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Abstract
Digital image processing is the process of manipulating images by computer with the
purpose of improving image quality or extracting useful information. This chapter collects
basic concepts and terminology necessary to understand the fundamentals of thefield. Topics
discussed are: classification of operations in image processing, digitisation, linear filtering,
enhancement, restoration, mathematical morphology, segmentation, representation, descrip-
tion and measurement.

1 Introduction

Digital image processing is the process of manipulating images by computer with the purpose
of extracting useful information about the objects which appear in the image, and is a multidis-
ciplinary field involving elements of optics, electronics, mathematics and computer engineering.
As such, it suffers from an extensive but often rather imprecise jargon. It is the purpose of this
chapter to collect anumber of basic conceptsin order to introduce the reader to the fundamentals
of digital image processing, so that it may be useful for later reference. It should be realized
that a certain amount of mathematical machinery is unavoidable in thisfield. The mathematical
level of the exposition in this chapter confirms to that in the average textbook on digital image
processing: elementary linear algebra (matrix calculus) and analysis, i.e.,, mainly convolution
and Fourier transforms. An exception is Section 6, where a knowledge of basic set theory is
assumed.

Because of itsintroductory nature, this chapter will treat many aspects only in avery global
way. Also, recent developments such as processing of three-dimensional images, parallel im-
age processing, specia purpose hardware or high resolution display systems will not be dis-
cussed. The same holds for new methodologies such as wavelet transforms for image compres-
sion or colour image processing. The reader isreferred to Castleman (1996), Gonzalez & Woods

*In: Digital Image Analysis of Microbes: Imaging, Morphometry, Fluorometry and Motility Techniques and Ap-
plications, M.H.F. Wilkinson and F. Schut (eds.), Modern Microbiological Methods (M. Goodfellow series editor),
John Wiley and Sons Ltd, 1998. Postscript version obtainable at http://www.cs.rug.nl/~roe/
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(1992), Rosenfeld & Kak (1982), Haralick & Shapiro (1992) or Jain (1989) for a more complete
treatment of the fundamentals of digital image processing.

The organisation of this chapter is as follows. In Section 2 a globa sketch of the basic
concepts and terminology is given. Section 3 introduces the basics of linear filtering, with its as-
sociated concepts of convolution and point spread function. Section 4 gives examples of image
enhancement by point operations (e.g., contrast stretching) or spatial filtering (smoothing, sharp-
ening, etc.). Image restoration, that is, the process of undoing degradations of the image which
occurred during image acquisition (blurring, noise) is presented in Section 5. Nonlinear image
filtering is described in Section 6 where a concise introduction to mathematical morphology is
presented. The following sections describe a number of specific image processing tasks, such as
segmentation (Section 7) and description or feature extraction (Section 8).

2 Basic concepts

In its most simple form, a digital image processing system contains an input device, or image
sensor, to acquire the image, a computer upon which to process the image, and an output device,
cf. Fig. 1. For input device one may take a camera or an image digitiser. Output may go to a
computer display or to hardcopy devices such as printers or plotters. Other components involve
communication and image storage. Here we are mostly concerned with the computer processing

aspects.

2.1 Digitisation

Animageisaspatial representation of an object or atwo- or three-dimensional scene. Usually
the image is represented as a function (z,y) — f(z,y), where the domain of (z,y)-valuesisa
discrete grid of small rectangular regions called picture elements or pixels. The values f(z, y)
are called grey levels:. if n bits per pixel are available, the number of possible grey levelsis 2".
Very common are 8-bit images, for which grey levels range from 0 to 255.

The process of converting the values of the continuous luminance distribution reaching the
image sensor to a numerical form readable by a computer is called digitisation or analog-to-
digital conversion. Thisinvolves a sampling of the image brightness at each pixel location and
a quantisation of the value within the allowed grey level range. A simple approach is to use
uniform spatial sampling and equally spaced grey levels. More advanced techniques use adaptive
or nonuniform sampling and quantisation.

2.2 Digital imaging

Many different areas involve the formation and manipulation of images by computer, such as
image processing, image analysis and computer graphics, see Table 1. Image processing is
concerned with transforming images: input of the processing is an image, output is again an
image. In image analysis we want to obtain quantitative data from the images, such as the
number of cellsin a microscopic image, diameter of blood vesselsin a cardiac scan, etc; in this

2



Communication

Acquisition Display

o 0 L

TV monitor

A

Camera Printer

)
Processing

[~

—1

AL /Y7

Storage

¢ b

Optical disks ~ Videotape

Magnetic tape

Figure 1. Adigital image processing system.




case, input consists of one or more images, whereas the output contains numeric or symbolic
data. Finally, in computer graphicsthe goal isimage synthesis. starting from data derived from
amathematical description of objects, images are constructed on a computer display.

2.3 Classification of image operations

Assuming now that adigitised imageis available in computer memory, various operations can be
performed on the image, depending on the application. These operations can be classified with
respect to their mathematical properties, or with respect to the goal of the operation (or set of
operations).

A first classification considers the correspondence between the pixels of input and output
images.

e Point operation: the grey level at each pixel of the output image f,.; depends only on the
grey level of the corresponding pixel in the input image f;,,:

fout(l‘a y) =0 (fln(xa y)) )
where O denotes the image operation. Examples are contrast stretching or histogram
egualisation, see Section 4.1.

Also in this category belong algebraic operations, where the output image is formed by
pointwise addition, subtraction, multiplication or division of two input images. An exam-
ple is subtraction of two images for shading correction.

e Local operation: thegrey level at each pixel (x, y) of the output image depends on the grey
levels of pixels which are contained in a small neighbourhood B(z, y) of the pixel (z,y)
in the input image:

four(x,y) = O ({ fin(@',y') = (¢, y) € Bz, y)}) -
See Section 4.2 for examples.

e Global operation: the grey level at each pixel of the output image depends on the grey
levels of all pixelsin the input image. An example of such an operation is a (discrete)
Fourier transform of the input image (cf. Section 3).

e Geometric operation: thisinvolves a spatial transformation of the image such as scaling,
tranglation, rotation or perspective projection (e.g., used for distortion correction).

2.4 Connectivity

The above spatial relationships between pixels were expressed by using the concept of neigh-
bourhood of apixel. Although the notion of neighbourhood isintuitively obvious, amore precise
formulation is needed for the case of digital images which are defined on discrete grids. In this
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Table 1. Subfields in digital imaging.

Image OUT Data OUT

Image IN | image processing image analysis

DatalN | computer graphics dataanaysis

o [ ] [ ]
o X o [ ]
o [ ] [ ]

Figure 2: Pixels o that are 4-connected (l€ft) or 8-connected (right) to the centre pixel x.

context the notion of connectivity is essential. When, on arectangular pixel grid, only the pixels
to the north, south, east and west of a pixel are considered as the neighbours of this pixel, we
speak of 4-connectivity. When in addition the diagonal pixels are considered as neighbours, one
speaks of 8-connectivity. We aso say that the neighbours of a pixel are adjacent to that pixel.
Thisisillustrated in Fig. 2.

A set M of pixelsis called connected if and only if for every pair of pixelsp,q € M there
exists a path between p and ¢ which only passes through pixels of M, where a path only moves
between neighbouring pixels. A connected component is a nonempty connected set of pixels of
maximal size. Note that the result of applying this definition depends on the type of neighbour
relation used (4-connectivity or 8-connectivity). For binary images, where pixels have value 1
or 0, connected components can be defined both for foreground (1-pixels) and background (O-
pixels). The border of a connected component C' of 1-pixels is the set of pixels of C' which
are a neighbour of 0-pixels. We can aso introduce (4- or 8) connectivity for the O-pixels, and
define the connected components of these pixelstoo. To distinguish both component types, let
us speak about O-components and 1-components. However, one has to be careful in the choice
of connectivity for both types of pixels. It can be shown that if C' is a4-connected 1-component
and D is an adjacent 8-connected O-component, then either C' surrounds D or D surrounds
C' (Rosenfeld 1970). This remains the case when we use 4-connectivity for the 0-pixels and
8-connectivity for the 1-pixels, but not when we use 4-connectivity (or 8-connectivity) for both
0- and 1-pixels.

Extraction of connected componentsis a step often used in segmentation or description, see
Section 8. Efficient algorithmsto perform this task based on some form of label propagation are
known, for example the two-pass agorithm (Rosenfeld & Kak 1982).

5



intermediate-level processing

image
acquisition

| ] representation
.- segmentation | > &

: description
fffffffffffffffffff ‘ A ——
|
1
| | preprocessing
|
| &

! interpretation result
|
|
|
|
|
|
|

I

i

T

I

I I .
””””””””””” [ e recognition

I

I

I

I

I

I

I

I

I

I

I

I

I

,,,,,,,,,,,,,,,,,,,

low-level processing high-level processing

Figure 3: Phasesin digital image processing.

2.5 Methodology
In digital image processing one may distinguish the following three levels.

e low level: the first step after image acquisition is preprocessing to obtain elementary or
atomic features (representation in terms of iconic data)

e intermediate level: grouping of atomic features (segmentation, description, feature ex-
traction)

e high level: recognition and interpretation of objects (representation in terms of symbolic
data).

Let us expand a little bit upon the individual steps involved in a digital image processing
system; cf. Fig. 3.

1. image formation: thisisthefirst step, and avital one. The quality of further processing de-
pendsin acrucial way upon the quality of the sensor, illumination conditions, digitisation,
etc.

2. preprocessing: the assumptionisthat the image containsan informative part and variations
which one wants to suppress. The preprocessing step, also called ‘ conditioning’, encom-
passes enhancement, image restoration, noise suppression, background normalisation, etc.

3. segmentation: the assumption is that the image has a spatial structure. A first step is
labelling where we try to organise the pixels into sets of correlated points. Examples

6



are thresholding, edge detection, corner detection. Next comes grouping: for example,
connected component detection, segmentation on the basis of grey values, linking edges
into borders. Note that there is a change of logical data structure here: from pixels into
pixel sets.

4. description: in this step, also called feature extraction, pixel sets are grouped into lists of
properties: area, centre of gravity, number of holes, curvature, relation to other groups.

5. interpretation: find the meaning of the extracted properties in terms of real world proper-
ties. Examples are: template matching; statistical pattern recognition (matching vectors of
image properties to vectors of object properties); structural pattern recognition (matching
vectors together with relations between them).

In the rest of this chapter we give a more precise definition and description of the different
phases of image processing outlined above.

3 Linear filtering

Many of the operations commonly used for image enhancement involve the application of linear
filters. There is a well-developed mathematical discipline underlying this, caled linear system
theory, which is an essential ingredient of linear signal and image processing. In this section we
give the fundamentals of this theory, including a discussion of sampling, convolution, Fourier
transforms, and filter design. For smplicity we first discuss one-dimensional signals, which are
functions f(¢) of asingle parameter, where ¢ denotesthetime. Thisiseasily extended to images,
which are — in the two-dimensional case — signals f(x, y) of two spatial variables.

3.1 Linear shift-invariant systems

Two basic assumptions are made about the system which transforms signals to signals (or, for
that matter, images to images). The first one is additivity: operating on the sum of two input
signals gives the same result as operating on the two input signals separately and adding the
results. A similar property holds with respect to scaling the intensity of the signal: first scaling
and then operating on the signal givesthe sameresult asfirst performing the signal operation and
then scaling the result. A second basic assumption concerns time shifts: it makes no difference
whether the system operates on atime-shifted signal, or on the original signal followed by atime
shift. (In the case of 2D images there are two shift parameters, one for the horizontal and one
for the vertical direction.) The usefulness of introducing systems with these two basic properties
comes from the fact that such systems form a good approximation to many optical systems used
in practice.

This leads to the following precise definition. A linear shift-invariant (LSI) system O maps
aninput signal f(t¢) to an output signal ¢(t¢), denoted as f () 2 g(t), such that the following two
conditions hold:



e Linearity: if f,(t) 2 (t) and f(t) 2 g2(t), then, for arbitrary constants a, b,
a fi(t) + b fo(t) Sagi(t) +bga(t)
e Shiftinvariance: if ()3 g(¢), then for each time shift T,

fit—1T)%g(t —1T)

3.1.1 Signals

The output of a LS| system is given by the convolution of the input with akernel k() which is
characteristic for that system:

o(6) = (ks )0 = [ k=) (5)ds @
If the input is an impulse, i.e., a delta function at time 0, then the output is precisely k(¢).
Therefore thefilter kernel k(t) is usually called the impul se response function.

The 1D Fourier transform LS| systems can be conveniently described by using Fourier trans-
forms. The Fourier transform of afunction f(t), denoted by F'(u), is defined by

F = [ o) dy @

oo

For discrete and finite data the Fourier transform (2) is replaced by the forward discrete Fourier
transform (DFT), which transformsasignal represented by the vector (f(0), f(1),..., f(N—1))
into atransformed vector (F(0), F'(1),...,F(N — 1)) by

N-1
1 .
F(u):—_g f(x) e 2muz/N u=0,1,... , N—1
N:I::O

The original signal can be recovered from its discrete Fourier transform by the inverse discrete
Fourier transform (IDFT):
1 N-1
flz) = — F(u) e2mue/N, xr=0,1,... ,N—1
VR 2
The DFT can be implemented efficiently by the Fast Fourier Transform (FFT) agorithm.
Introducing the Fourier transforms F, G and K of f, g and k, we can write the convolution
formula (1) in the form:
G(u) = K(u) F(u).
So in the Fourier domain, convolution becomes multiplication, which is the basis of computer
implementation using the FFT: first compute the DFT of £ and f, then perform the multiplication
of the Fourier transforms K and F', and finally compute the inverse DFT of G to obtain g. The
function K (u), which is the Fourier transform of the impulse response function, is called the
transfer function of the linear system.



3.1.2 Images

In the 2D case, the convolution takes the form
9(0,9) = (k* f)(x,y) = / / ko — o'y — ) F(o ) de' dyf 3

Now k(z,y) is often referred to as the point spread function. In the case of digital images, the
convolution integral (3) becomes a summation:

M-

2

-1

kx—m,y—n)f(m,n), (4)

3
Il
o

m=0

forz =0,1,..., M -1,y = 0,1,... ,N — 1. Examples of discrete convolution for image
filtering are givenin Section 4.2.

The 2D Fourier transform  For the case of images we use atwo-dimensional DFT:

1 M—-1 N-—1
F(u,v) = f(x,y) e 2rlua/MAvy/N =) — 0 1,... ,M—1;0=0,1,... ,N -1
MN z=0 y=0
with inverse
M—-1 N-—1
f(z, F(u,v)em@e/Mzvy/N 0 — 01, M —1;y=0,1,... N—1
z=0 y=0

Introducing the 2D Fourier transforms F, G and K of f, g and k, we can again write the convo-
[ution formula (4) in the form of a product:

G(u,v) = K(u,v) F(u,v).

3.2 Filter design

Linear filters are commonly classified with respect to their frequency domain characteristics.
Lowpass filters suppress high frequencies, and can therefore be used to suppress noise. The
simplest case is the box filter k, for which K (u) = 1 for - W < u < W. Here W is the cutoff
frequency. Bandpass or bandstop filters pass or suppress energy, respectively, if the frequency u
iswithin a given window of size 2A. Highpass filters suppress low frequencies. Thisis useful
for edge detection, for example (see Section 4.2.2). An example is the difference-of-Gaussians
(DOG) filter, whose transfer function is given by

K(u)=Ae /2 —Be />3 A>B,a; > 0,



K(u) K (u) K(u)
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Figure 4: Ideal transfer functions. (a): lowpass. (b): bandpass. (c): bandstop.

3.3 Sampling

Suppose the Fourier transform of asignal f is only nonzero in the interval [TV, W]. Such a
signal is called bandlimited, and W is called the bandwidth. The famous sampling theorem of
Shannon says that bandlimited signals can be represented by a sampling series:

fz) =) f(nA) sincy(z — nA), (5)

wherethesinc-functionisdefined by sincy, (z) = sin(20Wz)/(2rWx) for z # 0,and sincy (0) =
1. Here A := 1/(2W) isthe sampling interval and f; := 1/A the corresponding sampling fre-
quency. The Fourier transform of the sinc-functionisthebox function (seeFig. 5): (sincy, ) (u) =
A for |u| < W and zero elsewhere. Formula (5) says that f is completely determined by its
values at equidistant points 0, +A, - - -. Note that a function with bandwidth 17 is certainly ban-
diimited on [-W', W' with W' > T¥. So we can always use asmaller samplingstep A’ < Ain
(5). The minimal sampling frequency required is f,: thisis called the Nyquist frequency. Note
that the minimal frequency f, = 2W istwice the maximum frequency W contained in the signal
f.

If one undersamples the signal by using a sampling frequency lower than the Nyquist fre-
guency, distortions in the sampled signal appear; thisis caled aliasing. In the case of images
visible artifacts appear which are called Moiré patterns. Unfortunately, real signals or imagesare
defined on a bounded domain which implies that they cannot be strictly bandlimited. However,
by ajudicious choice of digitising parameters the so-called aliasing error can be reduced to an
acceptable level.

4 I mage enhancement

Image enhancement is the process of improving image quality so that the result is more suitable
for a specific application. Examples are point operations such as contrast stretching, or spatial
filtering for edge enhancement, noise suppression, smoothing and sharpening.
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Figure 5: Sinc function and its Fourier transformfor W = 1/2.

4.1 Point operations

Point operations are often used to improve the visual appearance of an image. As defined in
Section 2, a point operation is distinguished by the fact that the value at each pixel of the output
image depends only on the value of the corresponding pixel in the input image:

fout(xa y) =0 (f’m(xa y)) )

where O denotesthe grey scale transformation (GST) function. This can be alinear or nonlinear
function. We give two examples.

4.1.1 Contrast stretching

If the features of interest occupy only a small range of the available grey levels, one may use a
point operation so that the output image spans a larger range. Thisis called contrast stretching.
For example, let the input image f;, have minimum and maximum grey level m and M (M >
m > 0), respectively. Then the following operation stretches the image to full grey level range
[0..255]:

255
M—-—m

fout(l‘ay) = (fm(xay) _m)'

See Fig. 6(b) for an example.

4.1.2 Histogram equalisation

The histogram /(m) of adigital image f is the number of times the grey value m occursin the
image. Now suppose we want to apply a point operation to the image f which produces a flat
histogram in the output, i.e., on the average an equal number of pixels at each grey level. So if
the image has IV pixels and grey level range [0..M], the output image will have M /N pixels at
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Figure 6: (a): input image. (b): contrast stretch of (a). (c): histogram equalisation of (a).

each grey leve, cf. Fig. 6(c). It can be shown that the grey scal e transformation which achieves
this histogram equalisation isgivenby O(f(z,y)) = M P(f(z,y)), where

is the normalised cumulative histogram function.

4.2 Spatial filtering
4.2.1 Smoothing filters

To suppress noise one may use lowpassfiltering by local averaging within asmall neighbourhood
or mask surrounding each pixel. This can be implemented by convolution filtering, cf. Section 3.
For example, take as the mask a3 x 3 neighbourhood, with k(m,n) = 1/9 for |m| < 1,|n| <1
in (4); thisis called uniformfiltering, see Fig. 7(b). This may be extended to more genera filter
kernels, such as a Gaussian function.

To obtain noise reduction without blurring of the edges, one may use rank-order (or per-
centile) filters based upon ranking the pixel values within the mask surrounding the centre pixel,
cf. Fig. 7(c). An exampleis median filtering: sort the set of pixel values and assign the median
(the value m such that half the values in the set are less than m and half are greater than m)
to the centre pixel. This class of filtersis nonlinear and therefore more difficult to analyse than
linear filters based on convolution. More examples of such nonlinear filters are provided by the
morphological filters, see Section 6.

4.2.2 Sharpeningfilters

The goal of sharpening isto enhance fine details such as edges in an image that has been blurred
during image acquisition. This can be performed by using highpass filters based upon spatial

12
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Figure 8: Laplacian convolution kernels.

differentiation. Some of the most well-known examples are the following, cf. Fig. 11.

L aplace operator A digital implementation of Laplacian filtering uses the discrete convo-
lution kernels shown in Fig. 8.

Roberts operator When f(z,y) is the input image, this operator produces an output
9(z,y) given by

N

g(l‘ay): {(f(rﬂ,y)—f(I+1,y+1))2+(f(I+1,y)—f(I,y+1))2}

Sobel operator Each point of the input image is convolved with two kernels, shown in
Fig. 9, one for detecting horizontal edges and the other for vertical edges. The output of
the operator isthe maximum of the two convolutions; one may also take the square root of
the sum of the squares.

Prewitt operator This works in exactly the same way as the Sobel filter, except for the
convolution kernels, which are now as shownin Fig. 10.
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Figure 10: Kernels for the Prewitt operator.

4.3 Frequency domain filtering

Enhancement can also be performed in the frequency domain: compute the Fourier transform
of the input image, multiply the result by afilter transfer function, and take the inverse Fourier
transform. For example, to suppress noise one may use lowpassfiltering (cf. Section 3.2) which
attenuates the high-frequency components. On the other hand, edge sharpening is obtained by
highpass filtering.

5 Imagerestoration

By image restoration we denote the process of removing or reducing image degradations which
occur during image formation. Important degrading factors are: (i) blurring produced by the
optical system or object motion during acquisition, and (ii) noise from electronic and optical
devices.

5.1 Linear degradation model

A simple model assumeslinear degradation of theideal image f(«, ) described by aconvolution
kernel k(z,y) and additive noise n(z, y), resulting in the degraded image w(zx, y):

w(z,y) = (k= f)(z,y) +n(z,y). (6)
Restoration now has to undo the degradation due to convolution and noise.

14
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Figure 11: Effect of sharpening filters. (a): Original. (b): Laplace filter. (c): Roberts filter. (d): Sobel
filter.

f(x, w(x,y) (x.y)
()ﬂ» k(X,Y) —»@—— r(x,y) —-

Figure 12: Linear image restoration model.

5.2 Linear restoration model

Using alinear model for restoration as well (for this reason, one often speaks of deconvolution),
we compute an estimate f(x, y) of theideal image by using a convolution kernel r(z, y):

f(z,y) = (rxw)(z,y)

The complete process of degradation and restoration is graphically represented in Fig. 12. A
simplified restoration problem results if we consider images of finite size, say N x N. In that
case we can work with matrix-vector calculus (Andrews & Hunt 1977). The restoration problem
(6) then hasthe form

w=Kf+n 7

wherew, f, n are column vectorsof length V2, and K isan N? x N2 matrix representing the con-
volution. To give an example, for an image of size 512 x 512 the matrix K contains over 60, 000
million entries, but in practiceit is sparse, i.e., many entries are zero. For shift-invariant systems,
the matrix K has a periodic structure which can be exploited to achieve efficient computation
using the Fast Fourier Transform, cf. Section 3.

15



5.3 Constrained least squaresrestoration

A number of well-known restoration filtersis captured by considering the following constrained
least squares restoration model. First, the estimated solution vector f should satisfy (7); this
givesthe constraint that the norms of w — Kf and n are equal:

HW—K?HZ — |[n|f? )

Second, one may subject the solution f to additional constraints; this can be realized by intro-
ducing amatrix Q such that the term

2

|af ©
isminimised. To take both contributions into account, we want to minimise
- ~112 1 ~112 9
e = Q|+ (|| - ) (10)

where « is a constant which determines the rel ative weight of the terms (8) and (9). The solution
of (10) is:

f= (K'K++7Q'Q) " K'w (11)

where the superscript ‘t' denotes transposition of vectors or matrices. Specia cases are the
following:

Pseudoinver se filter _
Take Q = I, theidentity matrix. Thus we minimise the norm of f subject to the constraint
(8). The solution (11) then reduces to:

f— (K'K + 71)_1 K'w
An dternative formulation of this result makes use of the discrete Fourier transforms

K(u,v), W(u,v), F(u,v) of k(z,y), w(z,y), f(z,y) in (6). The estimate F'(u,v) of
F(u, v) according to the pseudoinverse filter has the form:

Flu,v) = (K@ o) +9) " K*(u,0) W(u, v), (12)
with K*(u, v) the complex conjugate of K (u,v).

Inversefilter
For v = 0 the formulafor the pseudoinverse filter reduces to the ‘inverse’ filter:

f=(K'K)"'K'w=K'w
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Figure 13: Effect of restoration filters. (a): Original. (b): Degraded image. (c): Inverse filtering. (d):
Pseudoinverse filtering (v = 0.01).
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or, in terms of Fourier transforms,

(13)

where N (u, v) isthe Fourier transform of the noiseterm n(z, y) in (6). In practice, inverse
filtering is often useless, the reason being that the matrix K may be (almost) singular.
Equivalently, this means that the Fourier transform K (u, v) has values which are zero or
very small at certain points (u, v) in the frequency plane, leading to amplification of the
noiseterm in (13). An exampleis given below.

Parametric Wiener filter

Assume f and n to be random vectors with zero mean and covariance matrices Ry =
E(f f*) for thesigna and R,, = E(nn") for the noise. Let Q be the noise-to-signal ratio:

R, :
Q= (E)

f=(K'K+7R;'R,)” K'w

Then the solution (11) reads

For shift-invariant blur and stationary signal and noise, thisfilter is the parametric Wiener
filter, which for v = 1 reduces to the ordinary Wiener filter.

As an example, we present in Fig. 13 the results of applying inverse and pseudoinverse
filters to an image degraded by uniform blurring and Gaussian noise. As can be seen, the
inversefilter is useless, because of noise amplification. The pseudoinverse filter, however,
leads to satisfactory results.

6 Mathematical morphology

Mathematical morphology was developed at the Paris School of Mines as a set-theoretical ap-
proach to image analysis (Matheron 1967, Serra 1982). For afirst introduction, see e.g. Giardina
& Dougherty (1988), Haralick, Sternberg & Zhuang (1987) or Serra & Vincent (1992). The
method works by trandating small subsets B, called structuring elements, of various forms and
sizes over the image plane and recording the locations where certain rel ations between the image
and the trandlated structuring element are satisfied. This can be compared to the neighbourhood
operations of linear filtering (cf. Section 4.2), the main difference being that the operations are
now nonlinear. Morphological operations are usually performed in a sequence, which is chosen
in such away that the end result isin a form suitable for quantitative measurements. First we
will look at some of the basic transforms for the case of binary images. Then the case of grey
value images will be considered.
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6.1 Morphology for binary images

Binary images have only two values, say, zero or one (black and white). This means that we can
describe such images in terms of sets in the plane: all white pixels form a set X, and all black
pixels the complement of X in the plane. The theory of mathematical morphology not only
works for discrete images, but for continuous ones as well, with a unified formulation. In the
continuous case one considers images as subsets of the Euclidean space £ = R?, in the discrete
case as subsets of the discrete grid £ = Z2.

We add a brief reminder about sets and the basic set operations. A set X with elements
x1, T2, 3,... iISdenoted by X = {1, x9,23,...}. Theexpressionz € X meansthat z isan
element of X. The set Y consisting of those elements of X satisfying some condition C, is
writtenY = {xz € X : C'}. For example, if X = {—2,—1,0, 1, 2}, the elements of X which are
positive can be selected asfollows: Y = {z € X : z > 0} = {1, 2}.

If X and Y are subsetsof acertain universal set F (say, the plane), the union X UY contains
all elements which occur in X or in Y (possibly in both), the intersection X N'Y contains all
elements which occur both in X and Y, the set difference X'\ contains those elements of X
which are not an element of Y, and the complement X ¢ contains all elements of £ which are not
inX,ie, X‘=F\X.

6.1.1 Dilation and erosion

Let A be aset inthe plane (the structuring element). We write = + y for the vector sum of x and
y, and —z for the reflected vector of = w.r.t. the origin. If we trandlate (i.e. shift) A along the
vector h, we writetheresult as A4, so

Ap={a+h:a€ A}
Also, if we reflect all points of aset A, we get the reflected set /vl e
A= {—a:a€ A}
Now we can define the following elementary algebraic operations between two sets X and A:

Minkowski addition: X @A={z+a:2€ X,a€ A} = UXa = U A,
acA zeX
Minkowski subtraction : X © A = ﬂ X_,

a€EA

When the set A isfixed, themapping X — d4(X) = X @ A iscalled thedilation with structuring
element A, and the mapping X — ¢4(X) = X © A iscalled the erosion with structuring element
A. There isa simple geometrical interpretation of these operations, expressed by the following
formulas:

Dilation : X@A:{xEE:(/vl)xﬂX;é@}
Erosion: XoA={reFE:A, CX}.
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?

Figure 14: Left: binary image X. Middle: structuring element A. Right: dilation of X by A.

?

Figure 15: Left: binary image X . Middle: structuring element A. Right: erosion of X by A.

In words, thedilation of X by A isthe collection of points A such that A after trandlation over the
vector h ‘hits’ the set X. Similarly, the erosion of X by A isthe collection of points / such that
after shifting A over the vector A it ‘fits' into X. For the discrete case, an examplefor the dilation
isgivenin Fig. 14, and for the erosion in Fig. 15. Pixelswith value 1 (1-pixels) are represented
by dots, pixels with value 0 by blanks, and the position of the origin in the structuring element
isindicated by the symbol — (reflecting the fact that we use a row-column oriented coordinate
system). Dilation and erosion are ‘trandation-invariant’: if the origin of X is shifted over a
vector h, followed by a dilation or erosion, the result is the same asfirst dilating or eroding the
set, followed by translation. For example:

XhEBA:(X@A)h

There exists aduality relation with respect to set-complementation (X ¢ denotes the complement
of the set X):

XPA= (X"’efvl)c,
i.e. dilating an image by A gives the same result as eroding the background by fvl followed by
taking the complement.
6.1.2 The hit-or-misstransform

The hit-or-miss transform of an image X by a composite structuring element (A', A%) is the
collection of points & such that the shifted set A; fits into X and the shifted set A7 has no
overlap with X. Expressed in aformula:

X@(A',A?)={heE: A, CX, A2 CX}
= (Xo AN (X o 4%
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Figure 16: Upper left: structuring element A'. Upper right: structuring element A42. Lower left: binary
set X. Lower right: hit-or-miss transform of X.

Thisisaform of ‘template matching’. This transformation can be used to detect specia points
inanimage. An exampleisgivenin Fig. 16, which shows an application where north-east pixels
are detected.

The erosion, or the hit-or-miss transform, can also be used to compute the genus or the
number of regionsin a binary image (Haralick & Shapiro 1992), see also Section 8.2.2.

6.1.3 Openingsand closings

The opening and closing by a structuring element A are obtained by an erosion followed by a
dilation, and conversely.

Opening : XoA:=(XoA)aA (14)
Closing : XeA=(XpA)oA (15)

It can be shown that the opening is the union of all shifted copies of the structuring element A
which are included in the set X. An opening smooths contours, cuts narrow bridges, removes
small islands and sharp corners; a closing fills narrow channels and small holes. For the discrete
case, an example is given in Fig. 17. It is easy to see that opening and closing are trandation-
invariant, just as dilation and erosion. A trandation of the structuring element A, however, does
not affect the outcome.

6.1.4 Thinnings and thickenings

Also much used are the thinning and thickening of aset X by B = (B', B?), where B' and B?
should be digoint:

Thinning : XoB=X\(X®B)=Xn(X®&B)°
Thickening : XeoB=XU(X@®B)
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Figure 17: Upper l€ft: binary image X. Upper right: structuring element A. Lower left: opening of X
by A. Lower right: closing of X by A.

6.1.5 Distancetransforms

On the discrete grid we use a digital distance function, which depends on the type of connec-
tivity: if 4-connectivity is used, each of the 4 neighboursis by definition at distance 1 from the
centre pixel. Thisis called the city-block distance. We note that other digital metrics have been
considered involving so-called chamfer distances, which very well approximate the Euclidean
distance (Borgefors 1984).

Paths on the grid are formed by stepsin the horizontal and vertical directions (each of length
1). The length of a path is the sum of the lengths of the individual steps. The distance d(z, y)
between two points = and y on the grid is then the minimum of the lengths of al allowed paths
from z to y on the grid. We also define the distance d(x, A) between apoint 2 and aset A asthe
minimum of the distances between x and points of A.

Let A be adiscrete binary image. The distance transformof A isthe grey value function D :
E — N which associates to point z the distance of = to the complement of A: D(z) = d(x, A°).
Notice that D(z) = 0 for points z € A°. The distance transform can be computed by a 2-
pass procedure (Rosenfeld & Pfaltz 1968), consisting of a forward scan (top-down, |eft-to-right)
which takes only stepsto the left or upwardsinto account, followed by areverse scan (bottom-up,
right-to-left) which considers steps to the right and downwards. An exampleisshownin Fig. 18.

6.1.6 Skeletonisation

For purposes of shape description and efficient coding it is desirable to extract features from
binary images which represent only the ‘backbone' or skeleton of the set. Roughly spoken these
are connected lines within the binary image which are in the middle of the set and ‘as thin as
possible’.

For a binary image A one can define the so-called SKIZ (‘skeleton by influence zones'),
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Figure 18: Left: digital image I. Middle: forward scan output image .J. Right: city-block distance
transform of I produced by reverse scan of J.

which is a skeleton of the background. Let

N
A=Jac,
n=1
with C4, .. ., Cy the connected components of A (cf. Section 2.4). The zone of influence Z,, of

C,, isthe set of points closer to C), than to any other component:
Zp ={z:d(z,C,) < d(z,Cy,),m # n}.

The points that do not belong to any Z,, (points that are equidistant to at least two components)
form the SKI1Z S, of A:

See Fig. 19 for an example.

6.2 Morphology for grey value images

Morphological operations for grey value images can be defined in analogy with the binary case.
Thebasicideaisto consider agrey valueimage as alandscape in three-dimensional space, where
the vertical dimension denotes grey value. We can define morphological transformations acting
on theimage f by introducing the concept of umbrae (‘ shadows') (Sternberg 1986). For a given
grey valueimage f, the umbraof f isthe set U( f) consisting of al points below the graph of f
(when oneimagines alight source above the landscape, the umbrais made up of all points‘in the
shadow’). Now one may apply a binary morphological operation to the set U( f), which yields
atransformed set. To this set one can again associate a grey value image by looking at the top
surface of the transformed set. More details can be found in Serra (1988) or Haralick & Shapiro
(1992). For a mathematical treatment, see e.g. Heijmans (1994). Here we confine ourselvesto a
presentation of some of the most important morphological operationsfor grey value images.

23



@ (b)

Figure 19: Skeletonisation. (a): Binary image. (b): SKIZ of (a).

6.2.1 Grey valuedilation and erosion

Let f and k£ be two grey value images with domain F' and K, respectively. The grey value
dilation f @ k and the grey value erosion f & k of f by k are the functions defined by

(f@k)(z) = max [f(z—y)+k(y)],

yeK,x—yeF

(fOk)(z)= min_[f(z+y)—k(y)]

yeK,z+yckF
Thatis, f @ k equalsthe maximum of f(x — y) + k(y) when y runsover the set K, and similarly
for f © k.
A special case occurs for so-called flat structuring functions, which have a constant value of
zero on adomain K. Then we get the flat grey value dilation and erosion, which simply replace

each pixel by the maximum or minimum in a neighbourhood defined by a structuring element
K:

(fo K)(x) = max [f(z—y)],

(FOE)@) = min [fz+y)]

yEK ,z+yeF

For this reason these operations are called minimum and maximum filters.

6.2.2 Grey value opening and closing

By taking products of the grey value dilation and erosion we can construct grey value openings
and closings just as in the binary case. For flat structuring functions with domain K, the grey
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Figure 20: Left: a grey value image. Right (reduced by factor of 2): upper left: grey value dilation;
upper right: grey value erosion; lower left: grey value opening; lower right: grey value closing.

value opening f o K and the grey value closing f e K are defined by

(f o k)(x) =max min f(x — 2 +y)

(f & k)(x) =min max f(z + 2z —y)

The grey value opening and closing filters are also called min-max and max-min filters, respec-
tively. The opening eliminates peaks, the closing valleys. Figure 20 shows the result of the grey
value dilation, erosion, opening and closing for a grey value image. If we apply the grey value
opening with a flat structuring element to an image f and subtract the result from f, we get
Meyer’'s top-hat transform (Serra 1982). This transform extracts the peaks from a grey value
image.

7 Image segmentation

The process of isolating the important objectsin the image from the background is called image
segmentation (Haralick & Shapiro 1985). More precisealy, image segmentation can be defined as
the process of partitioning an image into digoint regions. Each region should be uniform and
homogeneouswith respect to some property, such asgrey value or texture, and differ significantly
from neighbouring regions.

The following subdivision of image segmentation methods can be made:

e Region based approach: assign pixelsto regions or objects

e Boundary based approach: locate boundaries between regions

e Edge based approach: identify edge pixels and link them to form boundaries
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Figure 21: Choice of the threshold ¢ for a bimodal histogram.

7.1 Region based approaches
7.1.1 Thresholding

Let f(x,y) beagrey vaueimage. Let ¢ be afixed grey value called the ‘threshold’. Then we
define a binary image f; by thresholding as follows:

filz,y) = 1if f(z,y) > t
filz,y) = 0if f(z,y) <t

In this method, pixels above a certain value ¢ — the ‘threshold” — are declared to be ‘object’,
those below the threshold ‘ background’. Thiswill work fine when grey levels of both objectsand
background are relatively uniform, but distinct. When the background grey level is not constant
one may use athreshold which varies over the image: thisis called adaptive thresholding.

An important problem is to determine the threshold automatically. This can be done by
considering the histogram of the grey values of the image (cf. Section 4.1.2). If the histogram is
bimodal, i.e has two peaks, an obvious choice for the threshold is a value at the local minimum
in the valley between the two maxima, see Fig. 21. When the histogram does not have a nice
bimodal shape, one may determine a global threshold statistically, by minimising within group
variance (Haralick & Shapiro 1992). This means splitting the set of grey valuesinto two digoint
subsets 1, and V5 in such away that the weighted sum of the variances of the groups V; and V5
(which are measures of homogeneity) is minimal.

7.1.2 Watershed segmentation

The standard approach to image segmentation in morphological image processing (cf. Section 6)
is by the watershed transform originally proposed by Lantugoul (Serra 1982, Vincent & Soille
1990, Beucher & Meyer 1993). The intuitive idea underlying this method is that of flooding a
landscape or topographic relief with water, by piercing holes at the positions of local minima
and immersing the landscape into alake. Basins will fill up with water starting at local minima,
and at points where water coming from different basins would meet, dams are built. When the
water level has reached the highest peak in the landscape, the process is stopped. The set of
dams thus obtained partitions the region into ‘ catchment basins' separated by dams. These dams
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(more precisely, their projections on the horizontal plane) are called watershed lines or simply
water sheds.

A recursive algorithm for computing the watershed transform was given by Vincent & Soille
(1990). The basic structure of the algorithm is a loop in which the image is thresholded at
successive grey levels. In every iteration the current basins bel onging to the minimaare extended
by their influence zones within the binary image obtained by thresholding at the current grey level
(cf. the computation of the SK1Z).

Other approaches exist based on a definition of watersheds in terms of distance functions
(Meyer 1994, Ngjman & Schmitt 1994, Meijster & Roerdink 1996).

To separate the regions in a grey value image one usualy first computes the derivative of
the image using some edge detector, before applying the watershed. In practice, the watershed
transform suffers from severe over-segmentation, that is, the creation of many small basins in
regions with many local minima. Therefore, one usually has to use some preprocessing method
to reduce the number of local minima, for example by first applying some smoothing filter.

As an application, we show in Fig. 22 segmentation of images of coffee beans, cf. Vincent
(1990). The goal isto segment the image in non-overlapping regions each containing exactly one
coffee bean. The most important steps to achieve this are the following. First segment the image
in foreground and background by simple thresholding, and remove some small holes inside the
beans, see Fig. 22(b). Note that directly using the connected components in this binary image
will not work, because some of the beans overlap. To separate these overlapping beans we first
apply adistance transform to the inverted image of Fig. 22(b). Thiswill yield a single maximum
in the centre of the isolated coffee beans, and two (or more) maximain overlapping beans, cf.
Fig. 22(c). Then invert the distance transformed image so that maxima becomes minima, and
use these minima as points for starting a watershed algorithm. The resulting watershed lines are
shown in Fig. 22(d). Finally, we show in Fig. 22(e) the original image with the watershed lines
superimposed.

7.1.3 Region growing, split-and-merge

A merging method starts with many small regions subdividing the image. In each region one
computes certain properties which represent membership to objects. Next boundaries are merged
if their strength, defined according to certain criteria, is below a given threshold, that is, if the
corresponding regions are similar enough. This process is repeated until no more merging takes
place.

One can aso start with the entire image as the initia region, and successively split regions
into subregions if a region is not homogeneous enough. Since this method tends to produce
suboptimal boundaries, one often uses a combination of splitting and merging operations, called
the split-and-merge strategy.

7.2 Boundary based approach

Boundary techniques attempt to find the edges directly by computing points with high gradient
magnitude.
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Figure 22: Segmenting an image of coffee beans. (a): original image; (b): original after thresholding
and small hole removal; (c): distance transform of the inverse of (b); (d): watershed lines of the inverse
of (c); (e): original image with watershed lines superimposed.
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Figure 23: Derivatives of an edge.

7.2.1 Boundary tracking

After taking the gradient of the initial image, one locates the pixel with the highest value, and
starts a boundary tracking process at this pixel. Then new boundary points are computed itera-
tively by searching in alocal neighbourhood of the current point for the point—not yet chosen
as a boundary point—with maximum grey level. If several candidate points are available, one
chooses arbitrarily. To combat noise the image can be smoothed before tracking, or one may use
alarger local window within which searching takes place.

7.2.2 Laplacian filtering

Thisfilter was mentioned above as an sharpening filter for image enhancement, see Section 4.2.
The Laplacian is a second derivative operator A defined by

0? 0?

which is linear, shift-invariant and its transfer function is zero at the origin in frequency space.
So after Laplacian filtering the image will have zero average grey value. The Laplacian filtering
of an image will produce a zero-crossing at an edge, cf. Fig. 23. In the presence of noise, filters
such as these which are based upon differentiation leads to very unstable results. One solutionis
to first convolve the image with a smoothing kernel, such as a Gaussian, prior to differentiation.
All derivatives of the image undergo the same Gaussian smoothing process which is equivalent
to convolving the image with derivatives of a Gaussian. The Canny edge detector computes
the first derivatives of the Gaussian-smoothed image. Edges are identified as locations where
the gradient magnitude has a maximum. Another often used edge detector is the Marr-Hildreth
operator, which uses second derivatives; the convolution kernel K, (x,y) is the Laplacian-of-
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Figure 24: Surface plot of the Laplacian-of-Gaussian function.

Gaussian (LoG), with ¢ the standard deviation of the Gaussian kernel:

2 7“2 _r2/9452
Ko—(l',y) :—@ (1_T‘2)6 /2 (T2:x2+y2).

Edgesof f areidentified as zero-crossingsof K, f. The Laplacian-of-Gaussian is a Mexican-hat
shaped function, cf. Fig. 24.

7.3 Edge based approach

Thisapproach consists of two phases: first determine for each pixel whether it ison the boundary
of an object using some appropriate criterion. The result is called an edge image. Thiswill in
general not result in closed contours. To obtain these, a second step is required in which edge
points are linked.

7.3.1 Detecting edge points

Edge points are determined by looking at magnitude and direction of the gradient of the input
image. Most methods use local convolution with a set of directional derivative masks, asin the
case discussed above for the Laplacian filter. Other examples of edge operators were presented
in Section 4.2.

7.3.2 Edgelinking

For strong edges and low noise one may threshold the edge image and apply a thinning (cf.
Section 6.1.4) to the resulting binary image until closed contours are obtained with one-pixel
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thickness. In genera the edge image will contain gaps which must be closed. When the gaps
are small one may use some heuristic search procedure for finding other pixels to link to. For
sparse edge points one may use curve fitting to form boundaries. Straight-line fitting can be
conveniently performed by using the Hough transform, which maps a straight liney = mxz + b
to polar coordinates p, 6 by the relation p = xcosf + ysinf. Consider a set of edge points
(x;,y;) lying on astraight line with parameters p, fly. Each point is represented in p, 6 space by
asinusoidal curve, but all these curves go through a common point pg, 6. Thus, a straight line
through a number of edge points can be found by looking for alocal maximum of the histogram
representing the pointsin p, # space. Note that the Hough transform can also be used to detect
other shapes, e.g. circles.

8 Description and measurement

After image segmentation the resulting collection of regionsisusually represented and described
in aform suitable for higher level processing. In this section we outline the most important rep-
resentations based on shape or texture. Then, image descriptors based on the chosen represen-
tation are presented. A desirable property of these descriptorsis that they should be insensitive
to changesin size, trandlation or rotation. The actual measurement of features in digital images
makes use of many of the techniques discussed above, such as linear or morphological image
operators.

8.1 Representations

Roughly spoken, representations can be given in terms of the boundary or the interior of the
regions (Castleman 1996, Ch. 11).

8.1.1 Boundary representations

Chain codes are strings of integers used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. The direction of each line segment is
coded using a numbering scheme which may be adapted to the connectivity used. The accuracy
of the straight-line representation depends on the spacing of the sampling grid.

A digital boundary can also be approximated by a polygon, possibly with minimum length.
Computing such rubber band approximations directly within the grey value image has recently
become popular under the name of active contour models, or snakes (Kass, Witkin & Terzopoul os
1988).

8.1.2 Region representations

An important shape representation of regionsis obtained by computing a skeleton, based on the
media axis (Blum 1973), thinning algorithms (Section 6.1.4) or morphological skeletons, cf.
Section 6.1.6. The goal of skeletonisation is reduction of information while keeping the essential
characteristics of theimage.
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8.2 Descriptors
8.2.1 Boundary descriptors

Simple descriptors of boundaries are length, diameter (maximal distance between points on the
contour) or curvature. Length can be simply approximated by counting the number of pixels
along the contour. Curvature can be computed from the chain code.

Shape numbers of a boundary can be defined in terms of its chain code (Gonzalez & Woods
1992).

Fourier descriptors are based upon the representation of the boundary as a sequence s(k) =
z(k) +iy(k),k=0,1,...N — 1, where (z(k), y(k)) are coordinates of points on the contour.
Taking a discrete Fourier transform of the vector (s(1),...,s(/N — 1)) yields N complex co-
efficients called the Fourier descriptors of the boundary. Approximations of the boundary are
obtained by only using M < N of the Fourier coefficients and performing an inverse discrete
Fourier transform.

Fractal dimension of a (compact) set can be computed as follows (Barnsley 1988). Let
N (A, €) denote the smallest number of closed balls of radius ¢ > 0 needed to cover the set

A. Then
R <1og<N<A, e>>>
log(1/e€)
iscalled the fractal dimension of A. The fractal dimension of a boundary can be estimated using
morphol ogical operations on real images through the concept of Minkowski dimension, whichis
based upon the Minkowski addition (Serra 1982, Ch. 5).

e—0

8.2.2 Regional descriptors

Simple descriptors based upon regions are area, perimeter or derived quantities such as perimeter
squared divided by area, which isa circularity measure (Castleman 1996, Section 19.3).

Topological descriptors are invariant to a large class of local deformations. Examples are:
number of connected components; number of holes; or the genus or Euler number (number of
connected components minus the number of holes). These quantities can be measured digitally
be using erosions or hit-or-miss transforms as introduced in Section 6.1, see Haralick & Shapiro
(1992).

Texture of aregion refersto the spatial distribution of discrete grey value variations, described
in terms of uniformity, coarseness, regularity and directionality. Some examples are given in
Fig. 25. The three main approaches used to describe texture are: (i) statistical; (ii) structural,
viewing a texture as an arrangement of texture primitives; and (iii) spectral, using the Fourier
transform to detect global periodicities.

Moments of animage f(x, y) are integrals over its domain with respect to polynomia weight
functions:

Mm,n://xmy"f(x,y)dxdy, m,n=12...

Invariant moments are combinations of several M,, ,, which are invariant to translation, rotation
and scale-change.
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Figure 25: Textures. (a): Sraw. (b): Raffia.

9 Summary

In this chapter we have introduced the basics of digital image processing, concentrating on the
main concepts and terminology used in the field. Aspects of both linear and nonlinear image
processing have been presented, such as image enhancement, spatial filtering, restoration, mor-
phological image processing, segmentation and description.

Although many aspects have been treated only in a very globa way, it is hoped that this
chapter will provide to the reader sufficient background to understand the basis of the image
processing techniques to be found in the later chapters of this volume.
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