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ABSTRACT

In this paper we present a multi-scale morphological method
for use in texture classification. A connected operator sim-
ilar to the morphological hat-transform is defined, and two
scale-space representations are built. The most important
features are extracted from the scale spaces by unsupervised
cluster analysis, and the resulting pattern vectors provide the
input of a decision tree classifier. We obtain 93.5 % correct
classification for the Brodatz texture database.

1. INTRODUCTION

Several techniques for multi-scale morphological analysis
exist, such as pyramids [?], size distributions, or granulome-
tries [1], which are used to quantify the amount of detail in
an image at different scales. A similar method, based on
sequential alternating filters, has been proposed by Bang-
ham and coworkers [2]. Their method is used on 1-D sig-
nals, though they discuss extensions to higher dimensions.
A different multi-scale approach to the analysis of 1-D sig-
nals was presented by Leymarie and Levine [3]. They con-
structed a morphological curvature scale space for shape
analysis, based on sequences of morphological top-hat or
bottom-hat filters with increasing size of the structuring el-
ement.

In [4] we modified the initial technique of Leymarie and
Levine to allow for nested structures, and included a method
by which features in the scale space may be clustered in an
unsupervised way, resulting in a small set of rotation, trans-
lation and scale-invariant shape parameters. In this paper
we generalize the hat scale spaces ton-dimensional signals,
give a fast algorithm for computing these scale spaces, and
apply them to pattern classification. We report results for
texture classification, using theBrodatztexture database.

2. THEORY

Connected operators [5] are characterized by the powerful
property of preserving contours, and they only transform an

image by selectively altering the grey values of connected
sets of pixels. There are several ways of defining the no-
tions of connectivity and connected operators. As is usual
in mathematical morphology, a binary imageX is consid-
ered a subset of some domainE, usuallyE ⊆ Z2. Connec-
tivity is defined using either 4-adjacency or 8-adjacency in
the square grid of pixels.

A connected componentof X is a connected setC(X)
which is maximal. Aflat zoneLh at levelh of a grey-scale
imagef is a connected componentC(Xh(f)) of the level
setXh(f) = {p ∈ E|f(p) = h}. A peak componentPh

at level h is a connected component of the threshold set
Th(f) = {p ∈ E|f(p) ≥ h}. At each levelh there may ex-
ist several such components (flat zones, peak components),
indexed asLi

h, P j
h , respectively, withi, j from two index

sets.
A flexible way of defining connected operators for func-

tions is via partitions. LetP(E) be the set of all subsets
of E. A partition P : E → P(E) of E is defined such
that (i) x ∈ P (x), x ∈ E, and (ii) P (x) = P (y) or
P (x) ∩ P (y) = ∅, for x, y ∈ E. In words, a partition is
a subdivision of the underlying space into disjoint zones.
The partitionP of E is said to becoarserthan the partition
P ′ (or P ′ is finer thanP ) if P ′(x) ⊆ P (x) for everyx ∈ E.
The partition of flat zones[5] C(f) of f is used to define
connected operators.

Definition 1 An operatorγ acting on a grey-level function
f is said to beconnectedif C(γ(f)), the partition of flat
zones ofγ(f), is coarser thanC(f).

Definition 2 Theconnected openingΓx(X) of a setX at
a pointx is the connected component ofX containingx if
x ∈ X, and∅ otherwise.

Given a setA, the geodesic distancedA(p, q) between
two pixelsp andq is the length of the shortest path joining
p andq which is included inA. This distance is highly de-
pendent on the type of connectivity used. The geodesic dis-
tance between a pointp ∈ A and a setD ⊆ A is defined as



dA(p,D) = mind∈D dA(p, d). One important morphologi-
cal operator based on the geodesic distance is thegeodesic
dilation which is defined as follows.

Definition 3 LetX ⊆ E be a subset ofE andY ⊆ X. The
geodesic dilationof integer sizen ≥ 0 of Y within X is the
set of pixels ofX whose geodesic distance toY is smaller
or equal ton:

δ
(n)
X (Y ) = {p ∈ X | dX(p, Y ) ≤ n}.

In the binary case, thereconstructionρX(Y ) of a setX
from a setY ⊆ X is obtained by iterating geodesic dilations
of Y insideX until stability is obtained, i.e.,

ρX(Y ) =
⋃
n≥1

δ
(n)
X (Y ). (1)

Similarly, using the threshold superposition principle [6],
the grey-scale reconstruction can be defined. Letf andg be
two grey-scale images defined on the same domain, such
thatg ≤ f for each pixel.

Definition 4 Thegrey-scale reconstructionρf (g) of f from
g at a pointx is given by:

(ρf (g))(x) = max{h | x ∈ ρTh(f)(Th(g))}.

2.1. Definition of the hat-transform scale spaces

We start by defining a connected operatorθ acting on grey-
scale functions, which will be used to define the hat scale
spaces. Given a grey-scale functionf , the value ofθ applied
to f at a pointx is given by

(θ(f))(x) = max{h′ < f(x) | Qx,h′(f)} (2)

whereQx,h′(f) is the following criterion:

Qx,h′(f) ≡ δ
(1)
Th′ (f)(Γx(Tf(x)(f))) ⊂ Γx(Th′(f)). (3)

In words, the value ofθ(f) at a pointx is given by the max-
imum grey levelh′ smaller thanf(x) for which the crite-
rion in (3) holds. The criterionQx,h′ is fulfilled when the
geodesic dilation of size one of the connected opening at
point x of the threshold setTf(x)(f) is strictly included in
the connected opening ofTh′(f). When the input function
f is constant we use the conventionθ(f) := f . An exam-
ple of application of this operator on a 1-D signal is shown
in Fig. 1. Notice that this formulation is applicable without
any modification ton-D functions.

To extract the scale space features fromf from top to
bottom we must use grey-scale reconstruction. The result
of reconstructingf from g = θ(f) is shown in the middle
picture in Fig. 1, and is denoted byr. The desired detail is
simplyf − r = f − ρf (θ(f)).

Fig. 1. Left: original signalf (thin) andg = θ(f) (thick);
center: f and r = ρf (g) (thick); right: f and the detail
signalτ0 (thick).

Definition 5 Theconnected top-hat transformof a grey-scale
imagef at a pointx is given by:

(τ(f))(x) = (f − ρf (θ(f)))(x). (4)

The top hat scale space can be obtained by iterating, (4):

Definition 6 Thetop-hat scale spaceof a grey-scale image
f is given by the sequence(τ0, τ1, . . . , τK) defined by the
iteration

fk+1 = ρfk
(θ(fk))

(5)

τk = fk − fk+1

wheref0 := f andk > 0.
Eq. (5) is iterated untilfK = fmin for all pixels, where

fmin is the minimum value off . Using f ↔ −f , dual
operators of those in (2), (4) and a bottom-hat scale space
can be obtained .

3. CONSTRUCTING N -DIMENSIONAL HAT
SCALE SPACES

The construction of the hat scale spaces in two or more di-
mensions relies on a modified version of Salembier’s max-
tree data structure [7], which can be constructed in linear
time.
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Fig. 2. Data structures.Left: a max-tree node;right: its
corresponding features.

A max-tree is a rooted tree, in which each of the nodes
Ck

h at grey-levelh corresponds to a peak componentP k
h .

However,Ck
h contains only those pixels inP k

h which have
grey levelh. We have modified this representation such that
it permits bidirectional traversal. Figure 2 shows the node



data structure, along with its corresponding features; the ar-
rows represent pointers. The node structure also contains:
(i) Level- the grey level of the peak component; (ii)Features
- a pointer to a feature structure shown in Fig. 2 (see sec-
tion 3.1); (iii) noHighNbr (no high neighbour) - a boolean
value; its use will be explained later in this section.

Definition 7 A node at levelh of the max-tree may have
zero, one, or more than one child. We call a node:

• a leaf, if it has no children (i.e. a regional maximum);

• a simple node, if it has exactly one child;

• a compound node, if it has more than one child.

One can construct the top-hat scale space (see (5)) from sim-
ple and compound nodes of the max-tree in the recursively:

• All child components of a compound node represent
entries in the scale space at the grey level of the com-
pound node. It is easy to see that in this case the cri-
terion in (3) holds.

• The child of a simple node represents an entry in the
scale space at the grey levelh of the component if the
component has at least one pixel with no neighbour
at a grey level strictly higher thanh. This is because
the geodesic dilation of size one of the child compo-
nent within the component is strictly included in the
component, and the criterion in (3) holds.

The variablenoHighNbr shown in Fig. 2 indicates if the
last case holds for a given node. It is initialized withfalse,
but it becomestrue (and it remainstrue) if the condition is
satisfied for any pixel of the component.

3.1. Scale space features

Fig. 2 shows the basic attributes, maintained in each node of
the tree, which are used to compute features such as:com-
pactness, complexity, moment of inertia, average heightand
entropy. These data sets can be updated when a new pixel,
which belongs to a peak component, is found. They can be
merged with other data sets of child components, and per-
mit efficient computation of the desired features. The aver-
age height and entropy features are computed in the second
step, when the scale space is built. All other features can be
computed incrementally, when the tree is built.

Direct use of scale-space features as pattern vectors is
problematic for many statistical methods, because pattern
vectors of different images would differ in length. One
way to solve this problem is to set the boundaries between
classes of scale-space features from the data themselves.
This is done by mean-shift cluster analysis as in [4]. Af-
ter clustering is performed, the pattern vector is given by
the centroids of the first six clusters with the largest areas.

3.2. 2-D hat scale-space implementation

The pseudo-code of the recursive function which builds the
scale space in the 2-D case is shown in Algorithm 1. The
functionHatScaleSpacemust be called for the root node of
the tree. The variableedata, used to compute the entropy, is
an array of integers of sizeLevels, whereLevels represents
the number of grey levels present in the image (usually256).
The variablepixels is an integer which must be initialized
to 0 when the procedure is called for the root node. At the
end of this call, all entries in the scale space are kept in the
sspace list. All these variables must in fact be references or
pointers to the specified types.

Algorithm 1 2-D hat scale-space computation
FunctionHatScaleSpace(n, edata, pixels, sspace)

1: for each childc of noden do
2: HatScaleSpace( c, edata, pixels, sspace )
3: n.Features.Average :=

n.Features.Average + c.Features.Average
4: if n.noHighNbr or n has more than one childthen
5: cavg := c.Features.Average
6: carea := c.Features.Area
7: n.Features.Average :=

n.Features.Average− cavg, entropy := 0
8: for k := 0 to Levels do {Compute entropy}
9: p := edata[k]/pixels

10: entropy := entropy + p ∗ log(p)
11: Clear(edata, 0), pixels := 0
12: AddEntry (sspace, Entry (cavg/carea, entropy, ...) )
13: if n.noHighNbr or n has more than one childthen
14: edata[n.Level] := n.Features.Area
15: pixels := n.Features.Area
16: else
17: edata[n.Level] :=

edata[n.Level] + n.Features.P ixels
18: pixels := pixels + n.Features.P ixels

The function proceeds by calling itself for each child
nodec of the parent noden. After the function returns from
recursion, the variableAverage is updated such that it con-
tains the sum of allAverage values of an entire branch of
the tree. The test in line4 is true when one of the cases
specified in Definition 7 holds for the noden. If true, a new
entry in the scale space is added (line12). In this case, the
Average value of the childc is subtracted from the value of
its parent (line7). After computing the entropy of the grey-
level distribution of the entry (lines8−10), and resetting the
variablesedata andpixels, the entry is added to the scale
space (line12). If the test in line13 is true, i.e. new entries
in the scale space were added, both the level of the array
edata (which corresponds to the grey-level of the noden)
and the variablepixels are set to the area of the node (lines
14 − 15). This is because all children ofn were lowered
to the grey-level of the noden, and now at this grey-level



there is a flat zone with the same area asn. Otherwise the
function simply updates theedata andpixels variables by
adding the number of pixels of the component represented
by the noden (lines17− 18).

A similar approach can be followed to compute the bot-
tom hat scale space by constructing a min-tree (see [7]) and
using the same procedure as in Algorithm 1. Because each
node in the tree is visited at most twice this procedure is
linear in the number of nodes. The computation can be ex-
tended to arbitrary dimension by defining the associated ad-
jacency and building the max/min-trees.

4. EXPERIMENTAL RESULTS

In our experiments we have used the Brodatz texture data-
base, using the C4.5 algorithm [8] for constructing decision
trees, with bagging [9] as a method of improving the accu-
racy of the classifier. The performance was evaluated using
theholdout[10] method. The mean performance (in terms
of correctly identified textures) of the method was93.5±1.5
%. This compares favourably with other methods as pub-
lished in [11]. Those experiments showed that reduced mul-
tidimensional histograms provided higher classification ac-
curacies (93.9 %) than those produced using channel his-
tograms (90.4 %) and wavelet packet signatures (85.1 %).
A direct comparison cannot be performed, due to the differ-
ent classifiers involved. We have used bagging in order to
improve the holdout estimate of accuracy, while in [11] a se-
lection of features was used which minimized the leave-one-
out classification error. Next, they used a genetic algorithm
which further improved the classification performance by
minimizing the error rate produced by the selected features.
However, the methods in [11] were tailored towards texture
classification, while our method can also handle other types
of classification problems, e.g. automatic identification of
diatoms [4].

5. CONCLUSIONS

We have proposed a method for classification tasks based
on morphological hat scale spaces, combined with unsuper-
vised cluster analysis, which can be used for texture feature
extraction. The classification performance (93.5%) is com-
parable with the result of one of the best methods for texture
classification: reduced channel histograms.

The advantages of using the proposed hat scale-space
representations are: (i) a small number of scale space en-
tries, compared with the number of peak components; (ii)
all the extracted scales are important because major changes
in the topology of the signal occur at these scales; (iii) once
some entries in the scale space are obtained, they can be
characterized by computing not only shape and size fea-
tures, but also features related to the ‘height’ of each peak

component. In this representation, one can use links be-
tween components at sequential grey levels in the signal.
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