MORPHOLOGICAL HAT-TRANSFORM SCALE SPACES AND THEIR USE IN TEXTURE
CLASSIFICATION

A. C. Jalba, J. B. T. M. Roerdink and M. H. F. Wilkinson

Institute of Mathematics and Computing Science
University of Groningen, P.O. Box 800
9700 AV, Groningen, The Netherlands

ABSTRACT image by selectively altering the grey values of connected
sets of pixels. There are several ways of defining the no-
tions of connectivity and connected operators. As is usual
in mathematical morphology, a binary imageis consid-

In this paper we present a multi-scale morphological method

for use in texture classification. A connected operator sim-

ilar to the morphologlcal.hat—transfor.m is defined, gnd two red a subset of some domai usuallyE C Z2. Connec-

scale-space representations are built. The most mportanﬁ o . : : . ) .
. Tivity is defined using either 4-adjacency or 8-adjacency in

features are extracted from the scale spaces by unsuperwseg\]/ . :

. : . the square grid of pixels.
cluster analysis, and the resulting pattern vectors provide the

input of a decision tree classifier. We obtain 93.5 % correct h.Ahc.onnec_ted Icc:plp;)nenf;( 'St? colnhne;:ted S@(X)I
classification for the Brodatz texture database. which 1S maximal. Allat zoneL, at 'evelh of a grey-scale
image f is a connected compone@t{ X, (f)) of the level

setX,(f) = {p € E|f(p) = h}. A peak componenk},
1. INTRODUCTION at level h is a connected component of the threshold set
Ty(f) = {p € E|f(p) > h}. At each levelh there may ex-
Several techniques for multi-scale morphological analysis jst several such components (flat zones, peak components),
exist, such as pyramid] size distributions, or granulome-  indexed asli,, P/, respectively, withi, j from two index
tries [1], which are used to quantify the amount of detail in gets.
an image at different scales. A similar method, based on A fiexible way of defining connected operators for func-
sequential alternating filters, has been proposed by Bangtjons is via partitions. LeP(E) be the set of all subsets
ham and coworkers [2]. Their method is used on 1-D sig- of . A partition P : E — P(E) of E is defined such
nals, though they discuss extensions to higher dimensionsihat (i) » € P(z), = € E, and (i) P(z) = P(y) or

A different multi-scale approach to the analysis of 1-D sig- P(z) N P(y) = 0, for z,y € E. Inwords, a_partition is
nals was presented by Leymarie and Levine [3]. They con- 5 sypdivision of the underlying space into disjoint zones.
structed a morphological curvature scale space for shaperpe partition? of E is said to becoarserthan the partition
analysis, based on sequences of morphological top-hat orpr (or p/ s finerthanP) if P'(z) C P(z) foreveryz € E.
bottom-hat filters with increasing size of the structuring el- The partition of flat zoneg5] C(f) of f is used to define

ement. - o _ _ connected operators.
In [4] we modified the initial technique of Leymarie and

Levine to allow for nested structures, and included a methodDefinition 1 An operatory acting on a grey-level function
by which features in the scale space may be clustered in any is said to beconnectedf C(v(f)), the partition of flat
unsupervised way, resulting in a small set of rotation, trans- zones ofy(f), is coarser tharC'(f).

lation and scale-invariant shape parameters. In this paper

we generalize the hat scale spaces-tiimensional signals,  pefinition 2 The connected opening, (X) of a setX at

give a fast algorithm for computing these scale spaces, and, pointz is the connected componentsfcontainingz if
apply them to pattern classification. We report results for ,, = x andg otherwise.

texture classification, using tigrodatztexture database.

Given a setA, the geodesic distanek, (p, ¢) between
2. THEORY two pixelsp andgq is the length of the shortest path joining
p andq which is included inA. This distance is highly de-
Connected operators [5] are characterized by the powerfulpendent on the type of connectivity used. The geodesic dis-
property of preserving contours, and they only transform an tance between a poipte A and a sefD C A is defined as



da(p, D) = mingep da(p,d). One important morphologi-
cal operator based on the geodesic distance igdloeesic
dilation which is defined as follows.

Definition 3 Let X C F beasubsetaf andY C X. The
geodesic dilatiorof integer sizer > 0 of Y within X is the
set of pixels ofX whose geodesic distance Yois smaller
or equal ton:

SP(Y)={pe X |dx(p,Y) <n}.

In the binary case, theeconstructionpx (Y') of a setX
fromaseft” C X is obtained by iterating geodesic dilations
of Y inside X until stability is obtained, i.e.,

px(¥V) =] oP ).

n>1

@)

Similarly, using the threshold superposition principle [6],
the grey-scale reconstruction can be defined.fLatdg be

1

Fig. 1. Left original signalf (thin) andg = 6(f) (thick);
center f andr = ps(g) (thick); right: f and the detail
signaly (thick).

Definition 5 Theconnected top-hat transforoha grey-scale
imagef at a pointz is given by:

(T(fN(@) = (f = ps(0(f)))(). (4)

The top hat scale space can be obtained by iterating, (4):

~

Definition 6 Thetop-hat scale spaaaf a grey-scale image
f is given by the sequendey, 71, . . ., 7x) defined by the

two grey-scale images defined on the same domain, suchteration

thatg < f for each pixel.

Definition 4 Thegrey-scale reconstructiqiy (g) of f from
g at a pointz is given by:

(py(9)(x) = max{h |z € pr, (5)(Th(9))}-

2.1. Definition of the hat-transform scale spaces

We start by defining a connected operatarcting on grey-

scale functions, which will be used to define the hat scale

spaces. Given a grey-scale functifirthe value ob applied
to f at a pointz is given by

O(N)(x) = max{h’ < f(z) | Qwr ()} (2
whereQ), »/ (f) is the following criterion:
Qe (£) =05 ) (Ca(Tya) (£))) € Ta(Tir (). ()

In words, the value of(f) at a pointz is given by the max-
imum grey levelh’ smaller thanf(x) for which the crite-
rion in (3) holds. The criterior),, 5/ is fulfilled when the

geodesic dilation of size one of the connected opening at

point z of the threshold set’;(,(f) is strictly included in
the connected opening @, (f). When the input function
f is constant we use the conventiéfy) := f. An exam-

fer1 = pg, (0(fx

~

)
©)
Tk = fx — frr1
wheref, := f andk > 0.

Eq. (5) is iterated untifx = f,..», for all pixels, where
Sfmin is the minimum value off. Using f <~ —f, dual

operators of those in (2), (4) and a bottom-hat scale space

can be obtained .

3. CONSTRUCTING N-DIMENSIONAL HAT
SCALE SPACES

The construction of the hat scale spaces in two or more di-
mensions relies on a modified version of Salembier’'s max-
tree data structure [7], which can be constructed in linear

time.
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ple of application of this operator on a 1-D signal is shown Fig. 2. Data structuresLeft a max-tree noderight: its
in Fig. 1. Notice that this formulation is applicable without corresponding features.
any modification ta:-D functions.

To extract the scale space features frérfrom top to A max-tree is a rooted tree, in which each of the nodes
bottom we must use grey-scale reconstruction. The resultC} at grey-levelh corresponds to a peak componéijt.
of reconstructingf from g = 6(f) is shown in the middle However,Cﬁ contains only those pixels iﬁ’,iC which have
picture in Fig. 1, and is denoted by The desired detail is  grey levelh. We have modified this representation such that
simply f —r = f — ps(0(f)). it permits bidirectional traversal. Figure 2 shows the node



data structure, along with its corresponding features; the ar-3.2. 2-D hat scale-space implementation

rows represent pointers. The node structure also contains: ) . ) )
(i) Level- the grey level of the peak component; fidatures The pseudo-code of the recursive function which builds the

- a pointer to a feature structure shown in Fig. 2 (see sec-SC@lé space in the 2-D case is shown in Algorithm 1. The
tion 3.1): (iii) noHighNbr (no high neighbour) - a boolean functionHatScaleSpacmust be called for the root node of

value; its use will be explained later in this section. the tree. The variablelata, used to compute the entropy, is
an array of integers of sizeevels, whereLevel s represents

Definition 7 A node at leveh of the max-tree may have the number of grey levels present in the image (usuaiy).

zero, one, or more than one child. We call a node: The variablepizels is an integer which must be initialized

to 0 when the procedure is called for the root node. At the

end of this call, all entries in the scale space are kept in the

e asimple nodeif it has exactly one child; sspace list. All these variables must in fact be references or
pointers to the specified types.

¢ aleaf, if it has no children (i.e. a regional maximum);

e acompound noddf it has more than one child.

Algorithm 1 2-D hat scale-space computation

FunctionHatScaleSpacé, edata, pixels, sspace)
1: for each childc of noden do

¢ All child components of a compound node represent 2: HatScaleSpacéc, edata, pizels, sspace )
entries in the scale space at the grey level of the com- 3: n.Features. Average :=

pound node. It is easy to see that in this case the cri- n.Features.Average + c.Features. Average
terion in (3) holds. if n.noHighNbr or n has more than one chilthen

cavg := c.Features.Average
e The child of a simple node represents an entry in the carea := c.Features.Area
scale space at the grey levebf the component if the n.Features. Average :=
component has at least one pixel with no neighbour n.Features. Average — cavg, entropy := 0

One can construct the top-hat scale space (see (5)) from sim
ple and compound nodes of the max-tree in the recursively:

NoaR

at a grey level strictly higher thaln This is because & for k:=0to Levels do{Compute entropy
the geodesic dilation of size one of the child compo- ¥ p := edatalk]/pizels
nent within the component is strictly included in the % entropy := entropy + p  log(p)
component, and the criterion in (3) holds. 1 Clear(edata, 0), pizels := 0
! 12: AddEntry (sspace, Entry (cavg/carea, entropy, ...))
The variablenoHighNbr shown in Fig. 2 indicates if the ~ 13: if n.noHighNbr or n has more than one chilthen
last case holds for a given node. It is initialized withse 14: edataln.Level] := n.Features. Area

15:  pixels := n.Features.Area
16: else
17:  edata[n.Level] :=
edata[n.Level] + n.Features. Pizels
3.1. Scale space features 18:  pizels := pizels + n.Features.Pizels

but it becomegrue (and it remaingrue) if the condition is
satisfied for any pixel of the component.

Fig. 2 shows the basic attributes, maintained in each node of
the tree, which are used to compute features suchams: The function proceeds by calling itself for each child
pactnesscomplexitymoment of inertiaaverage heighand nodec of the parent node. After the function returns from
entropy These data sets can be updated when a new pixelyecursion, the variabldverage is updated such that it con-
which belongs to a peak component, is found. They can betains the sum of aldverage values of an entire branch of
merged with other data sets of child components, and per-the tree. The test in lind is true when one of the cases
mit efficient computation of the desired features. The aver- specified in Definition 7 holds for the node If true, a new
age height and entropy features are computed in the seconéntry in the scale space is added (lir®. In this case, the
step, when the scale space is built. All other features can bedAverage value of the child: is subtracted from the value of
computed incrementally, when the tree is built. its parent (liner). After computing the entropy of the grey-
Direct use of scale-space features as pattern vectors idevel distribution of the entry (line8—10), and resetting the
problematic for many statistical methods, because patternvariablesedata andpizels, the entry is added to the scale
vectors of different images would differ in length. One space (linel2). If the testin linel3 is true, i.e. new entries
way to solve this problem is to set the boundaries betweenin the scale space were added, both the level of the array
classes of scale-space features from the data themselvesdata (which corresponds to the grey-level of the nage
This is done by mean-shift cluster analysis as in [4]. Af- and the variableixels are set to the area of the node (lines
ter clustering is performed, the pattern vector is given by 14 — 15). This is because all children of were lowered
the centroids of the first six clusters with the largest areas. to the grey-level of the node, and now at this grey-level



there is a flat zone with the same areana®therwise the
function simply updates thelata andpixels variables by
adding the number of pixels of the component represented
by the node: (lines17 — 18).

A similar approach can be followed to compute the bot-
tom hat scale space by constructing a min-tree (see [7]) and
using the same procedure as in Algorithm 1. Because each
node in the tree is visited at most twice this procedure is
linear in the number of nodes. The computation can be ex-
tended to arbitrary dimension by defining the associated ad-
jacency and building the max/min-trees.

4. EXPERIMENTAL RESULTS

In our experiments we have used the Brodatz texture data-
base, using the C4.5 algorithm [8] for constructing decision
trees, with bagging [9] as a method of improving the accu-
racy of the classifier. The performance was evaluated using
the holdout[10] method. The mean performance (in terms
of correctly identified textures) of the method v#g&s5+1.5

%. This compares favourably with other methods as pub-
lished in [11]. Those experiments showed that reduced mul-
tidimensional histograms provided higher classification ac-
curacies (93.9 %) than those produced using channel his-
tograms (90.4 %) and wavelet packet signatures (85.1 %).
A direct comparison cannot be performed, due to the differ-
ent classifiers involved. We have used bagging in order to
improve the holdout estimate of accuracy, while in [11] a se-
lection of features was used which minimized the leave-one-
out classification error. Next, they used a genetic algorithm
which further improved the classification performance by
minimizing the error rate produced by the selected features.
However, the methods in [11] were tailored towards texture
classification, while our method can also handle other types
of classification problems, e.g. automatic identification of
diatoms [4].

5. CONCLUSIONS

We have proposed a method for classification tasks based
on morphological hat scale spaces, combined with unsuper-[
vised cluster analysis, which can be used for texture feature
extraction. The classification performance (93.5%) is com-
parable with the result of one of the best methods for texture
classification: reduced channel histograms.

The advantages of using the proposed hat scale-spac11]

representations are: (i) a small number of scale space en-
tries, compared with the number of peak components; (ii)

all the extracted scales are important because major changes

in the topology of the signal occur at these scales; (iii) once

some entries in the scale space are obtained, they can be

characterized by computing not only shape and size fea-
tures, but also features related to the ‘height’ of each peak

component. In this representation, one can use links be-
tween components at sequential grey levels in the signal.
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