displayed.

of extensive experimental results, which otherwise wowd/éry
dif cult and time-consuming to assess. Initial responsesrf the
psychologists using our visualization methods are vergrivle.

The IWB method will be available inFUmaplab on
http://www.rug.nl/informatica/onderzoek/
programmas/svcg/demos
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