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1. Introduction

A functional relationship between different brain regions is
generally associated with synchronous electrical activity in these
regions (Varela et al., 2001). Higher-level cognitive mechanisms are
associated with activity at lower frequencies and more global syn-
chronization; lower-level mechanisms are associated with activity
at higher frequencies and more local synchronization (Nunez et
al., 1997; von Stein and Sarnthein, 2000). Electroencephalography
(EEG) coherence between signals recorded from pairs of electrodes
as a function of frequency might be used as a quantitative measure
for this synchrony (Halliday et al., 1995).
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oherence provides a quantitative measure of functional brain connectivity
pairs of signals as a function of frequency. Without hypotheses, tradi-
ld be cumbersome for high-density EEG which employs a large number

find the most relevant regions and coherences between those regions in
re, we previously developed a data-driven approach for individual as well
ity EEG coherence. Its data-driven regions of interest (ROIs) are referred
d are defined as spatially connected sets of electrodes that record pair-
nals. Here, we apply our data-driven approach to a case study of mental
oach overcomes the severe limitations of conventional hypothesis-driven
vious investigations and leads to a selection of coherences of interest tak-
ings under investigation. The presented visualization of (group) FU maps
a summary of extensive experimental results, which otherwise would be
ing to assess. Our approach leads to an FU selection which may serve as
ional quantitative analysis; thus it complements rather than replaces the

© 2008 Elsevier B.V. All rights reserved.
EEG coherence is usually visualized as a two-dimensional graph
layout. Vertices (drawn as dots) represent electrodes and edges
(drawn as lines between dots) represent significant coherences
between electrode signals. For high-density EEG, this layout may
suffer from a large number of overlapping edges, resulting in visual
clutter (Kamiński et al., 1997; Stein et al., 1999). Regarding the
analysis of high-density EEG coherence, one problem is to find the
most relevant regions (groups of electrodes) and the most relevant
coherences between those regions. Another problem is to compare
coherences of interest across groups.

One common approach for coherence analysis is the data-driven
approach. This method does not provide any spatial information;
it assigns a quantity to a coherence graph as a whole. Popular
examples of such quantities are cluster index (level of clustering)
and characteristic path length (average path length) (Achard et
al., 2006; Salvador et al., 2005; Sporns, 2002; Watts and Strogatz,
1998). A graph with a high cluster index in combination with a low
characteristic path length is said to reflect small-world properties.
Although a high cluster index is related to a global organization
of local units (i.e., clusters, which may here be interpreted as EEG
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sources), it does not provide information on the size or number of
those units (Sporns, 2002), nor on their location. The other quanti-
ties do not provide this information either.

Another common approach for EEG coherence analysis is the
hypothesis-driven approach. This usually makes a regular subse-
lection of the available coherences (Maurits et al., 2006), because
coherence analysis of all electrode pairs would be cumbersome for
high-density EEG. A major drawback of this approach is that the
majority of the coherences is ignored.

We earlier presented a method for data-driven region of inter-
est (ROI) detection taking into account spatial properties (ten Caat
et al., 2007b, c, 2008). The data-driven ROIs were referred to as
functional units (FUs) and were defined as spatially connected
sets of electrodes recording pairwise significantly coherent sig-
nals. For individual datasets, FUs are displayed in a so-called FU
map which preserves electrode locations. An FU map visualizes the
size and location of all FUs, and connects FUs if the average coher-
ence between them exceeds a threshold (ten Caat et al., 2007b, c,
2008).

Because there is much variation between individual FU maps,
we additionally proposed two types of group analysis (ten Caat et

al., 2008). First, the group mean coherence map, which preserves
dominant features from a collection of individual FU maps. Second,
the group FU size map, which visualizes the average FU size per
electrode across a collection of individual FU maps.

In this paper, our data-driven method for individual and group
coherence analysis is applied in a mental fatigue study. We indicate
how the data-driven method leads to an FU selection, which may
serve as a basis for subsequent conventional quantitative analysis.
The latter will not be discussed here.

2. Methods

2.1. Participants and task

Brain responses were recorded from a group of five healthy par-
ticipants (three women) between 19 and 24 years of age, using an
EEG cap with 59 scalp electrodes (Fig. 1). A task switching paradigm
(Lorist et al., 2000) was used, which allows to study the effect of
mental fatigue on cognitive control processes involved in the plan-
ning and preparation for future actions (Lorist et al., 2000). Mental
fatigue refers to the effects that people may experience after or

Fig. 1. Voronoi diagram of the electrode positions. To each electrode a ‘Voronoi cell’
is associated, consisting of all points that are nearest to that electrode. Electrode
labels are shown in corresponding cells (top view of the head, nose at the top).
ce Methods 171 (2008) 271–278

during prolonged periods of demanding cognitive activity and was
induced here by 2 h of continuous task performance, that is by time
on task (Lorist et al., 2000, 2005). During task execution subjects
were facing a color monitor on which a square (4 × 4 cm) subdi-
vided into four equal quadrants was displayed. Stimuli were red or
blue letters, randomly chosen from the set {A, E, O, U, G, K, M, R},
which were presented in the center of one of the quadrants in a
clockwise order, one by one.

Participants were instructed to make either a left or right hand
response on each trial by pressing a response button as quickly
and accurately as possible. They responded (left/right) to the color
(red/blue) of the stimulus if it was presented in one of the two
upper quadrants, and to letter identity (vowel/consonant) for one
of the two lower quadrants. Thus, subjects switched between the
color and letter tasks on every second trial. Therefore, responses to
stimuli are so-called switch trials for the upper left and lower right
quadrants, and repetition trials for the upper right and lower left
quadrants. The time between the response and the next stimulus
was randomly chosen to be 150, 600, 1500, or 2400 ms.

The aim of our data-driven approach is to indicate ROIs
and coherences of interest between those ROIs when no strong
hypotheses can be formulated based on existing evidence. For sim-
plicity, we here restrict the analysis to the condition in which
subjects have ample time to prepare for a task switch (i.e., 600 ms
response-stimulus interval). The switch task was performed con-
tinuously for 120 min, a period which was divided into six blocks
of 20 min for subsequent analysis. Because effects of mental
fatigue are more pronounced in conditions in which relatively high
demands are placed on cognitive control processes, analysis was
further restricted to switch trials only (Lorist et al., 2000). To exam-
ine the effects of mental fatigue, which increases with time on task,
we compared responses from the first and the last 20 min block
(blocks 1 and 6). Responses where the subject gave an incorrect
answer were disregarded.

2.2. EEG coherence

As a result of volume conduction (Lachaux et al., 1999), mul-
tiple electrodes can record a signal from a single source in the
brain. Therefore, nearby electrodes usually record similar signals.
However, because sources of activity at different locations may be
synchronous, electrodes far apart can also record similar signals.
A measure for this synchrony is coherence, calculated between
pairs of signals as a function of frequency. The coherence c� as a

function of frequency � for two continuous time signals x and y is
defined as the absolute square of the cross-spectrum fxy normal-
ized by the autospectra fxx and fyy (Halliday et al., 1995), having
values in the interval [0, 1]: c�(x, y) = |fxy(�)|2/fxx(�)fyy(�). To cal-
culate the coherence for an event-related potential (ERP) with L
repetitive stimuli, the EEG data can be segmented into L segments.
A significance threshold � for the estimated coherence is then given
by Halliday et al. (1995)

� = 1 − p1/(L−1), (1)

where p is a probability value associated with a confidence level ˛
(p = 1 − ˛).

The average number of correct responses for the different
blocks was around 65, but with a rather large inter-subject vari-
ation. Therefore, brain responses for the first 40 trials with a
correct response were selected (for each block and each subject
at least 40 correct responses were available). Disjoint segments
([−0.1, 0.88] s around the stimulus) were used for further anal-
ysis, consisting of responses for 20 trials at each switch. We used
an average reference which is suitable for coherence analysis of
high-density EEG (Nunez et al., 1997; Maurits et al., 2006), applied
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a high-pass filter (0.16 Hz) and a notch filter (50 Hz), and resam-
pled from 500 to 512 Hz (BrainVision Analyzer 1.05, Brain Products
GmbH). Then data were transferred to EEGLAB (Delorme and
Makeig, 2004), running under Matlab (The MathWorks). A pro-
cedure from Neurospec was adopted to compute the coherence
(http://www.neurospec.org), using a custom-made script to com-
pute coherences between all 1711 pairs of electrode signals. We
calculated coherence within the following EEG frequency bands:
delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–23 Hz),
lower gamma (24–35 Hz), and higher gamma (36–70 Hz). Since
conductive gel might accidentally connect two adjacent electrodes
and thereby produce very high coherences, coherences higher than
0.99 were ignored between signals corresponding to two neighbor-
ing electrodes. The corresponding coherence threshold for p = 0.01
and N = 40 segments is � = 1 − 0.011/(40−1) ≈ 0.11.

2.3. Individual analysis: FU map

The data for individual dataset analysis are represented by a
coherence graph with vertices representing electrodes. Coherences
above the significance threshold (Eq. (1)) are represented by edges,
coherences below the threshold are ignored. To determine spatial
relationships between electrodes, a Voronoi diagram is employed
which partitions the plane into regions of points with the same
nearest electrode (Fig. 1). The area enclosed by the boundaries of
a region is referred to as (Voronoi) cell. We call two cells spatially
connected if they have a boundary in common.

Because multiple electrodes can record a signal from a single
source, a spatially connected set of electrodes recording simi-
lar signals is considered as a data-driven ROI, referred to as FU.
More precisely, an FU is represented in the EEG coherence graph
by a set of spatially connected vertices which form a ‘clique’,
meaning that the coherence between any pair of electrodes in
an FU exceeds the significance threshold (ten Caat et al., 2007b,
2008). FU detection is motivated by the assumption that larger
FUs correspond to stronger source signals and are therefore more
interesting.

Earlier we developed three FU detection methods. One is a max-
imal clique-based (MCB) method which detects FUs which are as
large as possible (ten Caat et al., 2007b, 2008). Its algorithm com-
putes the correct FUs according to the maximal clique definition,
but is very time-consuming. Therefore, we developed two alter-
native approaches. The first is a watershed-based (WB) method
which approximates FUs in a greedy way and is faster (ten Caat

et al., 2007c). The WB method, originally developed to segment
images into objects, was adapted to cluster electrodes into sub-
sets which resemble cliques. Finally, we introduced an improved
watershed-based (IWB) method which merges neighboring FUs if
their union is a clique in the coherence graph (ten Caat et al., 2008).
The IWB method is used here, because it is much faster than the
MCB method, and gives a better FU approximation than the WB
method (ten Caat et al., 2008).

Given the FUs, the inter-FU coherence c′
�

at frequency � between
two FUs, W1 and W2, is defined as the sum of the coherence values
between one vertex in W1 and the other vertex in W2, scaled by
the maximal number of edges between W1 and W2 (ten Caat et al.,
2007b):

c′
�(W1, W2) =

∑

i,j

{c�(vi, vj)|vi ∈ W1, vj ∈ W2}

|W1| · |W2| . (2)

Here, |Wi| indicates the number of vertices in Wi. Note that coher-
ences between any pair of vertices are taken into account, including
those below the threshold.
ce Methods 171 (2008) 271–278 273

An FU map visualizes each FU as a set of cells with identical gray
value, with different gray values for adjacent FUs (e.g., Fig. 2). For
visualization, a line is drawn between FU centers if the correspond-
ing inter-FU coherence exceeds a threshold. We consistently choose
this threshold to be equal to the significance threshold (Eq. (1)), as
we already used this threshold to determine the coherence graph.
Because larger FUs are considered to be more interesting (ten Caat
et al., 2008), only FUs of at least four cells are considered.

2.4. Group analyses: group mean coherence map and group FU
size map

FU maps differ from individual to individual, making group anal-
ysis difficult. For this reason we previously introduced two group
maps for data-driven group analysis (ten Caat et al., 2008).

First, a group mean coherence graph was defined as the graph
containing the mean coherence for every electrode pair computed
across a group (ten Caat et al., 2008). To obtain a data-driven
coherence visualization for a group, only the edges with a value
exceeding the coherence threshold (Eq. (1)) are maintained. Next,
an FU map, referred to as group mean coherence map, is created for
this graph.

Second, a group FU size map visualizes the average FU size for
every electrode across a group, based on the individual FU maps
(ten Caat et al., 2008). The average FU size s of an electrode v is
computed as

s(v) =
∑

j ∈ all datasets

|FUj(v)|
#datasets

,

with |FUj(v)| the size of the FU containing v for dataset j. The value
s for an electrode is mapped to the gray value of its corresponding
cell, with lighter gray for higher average FU sizes, similar to a (gray
scale) topographic map (ten Caat et al., 2007a). Consequently, a light
cell in an FU size map indicates that the corresponding electrode
is on average part of large FUs and is therefore more interesting.
(Recall that, on the contrary, white cells in FU maps and group mean
coherence maps are considered to be the least interesting, because
they are not part of sufficiently large FUs.)

To summarize, as a result of the way in which it is calculated, the
group mean coherence map displays coherences (and the involved
FUs) with a higher mean value. Because this FU map is calculated
based on average coherence values between electrode pairs, both
very high coherences in a few subjects and coherences which are on

average high in many subjects can result in FUs and coherences in
the group mean coherence map. The group FU size map emphasizes
those electrodes which are often part of a large FU in the individual
subjects. It indicates where on average the larger FUs are located.

3. Results

For all results, we set p = 0.01, corresponding to a coherence
threshold � ≈ 0.11.

3.1. Individual analysis: FU map

Individual FU maps for all participants were created for blocks
1 (non-fatigued, Fig. 2) and 6 (fatigued, Fig. 3). First, we comment
on the general interpretation of FU maps before describing the FU
maps for this particular case study. Cells within one FU correspond
to electrodes whose signals are all (pairwise) significantly coher-
ent. Thus, if one FU covers an area including left and right frontal
electrodes (e.g., Fig. 2, participant 1, 8–12 Hz), then all coherences
between electrodes in the left and right frontal area are signifi-
cant. Alternatively, if there are two separate left and right frontal

http://www.neurospec.org
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Fig. 2. IndividualFU maps, block 1 (non-fatigued), for each participant (numbered 1–5), w
value, with different gray values for adjacent FUs. White cells are part of FUs with a size sm
threshold, with its color depending on the value (see color bar, with minimum correspon
all FU maps). (For interpretation of the references to color in this figure legend, the reade

FUs and they are connected by a line (e.g., Fig. 2, participant 1,
13–23 Hz), then the average of all coherences between one elec-
trode in the left and the other electrode in the right frontal FU is
significant.

Within a participant, two FU maps from separate blocks are usu-
ally highly similar regarding FU locations and connections between
FUs. On the contrary, differences between participants are found to
be large. Considering the FU maps per participant, FUs are gen-
erally largest for the lowest frequencies (both in blocks 1 and 6).
Simultaneously, the total number of electrodes in FUs decreases
for increasing frequencies in the range 1–35 Hz. Above 35 Hz, this
ith p = 0.01 and |FU| ≥ 4. Each FU is visualized as a set of cells with identical gray
aller than 4. A line connects FUs if the inter-FU coherence exceeds the significance

ding to the coherence threshold � ≈ 0.11 for p = 0.01; the color bar is the same for
r is referred to the web version of the article.)

number does not continue to decrease. Further, the number of sig-
nificant longer-distance coherences (either within one large FU,
or between two smaller FUs) also decreases with increasing fre-
quency.

Overall, the coherence between frontal FUs is significant in the
majority of the FU maps. Left and right parieto-occipital FUs, some-
times part of one larger FU, occur in most cases. If frontal FUs and
lateral parieto-occipital FUs coexist, then the coherence between
those FUs is usually significant and often includes interhemispheric
coherences. Further, left and right centroparietal FUs occur regu-
larly. Centrally located FUs are found occasionally.
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Fig. 3. Individual FU maps, block 6 (fatigued). Same parameters as in Fig. 2. (For interpre
web version of the article.)

In summary, differences between participants are generally
larger than differences within participants between blocks 1 and
6. Lower frequencies show a more global synchronization, hav-
ing larger FUs and a larger number of longer-distance coherences
between FUs. For higher frequencies, decreasing FU sizes and a
reduction of longer-distance coherences indicate a more local syn-
chronization.

3.2. Group analyses: group mean coherence map and group FU
size map

The coherence data for block 1 (non-fatigued participants) is put
in one group, and for block 6 (the same, fatigued, participants) in
another group.
tation of the references to color in this figure legend, the reader is referred to the

3.2.1. Group mean coherence map
Group mean coherence maps (Fig. 4) were created for block

1 (non-fatigued) and block 6 (fatigued). First, we comment on
correspondences between group mean coherence maps and the
individual FU maps, and correspondences within the group mean
coherence maps between blocks 1 and 6.

As differences within participants are small between blocks 1
and 6, differences in the group mean coherence maps are also small
between these two blocks. The largest FUs occur generally for the
lowest frequencies (for both the non-fatigued and the fatigued con-
dition). The number of electrodes which are part of an FU and the
number of significant longer-distance coherences (either within
one large FU, or between two smaller FUs) both decrease with
increasing frequency. Further, frontal FUs occur for both blocks 1
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involve FUs with a size just above the threshold (four cells). Other
differences, between individual FU maps and group mean coher-
ence maps, involve central FUs, which are present in block 1 for
8–12 Hz and in block 6 for 8–23 Hz in the group mean coherence
maps. Nevertheless, they are not present in the majority of the indi-
vidual FU maps for the corresponding frequency bands and blocks.
However, there is no significant coherence between a central FU
and any other FU.

3.2.2. Group FU size map
Group FU size maps were created for all participants for blocks

1 and 6 per frequency band (Fig. 5). Confirming the picture of the
individual FU maps and the group mean coherence maps, the max-
Fig. 4. Group mean coherence maps for block 1 (non-fatigued, left) and block 6
(fatigued, right), with p = 0.01 and |FU| ≥ 4. The line color depends on the inter-
FU coherence (see color bar, bottom right, with minimum corresponding to the
coherence threshold � ≈ 0.11; the color bar is the same for all FU maps). Above
each group mean coherence map, the number of FUs and the number of connecting
lines between FUs are displayed. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

and 6 in the 1–12 Hz range. For higher frequencies, frontal FUs
are smaller (or absent). As most individual FU maps have lat-
eral parieto-occipital FUs, every group mean coherence map also
has such FUs. Significant anterior–posterior coherences (between
frontal and lateral parieto-occipital FUs) exist within one FU or
between two FUs in the 1–23 Hz range for blocks 1 and 6.

Apparent differences in the group mean coherence maps
between blocks 1 and 6 occur in the two highest frequency
bands (24–35 and 36–70 Hz), with anterior–posterior connections
present in one block but absent in the other. Those connections
Fig. 5. Group FU size maps for block 1 (non-fatigued, left) and block 6 (fatigued,
right). Same parameters as in Fig. 4. The gray scale range is adapted per frequency
band (see right bars, with maximum equal to the maximum average FU size). A
lighter cell indicates that the corresponding electrode is on average part of a larger
FU.
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imum average FU size per electrode (cf., ‘color’ bar) decreases with
increasing frequency for both blocks 1 and 6 in the frequency range
1–23 Hz; for higher frequencies, the maximum average FU size does
not vary much. The maximum average FU size also does not vary
much between the two blocks, per frequency band.

The main difference between blocks 1 and 6 occurs for 1–3 Hz.
In this frequency band, the highest average FU sizes occur in both
anterior and posterior areas for block 1, and in a posterior area for
block 6. Further, there are no clear differences between blocks 1
and 6 for higher frequencies. Large FUs are located for 4–7 Hz in
frontal and parieto-occipital areas, for 8–12 Hz in frontal areas, and
for 13–70 Hz in left and right parieto-occipital areas. The smallest
FUs occur for blocks 1 and 6 in similar areas. For 1–7 Hz, the smallest
FUs appear in lateral centroparietal areas. For higher frequencies,
the smallest FUs are found in central, centroparietal, and occipital
areas. Temporal FUs are generally small.

In summary, for a subsequent quantitative analysis, based on
the above data-driven FU-map visualizations, we suggest to explore
power for and coherences between mid-anterior (AFz or Fz), bilat-
eral frontal (F5 and F6) and bilateral posterior (PO7 and PO8)
electrode locations. Particular attention should be paid to coher-
ences between anterior and posterior contralateral electrodes (e.g.,
F5–PO8). Frequency bands of interest are 1–3, 4–7 and 8–12 Hz, in
particular.

4. Discussion and conclusions

Our data-driven method for high-density EEG coherence analy-
sis based on FUs was applied to a case study for which no existing
evidence was available to formulate strong hypotheses. In this
study, a prolonged switching task was used to induce mental
fatigue. We used our approach to suggest electrode pairs and fre-
quency bands of interest for later quantitative power and coherence
analysis of this fatiguing task.

Generally speaking, in line with known EEG properties (Nunez
et al., 1997; von Stein and Sarnthein, 2000), lower frequencies were
associated with a more global synchronization and higher frequen-
cies with a more local one. Accordingly, both the individual FU
maps and the group mean coherence maps had larger FUs and more
longer-distance inter-FU coherences for lower frequencies. Further,
smaller FU sizes and a reduction of longer-distance coherences
occurred for higher frequencies. FU map differences were generally
large between participants, but small between the non-fatigued
and fatigued conditions. These large inter-individual differences

are not a property of our analysis, but probably of the underlying
data. The data-driven approach we take likely makes these dif-
ferences more clear than a hypothesis-driven approach in which
certain pairs of electrodes are selected beforehand, coherences are
calculated and a statistical analysis is applied straightforwardly
to assess differences between groups. Improved insight in inter-
individual differences and similarities in coherence may therefore
be considered an additional advantage of our approach.

Common features of individual FU maps were generally pre-
served in the group mean coherence maps. Differences between the
non-fatigued and fatigued condition appeared in the group FU size
maps for the lowest frequency band (1–3 Hz), with the largest FUs
located both anteriorly and posteriorly for the non-fatigued group,
and posteriorly for the fatigued group. Because mental fatigue is
supposed to affect higher-level cognitive processes which are asso-
ciated with lower EEG frequencies, this may explain why the largest
difference between the non-fatigued and fatigued group occurs in
the lowest EEG frequency band. Therefore, for subsequent quanti-
tative power and coherence analysis, our group analysis suggests
to take anterior and posterior electrodes into account and focus on
low frequency bands.
ce Methods 171 (2008) 271–278 277

In summary, our method thus specifies the frequency band(s)
of interest and intrahemispheric, interhemispheric, and homolo-
gous coherences for subsequent quantitative analysis. Additionally,
interhemispheric coherences between (left/right) anterior and
(right/left) posterior areas were suggested, which have so far
not been considered in hypothesis-driven approaches. Our data-
driven method suggests that coherences between these electrode
pairs may be particularly interesting to detect differences between
fatigued and non-fatigued conditions during execution of a cogni-
tive switching task.

To conclude, the presented data-driven method for high-density
EEG coherence analysis, employing FU maps and two types of group
maps, can be applied to situations for which no strong hypothe-
ses can be formulated based on existing evidence. It overcomes
the severe limitations of conventional hypothesis-driven methods
which depend on previous measurements and leads to a selection
of coherences which takes full advantage of the actual measure-
ment. Our method distinguishes between local coherence (within
an FU) and global coherence (between FUs) and results are in line
with common EEG knowledge. Our approach can be applied to any
coherence data set, but is particularly suited for datasets contain-
ing so many electrodes that an exhaustive analysis which considers
all possible electrode pairs is no longer feasible (i.e., 20 electrodes,
which already leads to 190 possible pairs). Previously, we showed
that the analysis is very fast and takes approximately 0.05 s for 128
electrodes (ten Caat et al., 2008), in a study on the effects of age-
ing on cognitive task performance. Altogether, our visualization of
(group) FU maps provides a very economical data summary of a
very extensive set of experimental results, which otherwise would
be very difficult and time-consuming to assess and which can be
used as a guideline for further quantitative analysis.
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