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Abstract

In this paper the implementation of a parallel watershed algorithm is described� The algorithm is
implemented on a multiple instruction multiple data �MIMD� ring�architecture using a single program
multiple data �SPMD� approach using an asynchronous message passing interface and simulated
shared memory via the Linda tuple space� The watershed transform is generally considered to be
inherently sequential� This paper shows that it is possible to exploit parallelism by splitting the
computation of the watersheds of an image into three stages that can be executed in parallel� This
paper is an extended version of ����
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� Introduction

In the �eld of image processing and more particularly in grey scale Mathematical Morphology ��� ��
the watershed transform ��� �� �� is frequently used as one of the stages in a chain of image processing
algorithms	 Unfortunately� the computation of the watershed transform of a grey scale image is a relatively
time consuming task and therefore usually one of the slowest steps in this chain	 A common solution for
such computationally expensive algorithms is to search for implicit parallelism in the algorithm and use
this to implement the algorithm on a parallel computer	 Unfortunately this technique does not apply to
the watershed algorithm� since the basic watershed algorithm is inherently sequential	

The watershed algorithm can easily be extended to graphs� as shown in ���	 This fact is used to derive
an alternative algorithm which enables a parallel implementation	 We �rst transform the image into a
graph in which each vertex represents a connected component at a certain grey level h	 Then we compute
the watershed of this graph and transform the result back to the image domain	 The computation of a
skeleton of plateau regions is performed as a post
processing step	

� The Watershed Transform

In ��� an algorithmic de�nition of the watershed of a digital grey scale image is given	 In this section we
will give a short summary of this de�nition	

A digital grey scale image is a function f � D �� N� where D � Z
� is the domain of the image �pixel

coordinates and for some p � D the value f�p denotes the grey value of this pixel	 Grey scale images
are looked upon as topographic reliefs where f�p denotes the altitude of the surface at location p	 Let
G denote the underlying grid� i	e	 G is a subset of Z� � Z

�	 A path P of length l between two pixels p
and q is an l � �
tuple �p�� p�� ���� pl��� pl such that p� � p� pl � q and �i � ��� l � �pi� pi�� � G	 For a
set of pixels M the predicate conn�M  holds if and only if for every pair of pixels p� q �M there exists a
path between p and q which only passes through pixels of M 	 The set M is called connected if conn�M 
holds	 A connected component is a nonempty maximal connected set of pixels	 A regional minimum
�minimum� for short of f at altitude h is a connected component of pixels p with f�p � h from which
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it is impossible to reach a point of lower altitude without having to climb	 Now� suppose that pinholes
are pierced in each minimum of the topographic surface and the surface is slowly immersed into a lake	
Water will �ll up the valleys of the surface creating basins	 At the pixels where two or more basins would
merge we build a �dam�	 The set of dams obtained at the end of this immersion process� that is when the
entire surface is �ooded� is called the watershed transform of the image f 	

Before going to the algorithm for computing watersheds� we need a few more de�nitions	

De�nition �� Let A be a set� and a� b two points in A	 The geodesic distance dA�a� b within
A is the in�mum of the lengths of all paths from a to b in A	 If B is a subset of A� we de�ne
dA�a�B �� infb�B�dA�a� b	 In the digital case one uses an appropriate distance� such as the city

block distance function	

Now we will give the de�nition of in�uence zones	 Let A be some set of pixels	 Let B � A be
partitioned in k connected components Bi� i	e	 B �

Sk

i��Bi	

De�nition �� The geodesic in�uence zone of the set Bi within A is de�ned as izA�Bi � fp � A j
�j � ����k�nfig � dA�p�Bi � dA�p�Bjg	

The set IZA�B is de�ned as the union of the in�uence zones of the connected components of B� i	e	

IZA�B �
k�

i��

izA�Bi ��

De�nition �� The complement of the set IZA�B within A is called the skeleton by in�uence zones of A�

SKIZA�B � AnIZA�B ��

� The Classical Algorithm

A digital algorithm for computing the watershed transform was developed in ��� ��	

De�nition �� Let f be a grey level function	 The set

Th � fp � D j f�p � hg ��

is called the threshold set of f at level h	
Let hmin and hmax respectively be the minimum and maximumgrey level of the digital image	 Let Minh
denote the union of all regional minima at the altitude h	

De�nition �� �Watershed algorithm� De�ne the following recurrence�

Xhmin � fp � D j f�p � hming

Xh�� � Xh �Minh�� � �IZTh�� �XhnTh� h � �hmin� hmax ��

The watershed transform of the image f is the complement of Xhmax in D�

Wshed � DnXhmax ��

Intuitively� one could interpret Xh as the set of pixels p� satisfying f�p � h� that lie in some basin	
The recursion above is based upon the following case analysis ���� which is explained here in some

detail in preparation of the parallel algorithm to follow	
For the recursive relation between Xh and Xh�� the threshold set Th�� is considered	 It is obvious

that Xh � Xh�� � Th��	 Let Y be a connected component of Th��	 There are three possible relations
between Y and Xh�

�	 Y �Xh � 		 In this case Y is a new minimum at level h� � and thus �after piercing a hole in it
the starting set of a new basin	 Clearly Y � Xh��	

�	 Y �Xh 
� 	 and is connected	 Clearly Y is an extension of the basin Xh� and thus Y � Xh��	



�	 Y �Xh 
� 	 and is not connected	 In this case Y contains two or more distinct minima of f 	 Let
Z�� � � � � Zk be these minima	 Then the basin Xh is expanded by computing the geodesic in�uence
zone of Zi within Y 	

Most implementations of algorithms that compute the watershed of a digital grey scale function are
direct translations of the recursive relation ��	 The basic structure of these algorithms is a main loop in
which h ranges from hmin to hmax	 In every iteration the basins belonging to the minima are extended
with their in�uence zones within the set Th��	 The fact that Xh is needed to compute Xh�� clearly
expresses the sequential nature of this algorithm	

Computing in�uence zones is a costly operation� while it is a waste of time in the �rst two cases of the
above case analysis	 Also� the SKIZ is not necessarily connected� and may also be a �thick� one� meaning
that a set of pixels equally distant from two connected components may be thicker than one pixel	

The watershed algorithm as given above can easily be extended to graphs� as shown in ���	 This
fact is used in the next section where we propose an alternative algorithm which enables a parallel
implementation of this algorithm	 We �rst transform the image into a graph in which each vertex
represents a connected component at a certain grey level h	 Then we compute the watershed of this
graph and transform the result back to the image domain	 The computation of a skeleton of plateau
regions is performed as a post
processing step	

� An Alternative Algorithm

In the algorithm described in the previous section in�uence zones were computed during every iteration
of the algorithm	 There is the problem of plateaus which may result in thick watersheds	 Now� suppose
that the image f does not contain plateaus� i	e	 ��p� q � D � �p� q � G� f�p 
� f�q	 In this case every
�plateau� consists of exactly one pixel	 This observation leads us to an alternative watershed algorithm�
which consist of � stages�

�	 Transform the image f into a directed valued graph f� � �F�E� called the components graph of f 	

�	 Compute the watershed of the directed components graph	

�	 Transform the labeled graph into a binary image� and compute a skeleton of the watershed plateaus
to get thin watersheds	
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Figure �� �a� arti�cially generated image� �b� labeled level sets� �c� components graph�

��� Stage �

The �rst stage of this algorithm transforms the image f into a directed valued graph f� � �F�E� called
the components graph of f 	 Here F denotes the set of vertices of the graph and E the set of edges	



The vertices of this graph are maximal connected sets of pixels which have the same grey values	 In the
remainder of this paper these sets are called level components	 The set of level components at level h is
de�ned as

Lh � fC � ThnTh�� � C is a connected component of ThnTh��g ��

The set of vertices of the graph f� is the collection of level components of f � i	e	

F �
hmax�

h�hmin

Lh ��

A pair of level components �v� w is an element of the edge set E if and only if ��p � v� q � w � �p� q �
G  f�p � f�q	 By de�nition every directed path through this graph increases in altitude	 With a
little abuse of notation we denote the grey
value of a level component w by f�w� which is the value f�p
for some p � w	

��� Stage �

The second stage of the algorithm computes the watershed of the directed graph	 The structure of this
stage is very similar to the original watershed algorithm described in the previous section	 The basic idea
is to assign a colour �label to each minimum and its associated basin by iteratively �ooding the graph
using a breadth �rst algorithm	 If some node v can be assigned two or more di�erent labels� i	e	 the node
can be reached from two di�erent basins along an increasing path� the node is marked to be a watershed
node	 If the node can only be reached from nodes which have the same label the node is assigned this
same label� i	e	 the node is merged with the corresponding basin	 A pseudo
code of this algorithm is
given in Fig	 �	

��� Stage �

In the third� and last� stage of the algorithm the labeled graph is transformed back into an image	 The
pixels belonging to a watershed node are coloured white while pixels belonging to non
watershed nodes
are coloured black	 After this transformation we end up with a binary image� in which the watersheds
are plateaus	 If we want thin watersheds we need to compute a skeleton of this image� for example the
skeleton by in�uence zones as described in section �	 But also di�erent types of skeletons can be used�
which gives us more freedom than in the original watershed algorithm	 If node v is a watershed node� we
compute the skeleton of the set v by computing the in�uence zones of the non
watershed components	

� Parallelization of the Second Algorithm

The runtime performance of the sequential algorithm proposed in the previous section turns out to be
approximately the same as the performance of the algorithm described in ���	 For images containing
many small level components the graph algorithm performs less well� since the components graph of such
images is very large and thus it takes a relatively large time to build the graph	 On the other hand� if
the image contains larger level components the size of the graph decreases� taking less time to build the
graph	 Now the algorithm starts to outperform the classical algorithm� since we only have to compute
the skeletons of watershed nodes	 So� at �rst sight it appears we hardly gained anything using the graph
algorithm	

However� since we clustered all the pixels which are in the same level component in one single node
of the components graph� we can decide whether a node is a watershed node based on local arguments�
i	e	 we only have to look at the lower neighbours of the node in the graph	 In the traditional watershed
algorithm it is not possible to make this decision based on the altitude of neighbouring pixels since these
pixels can be part of �very large plateaus	 Because of this fact it is hard to make a parallel version of the
traditional watershed algorithm� since there will be substantial communication between the processors	
In contrast to the traditional algorithm� the graph algorithm can be parallelized	 In the rest of this paper
we assume that we have a ring network of N processors	 Each processor is identi�ed by an identi�er called
myproc� which represents the number of the processor in the network	 Each processor can communicate
directly with both its neighbouring processors� using an asynchronous message passing interface	 Each



processor has its own local memory for storing the program it executes and for storage of data	 Also�
there is a simulated piece of shared memory called the Linda tuple space ���	

MASK �� 
�� WSHED �� �� lab �� ��
for h �� hmin to hmax do
begin �� mask all nodes at level h �

forall v � F with f�v � h do
wsh�v� �� MASK�

�� extend basins �
forall v � F with f�v � h do
begin iswshed �� false�

forall w � F with �w� v � E do
if �iswshed
then if wsh�v� � MASK

then wsh�v� �� wsh�w�
else if wsh�w� � �

then if wsh�v� � WSHED
then wsh�v� �� wsh�w�
else if wsh�v� 
� wsh�w�

then begin wsh�v� �� WSHED�
iswshed �� true

end
end�
�� process newly discovered minima �
forall v � F with wsh�v� � MASK do
begin wsh�v� �� lab�

lab �� lab � �
end

end�

Figure �� Watershed algorithm on a components graph�
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Every processor can perform three atomic operations on this tuple space	 A processor can store a
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Figure �� �a� data distribution for four processors� �b� labeling of the distributed image�

tuple �a� b in the tuple space using the command out �a� b	 It can read and delete a tuple from the
tuple space using the command in �a� b	 A tuple can be read from the tuple space without deleting it
using the command read �a� b	 For either of both reading operations� a must have an initialized value
before the read operation	 When the read operation is performed the runtime system tries to �nd a tuple
in the tuple space which matches this value of a	 If it �nds such a tuple� let us say �a� c� the value c is
assigned to b	 If a processor performs two consecutive reading operations trying to �nd the same matching
tuple� two distinct tuples result	 If the runtime system cannot �nd a matching tuple the processor that
called the read operation is blocked until some processor places a matching tuple in the tuple space	�

The programming style we use is called SPMD �single program multiple data� which means that every
processor runs exactly the same program� performing operations on its own data space	

��� Data Distribution and Level Components Labeling

The parallel implementation of the watershed algorithm consists of the same three stages as described
in the previous section	 The �rst stage concerns the labeling of the level components	 This stage is
performed by only one processor� let us say processor �� on the entire image	 After labeling this processor
distributes the input image and the labeled image over the processors using the ring network	 Let H
and W respectively be the height and width of the input image	 We assume that H is a multiple of
N 	 If this is not the case the image is augmented with a few extra scanlines	 The value of the pixels of
these extra scanlines is set to hmax in order to avoid that new basins are introduced	 Every processor
is assigned a slice of H�N consecutive scanlines� while consecutive slices are assigned to neighbouring
processors	 Each processor also has one scanline overlap with its neighbouring processors� so that it can
decide whether level components are shared with neighbouring processors	 During the distribution of
the image slices processor � builds up an integer valued table which is indexed by label numbers	 This
table� called shared in the program� denotes the number of processors that have at least one pixel of the
corresponding component in its image slice	 After distribution every processor receives a local copy of
this table	 This table is extensively used in the second stage of the algorithm	

The fact that the labeling is performed by only one processor instead of N processors is just a matter
of implementation	 It is possible to label the image in parallel� however labeling is a fast operation which
is hardly worth the burden of parallelization	

�Full Linda implementations are more general than described here� but this subset of the semantics of the Linda tuple

space suces for our needs�
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Figure �� �a���d� local components graph on processors P�� P�� P� and P�

��� Parallel Watershed Transform of a Graph

After the labeling stage every processor builds a local components graph for its own slice of the image	
Since some level components are shared between several processors the graphs on the processors are not
disjoint	 In Fig	 � the local graphs for the example image are shown	 Shared vertices are drawn as a
rectangular node while non
shared vertices are drawn as circular nodes	 Note that a processor can easily
determine whether a node v is shared� since in that case shared�v� � �	

After building the local components graphs every processor performs an adapted version of the �ooding
algorithm	 One of the problems to be solved is that a new minimum which is shared between two or
more processors must be given the same new label	 This is solved by introducing an integer array owner
which is indexed by label numbers� just like the table shared	 If owner�v� � i for some minimum v then
processor Pi� which has at least one pixel belonging to vertex v in its image slice� assigns a new label to
this minimum� and stores this value in the tuple space	 After putting this tuple in the tuple space every
other processor sharing this vertex can read this newly created label and assign it to its local vertex v	

A similar method is used for expansion of basins	 After performing local �ooding for level h each
processor puts the local colour of every shared vertex� which can be MASK� WSHED or some positive
label� in the tuple space	 After that� every processor retrieves these values from the tuple space and
compares these values	 If all these values are the same positive label number� the corresponding local
copy of the vertex is coloured this label number	 If not� the corresponding vertex is a watershed node	

At the end of the �ooding process each processor transforms its local components graph back into an
image slice� like in the sequential case	 The result is a slice of the watershed transform of the input image	
Since the watersheds in these slices can be thick plateaus we could decide to perform a skeletonization� like
the skeleton by in�uence zones	 This skeleton can be computed using a parallel or a sequential algorithm	
In both cases� if we want to compute the skeleton of some level component v� we only need the pixels of
the component v and its lower neighbours� which are easily accessible from the graph representation	

� Conclusions

In this paper we have shown that it is possible to compute the watershed transform of a grey scale image
in parallel by splitting the computation in three consecutive stages	 In theory all these stages can be
implemented in parallel� but in practice it is only worthy to implement the second stage in parallel	
In the �rst stage of the algorithm the input image is transformed into a directed components graph	 In
the second stage of the algorithm the watershed of this graph is computed by a breadth �rst coloring
algorithm	 The decision which colour to assign to a certain node can be made by examining the colors
assigned to its neighbouring nodes	 This locality property makes it possible to perform this stage in
parallel� in contrast with the classical watershed algorithm	 In the �nal stage of the algorithm the
�ooded graph is transformed back into the image domain	 Pixels belonging to watershed nodes of the
graph are coloured white� while pixels belonging to non
watershed nodes are coloured black	 The resulting
watersheds are �thick�	 �Thin� watersheds can be obtained by performing some skeletonization algorithm



LAB �� 
�� MASK �� 
�� WSHED �� ��
if myproc � � then out �LAB� ��
for h �� hmin to hmax do
begin �� mask all nodes at level h �

forall v � F with f�v � h do
wsh�v� �� MASK�

�� extend basins �
forall v � F with f�v � h do
begin iswshed �� false�

forall w � F with �w� v � E do
if �iswshed
then if wsh�v� � MASK

then wsh�v� �� wsh�w�
else if wsh�w� � �

then if wsh�v� � WSHED
then wsh�v� �� wsh�w�
else if wsh�v� 
� wsh�w�

then begin wsh�v� �� WSHED�
iswshed �� true

end
end�
�� put labels of shared level components in tuple space �
forall v � F with f�v � h  shared�v� � � do

out �v� wsh�v��
�� read tuples from tuple space� determining whether v is watershed node �
forall v � F with f�v � h  shared�v� � � do
begin i �� ��

while i 
� shared�v�  wshed�v� 
� WSHED do
begin read �v� tmp�

if wsh�v� � MASK
then wsh�v� �� tmp
else if tmp 
� MASK  wsh�v� 
� tmp

then wsh�v� �� WSHED�
i �� i� �

end�
end�
�� process newly discovered minima �
forall v � F with wsh�v� � MASK do
if owner�v� � myproc
then begin in �LAB�lab�

wsh�v� �� lab�
lab �� lab � ��
out �LAB�lab

end
else read�v� wsh�v�

end�

Figure �� Each processor performs the above code in the parallel version of the watershed algorithm�



on the output image	 The choice which skeletonization algorithm to use is arbitrary	
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