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The cumulant expansion for linear stochastic differential equations is extended to the general 
case in which the coefficient matrix, the inhomogeneous part and the initial condition are all 
random and, moreover, statistically interdependent. The expansion now involves not only the 
autocorrelation functions of the coefficient matrix (as in the homogeneous case) but also 
crosscorrelation functions of the coefficient matrix with the inhomogeneous part and with the 
initial value term. As a first illustration we consider an exactly solvable stochastic differential 
equation with initial correlations and compare the exact solution with that of the cumulant 
expansion. Secondly we show in general how the method can be used for the calculation of 
second moments, and treat the harmonic oscillator with random frequency and driving term as an 
example. 

1. Introduction 

C o n s i d e r  a s y s t e m  of  l inear  d i f fe ren t i a l  e q u a t i o n s  of  the  f o r m  

d u(t) = A(t,  to)u( t )+f( t ,  to), (1.1a) 

u(to) = u0(to), (1.1b) 

w h e r e  u(t) is a vec to r .  The  coeff ic ient  m a t r i x  (or  o p e r a t o r )  A(t, to), the  

j n h o m o g e n e o u s  v e c t o r  [ ( t ,  to) and  the  ini t ial  v e c t o r  u0(to) a re  all  r e g a r d e d  as  

r a n d o m  quan t i t i e s  o f  w h i c h  the  j o in t  p r o b a b i l i t y  d i s t r i bu t ion  (or  o t h e r  s ta t i s -  

t ica l  c h a r a c t e r i s t i c s  such  as  j o in t  m o m e n t s ,  c u m u l a n t s  e tc . )  a re  p r e s c r i b e d .  

The  r a n d o m  na tu re  of  t h e s e  quan t i t i e s  is i n d i c a t e d  b y  the  p a r a m e t e r  to, wh ich  

is an  e l e m e n t  of  a s e t / 2  which ,  t o g e t h e r  wi th  a i t - a l g e b r a  ,~ of  subse t s  of  12 

and a p r o b a b i l i t y  m e a s u r e  P on  ~ ,  cons t i t u t e s  a p r o b a b i l i t y  space .  In  the  

fo l lowing  we  will  o f t en  omi t  the  p a r a m e t e r  to fo r  b r ev i ty .  

The  e l e m e n t s  of  the  ma t r i x  A(t )  and  the  v e c t o r  f ( t )  a re  r a n d o m  p r o c e s s e s ,  

i.e. t hey  d e s c r i b e  f luc tua t ions  in t ime.  T h e y  a re  no t  n e c e s s a r i l y  s t a t i ona ry .  T h e  

r a n d o m  m a t r i x  p r o c e s s  A(t)  and  the v e c t o r  p r o c e s s  [(t)  have  b e e n  ca l l ed  

multiplicative and  additive no i se  r e s p e c t i v e l y t ) ,  b e c a u s e  t h e y  en t e r  (1.1a) in a 

mu l t i p l i ca t ive ,  resp .  add i t i ve  way .  This  d i s t i nc t ion  is on ly  me a n ing fu l  fo r  
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linear equations,  because in nonlinear equations also the noise f ( t )  will come 
in nonadditively in the solution u(t). 

The solution u(t, to) of (1.1) is again a random process.  The problem is to 
find the statistical propert ies  of u(t) as for example its average (u(t)), when 
the statistical characterist ics of A(t),  f ( t )  and u0 are given. Here  the angular 
brackets  ( . . . )  denote an average with respect  to the probabil i ty measure  
P :(u(t)) = fn u(t, to)P(to) dto. 

The case in which A(t), f ( t )  and u0 are statistically independent has been 
studied before2-4). The result, which will be described in more detail in the 

next section, was that in the case of small and rapid fluctuations in A(t),  a 
linear differential equation for the average (u(t)) exists for fixed initial 

condition U(to)= u0, 

d (u(t)) = K(t/to)(U(t)) + (f(t)). (1.2) 
dt 

Here  K(t/to) is a non-random matrix, which is obtained as an infinite series of 
terms in successive powers  of the paramete r  a~'c (sometimes called the Kubo  
number),  where Tc is the (short, but non-zero) autocorrelat ion time of the 

fluctuations in A(t)  and c t a  measure  for their strength. Moreover  K(t/to) 
becomes  independent  of the initial time to as soon as It - t01 ~> ~'c. 

In this article we are concerned with the case in which A, f and u0 are 
mutually correlated. We find again that (u(t)) obeys a linear differential 

equation, provided that a~-c is small, 

d 
d-t (u(t)) = K(t/to)(U(t)) + F(t/to) + I(t/to), (1.3) 

where both the matrix K(t/to) and the vectors  F(t/to) and I(t/to) are found in 
successive powers  of a~-c. K involves the moments  of A(t)  alone, and is the 
same as in (1.2); F involves the joint moments  of A and f and I those of A 
and u0. In this case there are three correlation times involved: the autocor-  
relation time of A(t),  the crosscorrelat ion time of A(t)  with f(t) ,  and that of 
A(t)  with Uo. All of them are assumed to be finite, and the largest is denoted 
by ~'c. Then we find that after a transient time of order ~-~, K and F become 
independent  of to while I vanishes,  so (1.3) becomes  

d 
d-t (u(t)) = K,(t)(u(t)) + F(t)  (t >> "rc). (1.4) 

If  this equation is to be of any value, the transient time should be short 
compared  to the duration of the process  u(t) itself. 

A model of type (1.1) with correlated multiplicative and additive noise 
recently arose within the context  of meteorological  investigationsS). The first 
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two terms of F were derived by a method different from ours, as discussed by 
Soong6). 

Apart from specific models as the one mentioned above, another motivation 
for admitting a correlation between A and f in (1.1) lies in the following. If 
one considers the second moments of u(t),  satisfying (1.1) with A and f 
uncorrelated, then these second moments can again be studied by an equation 
of this type, but now with a new A' and [' which are correlated. 

In the following we first review some basic results for the homogeneous 
case (section 2). Then we derive the results for the inhomogeneous case 
(section 3), which are summarized in section 4. In section 5 an example is 
given for which one can explicitly show the decay of initial correlations 
between A and u0. In section 6 we give the general result for the second 
moments of u(t),  if A and f in the original equation for u(t) are uncorrelated. 
As an application we show that the expansion (1.3) reproduces the results of 
West et al. for the damped harmonic oscillator with stochastic frequency7'S). 
In the final section an alternative derivation of some of the results of section 3 
is given via the so called "stochastic Liouville equation". 

2. Summary of previous results for the homogeneous case 

We briefly review here the results of Van Kampen 2'3) for the homogeneous 
case (.f(t) ---- 0) with non-random initial conditions. 

2.1. The cumulant expansion 

The solution of 

d u(t) = aA( t )u ( t ) ,  (2.1) 
dt 

with initial condition u(to) = uo (fixed) is given by 

t 

t o 

where ~ denotes time-ordering (latest times to the left) with respect to the 
operators A(.). From (2.2) one obtains the moment  expansion 

l t t I 

( u ( t ) )  = {1 +~ f dt,(A(tO)+a2 f dt, f dt2(A(tOA(tz))+.. "}Uo. (2.3) 
t o t 0 I 0 
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Kr.(t / to) = f 
to 

with 

The series (2.3) in general converges very slowly and in particular, finite 
approximations are only valid for a limited time of order or-l: the expansion 
(2.3) is nonuniform as t-~ oo. To get a more uniform expansion, which avoids 
secular terms (although it may be asymptotic) one expands the average of 
(2.2) in c u m u l a n t s ,  rather than in moments. 

To this end, operators K1, K2 . . . .  are constructed in successive steps such 
that the average ( u ( t ) )  can be written as 

t 

(u(t)) = ~[exp {~e~mfdsKm(S/to)}J uo, (2.4) 
to 

where the time-ordering ~ now acts with respect to the operators K, . ( . / to ) .  
The remarkable implication of (2.4) is that the average Ca(t)) itself again obeys 
a differential equation 

d (u ( t ) )  = K( t / to)Cu( t ) ) ,  (2.5) 
dt  

where 

K(t / to )  = ~ ,  amK, , ( t / to) .  (2.6) 
m = l  

It turns out that the operators K,, are given by 

t t I tin_ 2 / .  

dt ,  I d t 2 . . .  I dt , ,_ ,Cr.( t ,  t, . . . .  , t.,_,), (2.7a) 
to tO 

Cm( t, t~ . . . .  , tin-l) = CA( t ) A (  tl) . . . A(tm_~))p, (2.7b) 

where by definition Kl( t / to )  = C i ( t )  -- CA(t)) .  The expression (2.7b) is the so- 
called " t i m e - o r d e r e d  c u m u l a n t " ,  which is a certain combination of moments 
of A(.) with a specific ordering of the time-variables. As first pointed out by 
Kubo, various orderings are possibleS°). The one meant in (2.7b) is the 
so-called "partial time-ordering"U'~2). Consequently, the ordered cumulant 
(2.7b) will be called " p a r t i a l l y  t i m e - o r d e r e d  c u m u l a n t "  (p-(ordered) cumulant 
for short) and it is indicated by (.-.)p- In section 3 another type of ordered 
cumulant will be encountered, namely the " t o t a l l y  t i m e - o r d e r e d  c u m u l a n t "  
corresponding to "total time-ordering "n ) (or "chronological time-order- 
ing'12)). This one will be denoted as t-(ordered) cumulant and indicated by 
C...)t. For a relation between these two types of ordered cumulants, see 
appendix A. If not explicitly stated, the term "ordered cumulant" is to be 
understood as "p-ordered cumulant". 

The connection between the moments and p-ordered cumulants of A can be 
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found by comparing equal powers of a in the expansion of (2.3) and (2.4)1). 
The rules for constructing the p-ordered cumulants from the moments were 
first given by Van Kampen2). For later use we give them here in a slightly 
more general form. Consider m (non-commuting) time-dependent quantities 
(operators, matrices, vectors) A o ( t ) ,  Al(t) . . . . .  Am-l(t). The ordered cumulant 

( A o ( t ) A l ( t l ) .  . . A m - l ( t m - l ) ) p ,  t >i t l  > t "  " • ~ t i n - l ,  (2.8) 

is obtained in the following way: 

i) Write a sequence of m-dots. 
ii) Partition them into subsequences (...7 (denoting moments) by inserting 

angular brackets in all possible ways (excluding empty subsequences). 
iii) For each partition consisting of p subsequences supply a factor (-)P-1. 
iv) For each partition write a zero on the first dot, and any permutation of 

the numerals 1, 2 . . . . .  m -  1 on the remaining dots, subject to the condition 
that in each subsequence they must not decrease. 

v) Replace each numeral n written on the kth dot by the quantity A k - ~ ( t n )  

(the numeral 0 stands for to = t). 

For example (for the interpretation of the numerals see rule (v)): 

(0)p = (0), ( 0 1 ) p  = (01)-  (0)(1), (2.9a) 

(012)p = (012) - (0)(12) - (01)(27 - (02)(1) + (0)(1)(2) + (0)(2)(1). (2.9b) 

The reverse transformation from cumulants to moments is given by the rules 
(i)-(v) with the following modifications: 

- i n  (ii) replace (..'.) by (...)p 
- omit (iii) 
- i n  (iv) add the condition that also the first numerals in successive sub- 
sequences do not decrease. 

For example 

(0) = (0)p, (01) = (01)p + (0)p(1)p, (2.10a) 

(012) = (012)p + (0)p(l 2)p + (01)p(2)p + (02)p(1)p+ (0)p(1)p(2)p. (2.10b) 

The p-ordered cumulant (2.8) reduces to that of Van Kampen's  definition if 
A0 = A1 . . . . .  Am-1 = A. If  all quantities commute at different times it is 
identical to the ordinary cumulant in the many variable case~3). For a scalar 
Gaussian process, all cumulants beyond the second vanish (the same holds for 
a delta-correlated vectorial Gaussian process1)). 
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2.2. Clus ter  proper ty  and large t ime es t imates  

An important property of the ordered cumulant is the "cluster  proper ty" ,  
meaning that the cumulants vanish as soon as the moments  factorize3'~4). More 
precisely, suppose that A ( t )  has a finite auto-correlation time %, such that all 
matrix elements of A ( t )  are statistically independent of those of A(t ')  if 

It - t'[ ~ "rc. Then the cumulants ( A ( t ) A ( t O . . .  A(t , .- l))p,  with t t> t~ ~>. • • t> 
t,._~, vanish if there is a gap between two successive times which is large 
compared to ¢c (in general this is strictly valid only asymptotically). 

This cluster property implies that for large time the contribution to the 
integrals in (2.7a) comes essentially from the region 

t -- "rc ~ tl ~ t ,  . . . , tm-2--'rc ~ tm-l ~ tm-2. 

So t and tm-~ are at most a distance ( m -  1)~ apart. Therefore  if I t -  t01 
(m - l) ~'c the expression (2.7a) approaches 

t t 1 t in_  2 

f dt, f dt2.., f dt, _iCm(t,t, . . . . .  t ~ - : ) ,  (2.11) 
- ~ ¢  - o o  o o  

which is independent  o f  the initial t ime to. From this we also deduce that for  
large time the ruth order term in (2.6) is of order amT? -~ (assuming that A is 
of order unity). The resulting equation 

d (u( t ) )  = I ( ( t ) ( u ( t ) )  (2.12) 
dt  

is now satisfied by all solutions of (2.1) after a transient time of order q-e, 
independent of the time at which the initial value u0 is fixed. If in addition the 
process A ( t )  is stationary or becomes stationary on the same time scale "re as 
the correlation functions decay (as is the case for so-called "switched-on 
processes"~5), then K(t / to)  approaches a value / (  as t - t o ~ ¢ c  which is 
independent of to and t. 

3. The derivation of (1.3) 

In this section the central result (1.3) will be derived by constructing first an 
integro-differential equation for the average (u ( t ) )  which subsequently is 
turned into a differential equation. This method was used by Terwiel 4) who 
gave an alternative derivation of the results of the previous section for the 
homogeneous case. 

So consider (1.1) with A ( t )  of the form 

A ( t )  -- Ao(t)  + aAl(t) ,  
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where Ao(t) is a sure matrix, and Al(t) random (not necessarily with zero 
mean). First we transform u(t) to the interaction representat ion v(t) by 

u(t) = U(t/to)v(t), 

where 

t 

to 

Then (1.1) t ransforms to 

d r ( t ) =  ~V(t)v(t) ~g(t), + (3.1a) 

with 

Al(t)  = U(tlto)V(t)U-'(tlto), I ( t )= U(tlto)oeg(t). (3.1b) 

For  convenience we took the magnitude of [ to be also of order a. If we 
finally t ransform back to the original representat ion this a will disappear 
again. The eq. (3.1a) will be the starting point of the derivation. 

3.1. The integro-differential equation [or (v(t)) 

By well-known project ion operator  techniques 4) one can derive from (3. la) 
an integro-differential equation for the average (v(t)) with random initial 
condition v(to)= uo. That is, defining the averaging-operator ~ by 

~v(t) = (v(t)), 

one finds for the average (v(t)) the following equation*), where $ = 1 -  ~ :  

d (v(t)) = a(V(t))(v(t)) 

t o s 

t t 

t o s 

to 

* The first two lines of (3.2) to second order in a are identical with Bourret's integral 
equation16.24). 



30 J.B.T.M. ROERDINK 

Usually one takes a fixed initial condition u0 which implies that the last line of 
(3.2) vanishes, since then ~u0 = 0. We will not make this assumption here. To 
condense the notation somewhat,  we first note that the last line of (3.2) can 
also be written as 

a(V( t )~uo)+idsc t2 (V( t ) ' [ expc t ids '9~V(s ' ) ]9~V(s ,~uo  ). 
t o s 

Therefore ,  if we define a "vec to r "  X(t )  with components  

Xl(t) = V(t), X2(t)= g(t), X3(t)= V(t)9~Uo, (3.3) 

(3.2) can be written as 

t dsF(1)(t/s)(v(s) ) f (v(t)) = fl + ds{F(2)(t/s) + F°)(t/s)}' (3.4) dt 
tO tO 

where F (i~ (i = 1, 2, 3) is given by 

t 

F' i ) ( t / s , :a(X, (s ) )8+( t -s )+ct2(V( t )7"[expct  f ds '~V(s' ,]9~X,(s,)  (3.5, 
s 

and f~ dtS+(t) = 1 (~ > 0). For later use we expand the F ~i) in powers of a 

F(°(t/s) = ~ akF~:)(t/s), (3.6) 
k = l  

where 

Ft°(t/s ) = (X~(s ))8+(t - s ), (3.7a) 

F~}~(t/s) = (V(t)~Xds)) ,  (3.7b) 

and F~+2 with m t> 1 is given by 

t |1 l m - I  

F~)÷2(tls, = f dtl f d t2 . . ,  f dt,,C")(t, t, . . . . .  tin, s,, (3.7c, 
$ $ s 

with 

C(°(t, tl . . . . .  tin, s) = (V(t)9~V(tO . . . ~ V(tm)~Xi(s)). (3.7d) 

The average (3.7d) is the so-called "totally t ime-ordered cumulant""'~2). For  m 
non-commuting quantities Ao(t), A~(t) . . . . .  Am_~(t) the t-ordered cumutant is 
defined as (Ak(tk) being abbreviated as k; tk I> tk+0: 

( 012 . . .  (m - l))t = ( 0 ~ 1 ~ 2 . . .  ~ (m - -  1)); (O)t=-- (0). (3.8) 
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In all terms contributing to ( 0 1 . . .  ( m -  1))t the numerals are in decreasing 
time order (it can be obtained from ( 0 1 . . .  ( m -  1))p by allowing only the 
identical permutat ion of 1, 2 . . . .  (m - 1); see also appendix A), which clarifies 
the adjective "totally t ime-ordered".  As shown by Terwiel 4) also the t-ordered 
cumulant ( . . . ) t  has the cluster property.  

3.2. Derivation of the differential equation for (v(t)) 

Now we want to convert  the integro-differential equation for (v(t)) into a 
pure differential equation, making use of the fact  that the memory  effects in 
(3.4) are small if arc is small. Here  % is the largest of the autocorrelat ion time 
of V and the crosscorrelat ion times of V with g and u0, which are all assumed 
to be finite. 

Following Terwiel 's  iteration method 4) we put 

t 

s 

and substitute this in (3.4). This leads to 

d (v(t))= / dsF("(t/s)(v(t)) 
to 

t 

+fds{F(2)(t/s)+r(3)(t/s)}-fdsfdt,r(')(t/s)d~(v(t,)). (3.10) 
t o t o S 

Then we substitute again (3.4) with t = t~ in the r.h.s, of (3.10), use again (3.9) 
and so on. Iterating this procedure one obtains 

d (v(t)) = Km(t/to)(v(t)) + K(2)(t/to) + K(3)(t/to), (3.1 I) 

where K(i)(tlto) (i = 1, 2, 3) is defined as 

i {f i f K(1)(tlt°) = dsF(°(tls)+,~'=l (-)"  dsF(l)(tls) dt, dslF°)(tJs,) 
to to s t o 

t tn - I t t a 

'" f dt._, f ds._,r("(t._,ls._,) f dt. f ds.F(°(t.ls.)}. 
sn 2 tO Sn-1  to 

(3.12) 

Note that each term of K (° contains a product  of F ( " s  ending with a F (°. 
Inserting the expansion (3.6) in (3.12) and rearranging the terms according to 
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increasing powers of a, we find 

K(i)(t/to) = ~,, ctmK~)(t/to) (i = 1, 2, 3), 
O1=1 

where 

K ~,)( t[ to) = 

(3.13) 

t 

f dsF~)(t/s) ÷ ~ (-)~{k~l ~ . - - ~  8,,k+k,+...k. 
n = l  k l = l  k n = l  

to 

t t 1 

/dsr ')(t/s)fdt, fdslr ','(t,/sl) 
t o S I 0 

t tn 1 t I n 

. . .  f dt~_l f ds~ ,F~),(t~ ,/s~-,) f dt~ f ds~r~'J(to/s~)}. 
sn 2 to Sn-  I t 0 

(3.14) 

By careful examination of (3.7) and (3.14) one notes the following. The only 
difference between K~ ), K~ ) and K~ ) lies in the fact that in each term of (3.14) 
the last quantity in the last t-ordered cumulant is XI, X2 and X3 respectively, 
with the same time variable. This conclusion will be needed in the next 
section. 

3.3. Identification of the ordered cumulants 

Now we make a connection between the results (3.11)--(3.14) and those of 
section 2, where the homogeneous case was discussed. Let us write down 
explicitly the lowest order K~)'s as calculated from (3.14) and (3.3): 

Ktl)(t/to) = 'f dsFll)(t/s) = (V(t)), (3.15a) 
to 

t t 

I dsrt~)(t/s) = I dtl{(V(t)V(tt)) - (V(t))(V(tO)}, (3.15b) Ktl)(t/to) 
to to 

Kt')(t/to) = dsFtl)(t[s)- ds dtl ds~Fi'(t/s)Ftl)(t~lsO 
t o t o s t o 

t t 1 

= f dt~ f dt2{(V(t)V(tOV(t2))- (V(t)V(t~))(V(t2)) 
tO tO 

- ( V(t))(V(t ~) V(t2)) - (V(t) V(t2))(V(t,)) 

+ ( V(t))( V(t,))(V(t2)) + ( V(t))( V(t2))( V(t,))}. (3.15c) 



INHOMOGENEOUS LINEAR RANDOM DIFFERENTIAL EQUATIONS 33 

The integrands of the expressions (3.15) are now easily recognized as the 
p-ordered cumulants of V, as defined in section 2. In fact  we know that (3.11) 
must reduce to (2.5) if we take f(t) identically zero and a sure initial condition 
u0. Therefore  the K~ ) as defined by (3.14) can be identified with (2.7) 

t t I tin_ 2 

K~)(tlto) = f d t l fd t2  f dt ,- l 'V(t)V(tl) . . .  V(ts-l))p. (3.16) 
tO tO t o 

This can be explicitly verified by inserting the expressions (3.7) for  i = 1 into 
(3.14) and rewriting the result as an integration over  the domain t ~ t l ~  
t 2 " "  I> ts-l. This is achieved by splitting up the original domains of in- 
tegration and/or  a relabeling of time variables and changing the order of 
integration. For  example 

i t t 1 

dsr~'(t/s) f dt, f ds,F~i:(t,/s,) 
t 0 S t o 

= dt, ! ds'{F~(t/s)F~(tl/s') + r~l~(t/s')r~(h/s)}" 
tO t o t o 

The new integrand contains one or more new terms which can be obtained 
from the original integrand by a permutation of time variables. The crucial 
point is that no interchange of operators (or matrices, vectors) is involved. 

The same manipulations which lead from (3.14) to (3.16) can also be carried 
out for  ~c~)i~o) Since we showed that ~L m / ~L S • 

Ks~Kin and K~ ) is that the last quantity in i) the only difference between (2) (3) 
each term which contributes to Kt~)/Kt~ ) is a g(.)/V(.)~Uo instead of a V(.) 
(section 3.2), 

ii) no operators (matrices, vectors)  are interchanged going from (3.14) (with 
i = 1) to (3.16), 
we conclude that 

i / Y K~)(t/to) = dh dt2.., dt~,-~(V(t)V(h)... V(tm-:)g(ts-O),, (3.17a) 
to to to 

where 

and 

K t2)(t/to) --- (g (t)) (3.17b) 

i tf tin~ 2 

K~)(t/to)-- dt~ d t2 . . ,  dt~_~(V(t)V(t,)... V(t~-2)[V(t~-O~Uo])p, 
tO tO to 

(3.18a) 
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with 

K t3)(t[to) =- (V(t)~uo). (3.18b) 

The integrands of (3.17) and (3.18) are multivariate p-ordered cumulants as 
introduced in section 2. They can easily be obtained from the K~ ) in (3.15) 
and (3.16) by replacing the last operator V(.) in each term which contributes 
to K~ ) by the corresponding vectors g(.)  and V(.) ~u0 respectively. Note that 
in (3.18a) the vector V(tm 1) ~2Uo has to be considered as a single quantity with 
time variable t~_~. The results (3.17) and (3.18) can be verified to a given order 
by explicit evaluation of (3.14) for i = 2, 3 using (3.3) and (3.7). 

If g is independent of V, K~ ) = 0 for m/> 2, while K~ ) vanishes for all m if 
u0 is non-random or statistically independent of V. This last statement follows 
from the fact that all moments, which satisfy 

(V(t)  V(tO . . . V(tra 2) V(tm 1)~Uo) = (V(t)  V(tO . . . V(tm-l))(~Uo), 

if the factor ~u0 is independent of the others, vanish since (~u0)= 0. There- 
fore also the ordered cumulants 

( V ( t ) V ( t 0 . . . V ( t m  2)[V(t,-O~Uo])p (m >~ l) 

vanish, although the last factor V(tm-1) ~Uo as a whole need not be in- 
dependent of the others, because of V(t~-l). 

Notice that the correlation of u0 with g(.)  does not enter (3.17) or (3.18). 
However, it does come in if one studies the second moments  of v(t). 

3.4. Large time estimates 

The expressions (3.16), (3.17) and (3.18) still contain the initial time to, while 
(3.18) in addition depends on the initial value (distribution) u0. At this point we 
use the assumption that the autocorrelation time of V, the crosscorrelation 
time of V with g and that of V with u0 are all finite, the largest of them being 
denoted by ~c. We will now show that after a transient time of order "re, the 
expression (3.16) for K~(t/to) approaches (2.11), while (3.17a) tends to 

! t I t i n -2  

K-Z~(t)= f dt, f d t2 . . ,  f d tm_,(V( t )V( tO. . .  V(t,~-2)g(tm-O)p (3.19) 

and 

K~)(t/to)~O (m -- 1 ,2  . . . .  ). (3.20) 

The expression (3.16) is the same as (2.7a) of which it was shown in section 
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( m  - 1)~'¢ 
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t2 t3 . . . . . .  t= -3  t , . -2  tnt I to 

( m g c  ) 

I t I I I ~ J I ( b )  
t t l  t2 t3 . . . . . .  tra-3 t,n-2 t, .  t to 

Fig. 1. Maximal extension of the integration domains in (a) K~); and (b) K~ ~. 

2.2 that  it tends to (2.11) if It - to[ ~ (m - 1)~'c. An analogous argument  can be 
given for  K ~  ). In (3.17a) t and tl are at most  a distance of order zc apart  
(otherwise V( t )  is independent  of V(tl), but  then also of V(t2), V(t3) etc. 
because  of the ordering of t imes, and also of g(tm-t) because  ~c is the largest 
correlat ion time: so the ordered cumulant  vanishes).  Repeating this argument  
one finds that the distance be tween  successive time variables is at mos t  ~'c, so 
that t and tin-1 differ at most  a t ime of order (m - 1)~'c (see fig. la). Therefore  
if I t -  tol ~> (m -1)I-¢, K~)(t/to) approaches  the express ion (3.19). 

N o w  consider  (3.18). By the same argument  as above we see that tm-2 is at 
most  a distance of order  (m -2)~c  away f rom t. Also tin-1 cannot  be further  
apart  f rom tra-2 than "re because  otherwise the whole fac tor  V(tm-l) ~Uo is 
independent  of V(tm-2) and the cumulant  vanishes.  On the other hand, if t,~-i 
differs more  than "r¢ f rom to the factor  ~u0 is independent  of all the operators  
V(t), V(tO . . . . .  V(tm-l), and the ordered cumulant  vanishes (see the argument  
at the end of section 3.3). We conclude that  t and to can be at most  a distance 
of order roT, apart ,  otherwise K ~  ) vanishes for  all m (see fig. lb). 

So after  a transient time* of order "re, K~2)(t/to) is independent  of to, while 
K(3)(t/to) which was due to initial correlations be tween V and u0, vanishes.  
This implies that the quantities (3.13) are expansions in powers  of a$~ and we 

obtain the large time est imates 

amK~ ) ~ a(aT~) m-t, a ~ K ~  ) ~ a(aT~) ~-I, K ~  ) ~ O. (3.21) 

4.  S u m m a r y  o f  t h e  r e s u l t s  

Going back  to the original representat ion u and taking A ( t ) =  Ao+ aA~(t), 
we have shown that, if a ,c  < 1, the average  of (1.1) obeys  the linear differen- 

* This time t should be such that ~c ~ t < ~d, where Td is a measure for the duration of the 
process v(t). 
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tial equation 

d (u( t ) )  = K( t / to) (u( t ) )  + F(t/ to) + I(t/to), (4.1a) 

where 

t t I 

K ( t [ t o ) : A o + a ( A l ( t ) , + ~ =  c ~ m + l f d t l f d t 2  
tO tO 

tm 1 

• . .  J dtm e(t-t°)A°(A~l)(t)Atl)(tO... A~')(tm))p e -(Ho)Ao, (4.1b) 
to 

i'/  F(t/to) = ( f ( t ) )  + ~.... a ~ dt,  dt2 
m = l  

tO t o 

lm l 

"'" I dtm e(H°)A°(All)(t)Atl)(tl).  . . Atl)(tm Of°)(t~))p, (4.1c) 
t o 

t t 1 

:+' f dt, f 
tO tO 

tin- 1 

. . .  J dr ,  e(H°)A°(A~')(t)At~)(tO . . . Atl)(tm_l)[Atl)(tm)(U -- a0)])p. (4.1d) 
to 

Here the superscripts (1) denote the interaction representation 

Att)(t) = e-"-'°)A°A~(t) e('-t°)A°; f(l)(t) = e-"-'°)A°f(t) (4.2) 

and u0 denotes the average (U(to)). In calculating the ordered cumulants in 
(4. ld) the vector Atl)( t , , ) (Uo- t~0) has to he considered as a single quantity with 
time variable tin. 

The presence of the deterministic evolution operators e t:0 in (4.1b)-(4.1d) 
poses a difficulty. Namely in deriving the large time estimates (3.21) we 
assumed that the lower limits to in (3.16)-(3.18) can he replaced by -oo if the 
time t is large. Because of the operators e t:° this need no longer he true in 
(4.1b)-(4.1d). Roughly speaking the possible growth of the deterministic 
evolution operators with time must not compensate the decay of the ordered 
cumulants. More precise criteria are derived in appendix B. If A0 has purely 
imaginary eigenvalues the estimates (3.21) remain always valid. 

The condition a~'c ~ 1 is always necessary for the validity of the expansion 
(4.1) (excluding secular terms) except for the case in which the expansion is 
actually finite (as (2.6) is for a scalar Gaussian process). The fact that the 
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transient time of the mth order cumulants increases linearly with m (in 
general at least) indicates that the expansion may be asymptotic, unless the 
cumulants are negligible after a certain m2'~4). 

Finally we give the result (4.1) to first order in a'rc for times exceeding the 
transient time (assuming that the deterministic evolution does not spoil the 
decay of the cumulants): 

~tt (it(t))= {Ao+ ot(Al(t))+ ~ 2 f  d1"(Al(t)era°al(t--7))p e-'A°}(u(t)) 
0 

ec 

+ ( f ( t ) )  + a I dr(Al(t) eTA°f(t - "r))p. (4.3) 
0 

If in addition we assume that 

• cllA011 ~ 1, (4.4) 

i.e. the deterministic motion of u(t.) is slow compared to the fluctuations in Ax, 
then (4.3) reduces to 

~(u(t )>  = {Ao+c,<A,(t))+~2fd'r(A,(t)ml(t-'r))p}(u(t)) 
0 

ao 

( f ( t ) )  + a [ d r (A~( t ) f ( t  - r))p. (4.5) + 

0 

This result is exact  in the white noise limit: 

a'r¢ ~ 0, ot21"c fixed, (4.6) 

since the higher order terms in (4.1b) and (4.1c) are of relative order (aTe)", 
m t> 1, compared to the r.h.s, of (4.5). 

5. First example: decay of initial correlations 

As a first illustration of the expansion (4.1) we now discuss an example of 
an exactly solvable stochastic differential equation in which the random 
coefficient matrix is correlated with the initial value. As a check of the 
expansion (4.1d) we show that its lower order terms for this case reproduce 
the exact result if this is expanded up to the same order. 

Consider the equation 

d u( t )  = o'=u(t)+ a~(t)trxu(t) .  (5.1) 
dt 
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Here u(t) is a two-component vector and crx and ~rz are Pauli-matrices. For 
the sake of clarity vectors will be printed in bold-face type in this and the next 
section. For ~(t) we take a dichotomic Markov process 3) with values + 1 or 
- 1 .  The composite process (u,~) is again a Markov process. Its joint 
probability density P (u, ~, t) satisfies 3) 

~t Ou 
P(u, ~, t)  = • [(o-~u + a~(t)~u)P(u, ~, t)] + ~ W(~/~')P(u, ~', t),  

(5.2a) 

with 

W((;/C) = 3' - 2y6e.c. (5.2b) 

The evolution of the "marginal averages" 

(ul)_+ = f duP(u,  +- 1, t)ui (i = 1, 2) (5.3) 

arranged as a vector with components (u0+, (ul)-, (u2)+ and (u2)- respectively, 
is determined by the matrix 

ao~z - i + ~ , ~  - "/ i " ( 5 . 4 )  

Here i is the 2 x 2 unit matrix. The eigenvalues of (5.4) are 

A t , 2 = I y - + ~ + ,  X~,4=-3,-+~_; ~_+='V'a2+('y-+l) 2. (5.5) 

In terms of the sum and difference of the marginal averages 

(ui)  = (ui)+ + (u i ) - ,  (vi)  = (ui)+ - (u i ) - ,  (5 .6)  

we find 

( ul( t )) = c +( t )(Ul(O)) + d+( t )( v2(O)), (5.7a) 

(u2(t)) = c_(t)(u2(O)) + d-(t)(vl(O)), (5.7b) 

where 

c+(t) = f/~-+ + (Y -- 1-)} e(-,+~-*)' + {/z-+- (Y -+ 1)} e (-'-~-*)' , (5.8a) 
- t 2ix_+ 2tx_* 

d+_(t) = a e_V{e, , t _  e_~_.t}. (5.8b) 

To compare the result (5.7) with that of the cumulant expansion, we differen- 
tiate (5.7) and express the result in terms of (u(t)) and iv(0)) by eliminating 
in(0)) from (5.7) and its derivative: 

(zi~(t)) = k+( t )(u~( t )) + i+( t )( v2(O)), (5.9a) 

( / i 2 ( t ) )  = k-(t)(u2(t)) + i_(t)(v~(O)), (5.9b) 
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where 

k±(t) = d { l n  c±(t)}; i+_(t) = d±( t ) -  d±(t)k±(t). (5.10) 

For large t, 

{ 2o / 
k ± ( t ) ~ - y + ~ ± ,  i±(t)~ 1+(~---~_+ 1)/~± e(- ' -"~" (5.11) 

If t really goes to infinity, i±(t)--*O, but for comparison with the cumulant 
expansion we retained its asymptotic time dependence. Expanding the result 
(5.11) to third order in a, one finds in the case that ~, > 1: 

o~ 2 

k± = _+1 -~ 2(3, -+ 1-----~' (5.12a) 

i±(t) e(-2"~')'{ 1 a2 1)t)}. = a + ~ ( 1  - 2(3, -+ (5.12b) 

Now we apply the result of the cumulant expansion to (5.1). The term (4.1d) 
only yields a nonzero result if the initial condition u0 is correlated with ~(t). 
As an example we take the following initial distribution for u and ~: 

P(u, ~, O) = ~8~.+8(u - p ) +  ½8~,_8(u - q) (p # q). (5.13) 

From (5.13) follows the initial distribution of ~, 

P(~, 0) = ½~+ +!~$ , 2 ~,-, ( 5 . 1 4 )  

and one finds that 

( u ( 0 ) )  = ½(p + q) ,  ( v ( 0 ) )  = ½(p - q)  = ( ~ ( 0 ) u ( 0 ) ) .  ( 5 .15 )  

Since the process ¢(t) evolves independently of u(t), the many-time dis- 
tributions are easily obtained as 

P(~1, tl; ~2, t2 ; . . .  ;¢,, t ,;  u, 0) = ~ T(~ltd~2tz)T(~ztz/~3t3) 

• . .  T(~.t./~'O)P(C, u, 0), (5.16) 

where tl I> t2 . . .  I> t. I>0, and T is the transition-matrix of the dichotomic 
Markov process (~i = - + 1) 

T(~ltJ~2t2) = ½{1 + ~1~2 e-2V("-'2)}, (tl t> t2). (5.17) 
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U s i n g  (5.13)-(5.17)  we  find* (n  = 1, 2, 3 . . . )  

(~(tl)~5(t2) • . .  ~5(tz.-~)) = O, 

(~(tO~(t2) • • • ~(t2,)) = (~(tO~(tE))(~(t3)~(t4))... (~(t2,-z)~(t2,)) ,  

(~(tO~(t2) • • • ~(t2,)u(O)) = (~(tO • • • ~(tE,))(u(O)), 

(~(tO~(t2) • . .  ~(tz,-1)u(O)) = (~(tO • • • ~(tE,-E))(~(tE,-t)u(O)), 

w h e r e  in  p a r t i c u l a r  

(~(tO~(t2)) = e -2v ( t ' - t 2 )  ( t l  ~> t 2 ) ,  

(~(tOu(O)) = e-2Vq(v(O)) (tl  ~> 0). 

(5.18a) 

(5.18b) 

(5.18c) 

(5.18d) 

(5.19a) 

(5.19b) 

T h e  c u m u l a n t  e x p a n s i o n  (4.1) to th i rd  o r d e r  in  ot y ie lds  in  th is  ca se  (to = 0): 

t 

(fi(t)) = [~z + ~2f dtl et~z(rl(t)~(t,))pe-t~z](u(t)) 
0 

t 

+ a et~z('o(t)(uo - •o)) + a 2 1 dr1 e~z('o(t)['q(tO(uo - iio)])p 

0 

l t I 

ct3 1 dtl I d.t2 et~(rl(t)~(tt)[rl(t2)(uo- Zio)])p, (5.20) + 

0 0 

w h e r e  

" o ( t )  ----- ~ ( t )  e- t '~ZO'x e t~'z ~ ~ ( t ) 6 x ( t )  

a n d  we  a l r e a d y  u s e d  tha t  ( ( ( t ) )  = 0. F r o m  (5.18) a n d  (5.19) we  f ind 

( '0(t) '0( t l ))p = e - 2v"-w e '~(rx( t )(r~(.t O e -'~, 

( r l t t ) ( u 0 -  ro)) = O'x(t) e-ZV'(v(0)) 

(rl(t)[ 'o(tO(uo- fid)p = 0, 

(~l(t)71(tO[w(tg(uo- ao)])p = - ~(t)(rx(t2)6~(tO e -2~"-'~ e-2V"(v(0)). 

I n s e r t i n g  th is  in  (5.20) a n d  t a k i n g  t ~ oo in  the  f irst  l ine  of  (5 .20) t  a n d  t la rge  

* T h e  e q s .  (5 .18)  i m p l y  t h a t  17) ( ~ ( t 0 .  • • ~j(t.))t = ( ~ ( t 0 . . .  ~ ( t ,  t ) [~ j ( t . )u (0) l ) t  = 0 ,  n > 2.  

tThis is possible if 3' > 1, i.e. 23' = v~ -~ > 2 in agreement with (B.3). 
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but finite in the remaining lines, one finds for 3, > 1: 

41 

C~ 2 

/ + a e-(2~+~')'~ 1 + 2(~rz_ y) (v(O)), (5.21) 

which is easily shown to agree with the exact  results (5.9) and (5.12) for  the 
individual components  ul and u2. 

6. Application to the calculation of second moments  

6.1. The general case 

Consider again the system of differential equations 

d u(t) = {A0 + aA~(t, to)}u(t)+ f(t,  to), (6.1) 

with a fixed initial condition. In studying the second moments  of u one again 
is lead to an equation of type (6.1) (see below), which can be treated by the 
method of section 3 (the same is true for all higher moments  of u). We will 
restrict ourselves here to the case in which Ai and y are statistically 
independent, and show that even then the equation for  the second moments  is 
of the general type (1.I) with correlated multiplicative and additive noise. 

To study the second moments  of u(t) we construct  the vector  

/ "(') \ 
( u ( t )  't =/ul!t)u(t) I (6.2) 

U(t) = \ u ( t ) ®  u(t ) i  

\,,°it),,(t) I 
where the symbol ~ indicates a Kronecker  product.  The vector  U(t) has 
(n + 1)n components  (if the symmetry  condition ului = usu~ is satisfied it is 
sufficient to consider a vector  U with n + ½n(n + 1) = ~n(n + 3) components).  
As a consequence of (6.1) U(t) satisfies the differential equation 

d U(t) = {Ao + A~(t)}U(t) + F(t), (6.3) 
dt 

where 

Ao:ltb---i-j,o) ; F(t)=\ t71 / (6.4) 
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and the - symbol is defined for a n × n-matrix or n dimensional vector C by 

(~ = i ~)  C + C ~ )  i. (6.5) 

Here i denotes the n x n-unit matrix. 
Eq. (6.3) is again of type (6.1) but now with Al(t) and F(t) correlated as they 

both contain f(t). Hence the method of section 3 and 4 must be employed. So 
consider the series (4.1b) and (4.1c) for the case (6.3) (in this case I(t/to)= 0 
since we took a fixed initial condition). The lowest order terms of (4.1b) 
involve 

(a(A,( t ) ) i  " ~ (6.6a) 
(A , ( t ) )  = \ i~'it-Ji ..... ; '~-(-.~;-(i-))/' 

(Atl)(t)Atl)(tl)), 

= ( a2(At')(t)Atl)(tO), [ O ), (6.6b) 

where 

A tl)( t ) = e-(Ho)aoAz( t ) e"-t0)ao, 

fi, tl)(t) = e-('-'°)~°/i, fft) e ('-'0)~° (6.7a) 

and 

)~(l)(t) = e-(t-'°)a°f(t) e ('-'°)a°. (6.7b) 

The lower left submatrix in (6.6b) vanishes because of the presupposed 
statistical independence of Afft) and I(t).  This remains true for the higher 
cumulants of Atl)(t): they too are of the form (6.6b) with an upper right 
submatrix which is identically zero and a lower left submatrix which vanishes 
because it contains the ordered cumulants of one I with two or more At's. In 
the upper left submatrix the ruth order cumulant of aAt ~) appears, and from 
this the lower right submatrix in ruth order can be obtained by replacing A0 
and A1 by A0 and Al, respectively. 

From the series (4.1c) only two terms survive: 

(F(t)) = ((f(t)))  (6.8) 

and 

{a (At(t) e"-")a°sc(t 0)p ] (6.9) 
(Al(t) e{'-'0A°F(t0)p = \ if(t)  e(t-q)%f(tl))p ]" 

The first n components of (6.9) are again zero because of the statistical 
independence of A1 and f, and for the same reason all higher order cumulants 
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of At  ~) with F (D are zero since always ordered cumulants  of one or more  A~'s 

with one or two y ' s  are involved. 
Summarizing the above  results we have found that (U(t)) obeys  

d (u(t)) = K(t/to)(U(t)) + F(t/to), 

where 

I . . . . . .  

F(t/to) = dt l ( f( t )  etHOA°f(h))v /" 

(6.10) 

(6.11) 

The matrix K(t/to) is the same as (4.1b), while f((t/to) is obtained f rom K(t/to) 
by the rep lacements  Ao--> ,~o, A~(t)--*.4~(t) (the - symbol  is defined in (6.5)). 

We will discuss now an example  for  which the matr ices K a n d / ~  of (6.11) 
can be exact ly  calculated (only a finite number  of  terms contributes).  

6.2. Example: harmonic oscillator with stochastic frequency 

Recent ly  West  et a l l )  t reated the driven harmonic  oscillator with stochastic 
f requency  modelled by  

:~(t) = p( t ) ,  (6.12a) 

p ( t )  = - 27,p (t) - f~Ex(t) - T(t)x(t) + fE(t). (6.12b) 

Here  T(t) is a process  with zero mean  and delta-correlated cumulants* 

((y(h)T(t2) • • • y(tm))) = m !D,,6(t~- t2 ) . . .  8(tm-I- t,,) (m >I 2), (6.13) 

where the brackets  ( ( . . . ) )  denote  ordinary cumulants ,  and f2(t) is a s tat ionary 
process  with zero mean,  but  otherwise unspecified. Its correlat ion funct ion is 
denoted by  

(fE(t)f2(t - ~')) = 2/)O(T). (6.14) 

It  is assumed that y( t )  and f2(t) are statistically independent.  The vector  

x(t) 
p(t) 1 
x2(t) 

U(t) = x(t)p(t) (6.15) 

p(t)x(t) 
lp2(t) 

* W e  u s e  a coe f f i c i ent  m !Din in s t ead  o f  2mDm as in ref .  7. 
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satisfies eq. (6.3), whe re  the  quant i t ies  in (6.4) are  now specif ied as fo l lows  
(dots  denot ing  zeroes) :  

/  2''i)o2 _£~2 - 2 A  • 
( 1 ) fi.o= -122 - 2 h  , (6.16) A o =  _j22 - 2 h  ' 

and 

Al( t )  = 3 , ( t ) B l ,  A l ( t )  = 3~( t )B, ,  

f ( t )  = 12(t)Io, f ( t )  = [2(t)fo, (6.17a) 

where  

(6.17b) 

N o w  we h a v e  to ca lcula te  the quant i t ies  in (6.11). Firs t  cons ider  K(tlto) which  
is g iven by  (4.1b) with a -- 1. Since ~/(t) is de l t a -cor re la ted  the  in tegra t ions  can  
be p e r f o r m e d ,  b e c a u s e  the in tegrands  of  (4.1b) only  con t r ibu te  if all t~, 
t2  . . . . .  tm are equal  to t. The  m t h  order  t e rm then  conta ins  the  mat r ix  DmB'~ +~. 
Expl ic i t  ca lcula t ion  shows  tha t  B~ = 0, so B~ '÷t = 0 if m / >  1". Since (~/(t)) = 0, 
we  find tha t  

K(t/to) = Ao. (6.18) 

In  the  s a m e  w a y  we  find tha t  f r o m  the ser ies  fo r  K,(tlto) only  the m = 1 t e rm  
surv ives  s ince /~ ,+1  = 0, m / >  2. 

( t / to)  = f~o + D2B ~. (6.19) 

F u r t h e r m o r e  we  have  tha t  

i f ( t ) )  = O, i f ( t ) )  = O, (6.20) 

be cause  f:( t)  has zero  average .  
So we  have  found  tha t  the ave r age  of  (6.15) o b e y s  

~ t i U ( t ) )  / A o  i 0 \ ,-,o f ( 0 \ O i l  ....... -X-+--~)-~2jiu(t))+o : t ,  3 d ~ ' \ 2 D r k ( r ) l o e * ' ° , o /  . (6.21) 
o 

* The nilpotency of B 1 also implies that the It6- and Stratonovich interpretations of (6.12) yield the 
same resultS). 
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The  e igenvalues  of  Ao are (assuming subcri t ical  damping)  

h_+ = - A --- itol, to1 = ( 0  2 - -  ~t2) 1/2 (6.22) 

and the de terminis t ic  evolu t ion  matr ix  is easi ly found  as 

( c o s  + sin 1 sin . / 

erA° = | 0 2 h e-~X" (6.23) 
sin "tool cos  "to1 - - -  sin T¢-II 1 /  

0)1 

Combining  (6.16), (6.17b), (6.21) and (6.23) we wri te  down  the resul t  fo r  the 
individual  c o m p o n e n t s  of  (6.15), where  we make  use of  the s y m m e t r y  xp = 
px: 

d ( x ) t  = (P)t, 

d ( p ) ,  = - O 2 ( x 5 , -  2X(p), ,  

d (x2) t  = 2(xp)t, 

t - t  O 

ff-~(xp)t = -- O2(X2)t- 2A(xp)t + (p2)t + f d~'2/)~b(l") 1 sin to,r e -'x, 
O31 

0 

d (p2)t = - 202(xp)t  - 4X(p2)t + 2D2(x2)t 

t - t  O 

+ 2 dr2154~(I") cos  r~ol - - -  sin I"~ol (6.24) 
0 

Here  (x)t = (x(t))  etc.  F r o m  (6.24) we der ive  the equil ibr ium values  (assuming 
they  exist ,  i.e. D2 < 2 1 0  2) 

(X)eq = (P)eq = (Xp)eq = 0 (6.25a) 

2A {I)~+ ~-- /5~ ,  (6.25b) 
(X2)eq = 2hO 2 - D 2  O)l J 

(p2)eq = 2hO 2 -- D2 

where  

0 

o f I}s = ~-- 4~s(~), 4~(~) = dr4~(r) sin T~ol e - " .  
0 
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These equilibrium results agree with the result (A.38) of West et al.7), which 
was obtained by a different method. 

In the case that 3'(0 and f2(t) are correlated, we cannot use (6.11), but we 
have to apply the cumulant expansion (4.1) to (6.3). However, if 3,(t) and f2(t) 
are also delta-correlated to all orders, i.e. 

((~/(tl)3,(t2) • . .  3'(tm-~)f2(tm))) = m !Cm~(t~- t2) • . .  t~(tm-J - -  tin) (6.26) 

one easily finds that the only modification in (6.24) is an extra contribution 
--4C2(x)t t o  the last line of (6.24). But since (X)¢q = 0, the equilibrium results 
(6.25) are unaffected. 

7. Alternative derivation via the stochastic Liouville equation 

The results (4. la)-(4, lc) (fixed initial condition) can also be derived via the 
so-called "stochastic Liouville equation ''9) which is a continuity-equation for 
the probability density p(u, t) in the state space of u (also called "phase- 
space" or "u-space").  If the vector u( t )  obeys 

d u( t )  = {A0 + oLAl(t, to)}u(t)+ f(t ,  to), (7.1) 
dt 

with a fixed initial condition u0, the corresponding equation for p(u, t) is 3'9) 

o 
(u, t) = - ~-~. {(Ao + aA~(t, ~o))u(t) + .fit, to)}O(u, t), (7.2a) 

with 

O(u, to) = ~(u - Uo). (7.2b) 

Eq. (7.2a) can be written as 

~tO(u ,  t) {L0+ Ll(t ,  to)}0(u, t), (7.3a) 

where 

a 
L 0 . . .  = - a--ft' [{A0u}...], (7.3b) 

0 
L I . . .  = - #--ft" [{Al(t, to)u +[ ( t ,  to)}...].  

According to Van Kampen's  lemma 3) the average 
f ad toP( to )p (u , t ,  to) equals the probability density P ( u , t )  (with 
8(u -u0)) as determined by (7.1). 

(7.3c) 

(p(u,  t)) = 
P(u ,  to) = 
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Since (7.3a) is a homogeneous stochastic differential equation for p(u, t), 
the ordinary cumulant expansion (2.5)-(2.7) can be employed. So we have 

t t 1 

~tP(u,t):[Lo+(gl(t)~+~=l{ f dt, f d,~ 
tO t 0 

tin-1 

to 

where 

L l~)( t ) = e-(t-to)Lo L ~( t ) e (,-,o)Lo. 

The mean (u(t)) is obtained as 

(u(t)) = f duuP(u, t). 

We assume that P ( u , t )  and 

(7.5) 

P(')(u, t) = (cg'[Ou~)P(u, t) 

f du ~uj {~(u)P~(u' t)} = 0 

This implies that for all K~ i> 0, 

f duLo{~b(u)P(~)(u, t)} = 0, 

and 

0 - -  1,2 . . . .  n). 

f duLl(t){~b(u)P~')(u, t)} = 0 

f duuLo{~k(u)'P<~)(u, t)} = f du{Aou}~(u)P(~)(u, t), 

f duuLl(t){¢(u)Pt~)(u, t)} = f ~ u t = a . , ) u  + f(t)}¢(u)P~)(u, t). 

By repeated application of (7.6)-(7.8) we finally have 

f du e'Lo¢(u)P(')(u, t)= f du¢(u)P(~)(u, t), 

f duue'Lo+(u)P<')(u,t)=e'aof duu¢(u)Pt")(u,t) 

. 0 K O'q c3K~ 

O u  - - ~  =- Ou ~ " " " Ou ~"' K~ = O ,  1 ,  2 .... 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

its derivatives* 
decrease sufficiently fast near the boundaries of the integration domain, so 
that for any polynomial ~b(u) = Etx,~ c{Ai}u~l.., u]"(Ai = 0, l, 2 . . . )  
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and 

f duuL]')(t)tO(u)P(~)(u, t)= f du{etA]')(t)u + f(')(t)}O(u)P(K)(u, t), (7.11) 

where A]l)(t) and f(l)(t) are defined in (4.2). Now from (7.4) and (7.5) the 
differential equation for (u(t)) can be derived by calculating 

(.(t)> = f d . .  P("' t), (7.12) 

where the r.h.s, of (7.4) is substituted in (7.12). As a consequence of (7.7) and 
(7.8), the first two terms of (7.12) are 

f duu{Lo L~(t)}P(u, t) = {A0 + c~(A~(t))}(u(t)) + (f(t)), (7.13) + 

where we used (7.5) and the normalization of P(u, t). To calculate the higher 
order terms in (7.12) consider the quantity 

Bm= f duu{e"-'°)L°(L]t)(t)L]l)(h)... L]l)(tr,))p e-(H°)L°p(U, t)} (m i> 1). 

(7.14) 

Making use of (7.10) and (7.11) we can move the factor u through the first 
operators 

f du{e(Ho)ao((e~AID(t)u + f(1)(t))Ltl)(tt)... Ltl)(t,,))p e-(H°)L°P(u, t)}. B,. 

From the first factor between brackets (...)p only the first term survives, since 
[~)(t) is "annihilated" by Ltt)(h) (see (7.6) and (7.9)). By repeating this the 
factor u can be moved through all the operators LID: 

= f dua"{e(Ho)A°(AtD(t)Atl)(h) . . .  {aAtl)(tm)u B,. 

+ fO)(t,a)})p e-(t-'°)L°p(u, t)} 

= ~'.+l{e('-'o)Ao(Atl)(t)A]')(tO... Atl)(tm))p e-('-'o)ao}(u(t)) 

+ a " e('-'°)a°(Atl)(t)At')(t,)... Att)(t,,-,)ft!)(t,,))p, (7.15) 

since (7.9) and (7.10) imply that 

f duu e-(H°)L°p(u, = e-('-'°)a°(u(t)), t) 

f du e-('-'°)L°p(u, = 1. t) 

Substituting the results (7.13) and (7.15) into the r.h.s, of (7.12) one again finds 
the previous equations (4.1a)-(4.1c). 
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Note however that (7.4) now also provides an equation for the distribution 
function of u, not only for its average. Let us apply this to the harmonic 
oscillator (6.12) for which 

and 

0 + a--- {/22x +2Xp}  Lo = - - ~  p Op (7.16a) 

Using the statistical properties of 7(t) and specializing to the case that f2(t) is 
Gaussian white noise (~b(z)= ~(z)), one finds from (7.4) 

° P ( x , p , t ) = {  ° -f-~ 0"-t - 3-x p + (O2x + 2Xp) 

02 
(7.17) 

Now we can write 

m 

where 

f 
+ t ) .  j d6~b(¢)P(x, p, t), 

(7.18) 

f 
m !Din = p J d~th(O~ m, (7. 19) 

since the l.h.s, of (7.18) is just the Taylor expansion of its r.h.s. Here ~b(~) is 
the probability density of the jump size ~ (note that f d~4~(~)~ = 0 since 
(7(t))  -- 0). Substitution of (7.18) in (7.17) leads to a master equation for the 
process (x(t), p(t)), which is a consequence of the fact that both y(t) and f2(t) 
were assumed to be delta-correlated. It was derived by Van Kampen in a 
different wayS). 

A final remark is that the method of this section can also be applied to 
nonlinear equations3). The approximation of (7.4) to second order in L, 
produces a partial differential equation of second order in u, with coefficients 
which in general still depend on to and t. On a time scale large compared to ~'c 
the dependence on to vanishes and one obtains a Fokker-Planck like equation 
with (in general) time-dependent coefficients. In the white noise limit (4.6) this 
becomes a genuine (nonlinear) Fokker-Planck equation for a Markov process 
u(t). 
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Appendix A 

Connection between partial and total time ordered cumulants  

To find the connection between partial and total time ordered cumulants we 
first note that the rules (ii)-(iv) following eq. (2.8) for  constructing the 
p-ordered cumulants can be replaced by three equivalent rules: 

(ii') Write a zero on the first dot and any permutation of the numerals 1, 
2 . . . . .  (m - 1) on the remaining dots. 

(iii') In every permutation insert an operator ~ (defined by ~ . . . =  ( . . . ) )  
between two successive numerals i and j if i > j and an operator ~ = 1 - ~ if 
i < j and place this whole expression between brackets ( . . . ) .  

(iv') For each permutation with p - 1 operators ~ (p subsequences) supply 
a factor ( - ) P  1. 

So each permutation of 1, 2 , . . .  ( m -  1) yields a contribution to ( 0 1 . . .  (m - 
1))p which is of the form 

AK = ( - 1 ) P - I ( 0 ~ . . .  j 0 ~ ' i l ~ . . .  J l ~ i 2  . . . . . .  ~ip-l. . .  jp) 
= ( - )P- ' (O~. . .  j o ) ( i ,~ . . ,  j , ) . . .  ( i p - , . . .  jp) (A.1) 

if there are precisely ( p -  1) pairs (jK, i.+~) with jK > i,+l. Now each of the p 
subsequences in (A.1) is precisely a t-ordered cumulant (as defined in section 
3.1) containing one numeral or a number of increasing numerals. Therefore  
the rules for  obtaining the p-ordered cumulant (Ao( t )A~( tO. . .  Am ~(t,,-0)p, 
t/> t~ . . .  i> t,,-t, f rom the t-ordered ones are as follows: 

(A.i) Write a sequence of m dots. 
(A.ii) Write a zero on the first dot and any permutation of the numerals 1, 

2 . . . .  (m - 1) on the remaining dots. 
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(A.iii) Par t i t ion each  of  the ( m -  1)! pe rmuta t ions  of  numera ls  into sub- 

sequences  by  insert ing angular  b racke t s  ( . . . ) t  in such a way  that  two suc- 

cess ive  numera ls  be long to the same subsequence  if and only if the first one is 

smaller than the second.  
(A.iv) For  each part i t ion consis t ing of  p subsequences  supply a f ac to r  

( _ ) ~ - l .  

(A.v) Replace  each  numera l  n on the Kth dot  by  A, - l ( t , ) .  

For  the lowest  order  cumulan t s  this yields:  

(0 )p  : ( 0 ) t  , ( 0 1 ) p  : (01)t, (012)p = (012) t -  (02)t(1)t, (A.2) 

(0123)p = (0123) t -  (023)t( 1 ) t -  (013)t(2)t-  (03)t(12)t 

- (02)t(13)t + (03)t(Z)t(1)t. (A.3) 

N o t e  that  these connec t ions  are also given by  eq. (3.14) in a s o m e w h a t  h idden 

form.  

Proo[ of the cluster property for the individual terms A, 

As shown  by  Terwiel  4) the t -cumulants  of  identical  quanti t ies A(t) have  the 

c luster  p roper ty .  This remains  t rue for  the t -cumulan t  of  non-ident ical  quan-  
tities if they  all have  a finite c rosscor re la t ion  t ime (or au tocor re la t ion  time for  

those  which  are identical) with m a x i m u m  ~-~. Then  the t -cumulants  

(01 . . .  (m - 1 ) ) t  vanish  as soon  as ti - t~+~ ~> I-c, i = 0 . . . .  (m - 2). 
We will now show that  this implies that  each  of  the (m - 1)! te rms in which 

the p -cumulan t  (01 . . .  (m - ' l ) )p  is split up by . t he  rules just  defined, also has 
the c luster  p roper ty .  

Since the t imes are ordered ,  t />  tl/> • • •/> tm-~, it is sufficient to p rove  that  

each  term vanishes  as ti - t~+~ ~> re, i = 0 . . . . .  m - 2. We dist inguish two cases  
(for each  term):  

(I) The numera l  i is in the same subsequence  as (i + 1), ( consequen t ly  it 
c o m e s  next  af ter  i), so this subsequence  vanishes  as t l - t i + ~  > ~'c (each 
t -cumulan t  with more  than one numera l  has the cluster  proper ty) .  

(II) The  numera l  i is in a different  subsequence  as (i + 1). There  occu r  three 

cases  ((i) and (ii) are not  mutual ly  exclusive):  
(i) There  is a numeral  p succeeding  i within the same subsequence  as i. 

Then  it mus t  be (i + 2) or  higher,  so if tl - tH  ~> T¢, then cer ta inly  t~ - tp ~> ~'¢ 
and the subsequenc e  vanishes.  (This is a lways  the case  if i = 0). 

(ii) There  is a numera l  p preceding  (i + 1) within the same subsequence  as 

(i + 1). Then  it mus t  be (i - 1) or  lower,  so if t~ - t~+l ~> zc, also tp - t~+l >~ "r~ and 
the subsequence  vanishes.  



52  J . B . T . M .  R O E R D I N K  

(iii) Neither (i) nor (ii) is the case (so in particular i #  0). Then there occur 
two subsequences of the form ( . . .  i)t and ((i + 1) . . . ) t .  If these were the only 
ones then because of rule A.iii) the combination should be ((i + 1). . .) t( .  • • i)t, 
but this is impossible since on the first dot there must be a zero. So there are 
more subsequences. We will demonstrate that the following proposition R 
holds: at least one of these other subsequences is of the form ( q l q 2 . . .  qk)t, 
k > 1, with qi < i and qk > (i + 1) (SO that it vanishes if t~ - t~+~ ~> ~c, because 
then t q l - t qk~rc ) .  To prove this, we show that the negation 1~ of the 
proposition leads to a contradiction. There are again two possibilities: 

a) The subsequence ( . . .  i) precedes ((i + 1) . . . ) .  Then between them there 
are m subsequences,  m/> 1, so we have an expression like 

• . - ( . - .  i ) t ( q l , l . . - q l , k , ) t ( q 2 , 1 . - "  q2,k2)t 
• . . ( q m , ~ . .  • qm,km),((i + 1 ) . . . h - . .  (k~ t> 1). 

Now we apply rule (A.iii) and the proposition ~,, and infer the following chain 

of deductions 

(A.iii) R (A.iii) 
q1,1 < i ~ q l , k l  < i ~' q2 , !  < i ~ . . . --> qm,k , .  " (  i.  

But the last statement cannot be true since by rule A.iii) we have that 
qm,km > (i + 1): contradiction. 

b) The subsequence ( . . . i )  occurs after ( ( i+  1) . . . ) .  Then we have an 
expression like 

( 0 . . .  q l , k l ) t ( q 2 , 1  • • • q2,k2)t  

• . . ( q m , ~ . . . q m , k m ) t ( ( i + l ) , . . ) t . . . ( . . . i ) , . . .  (k,>~l). 

By the same reasoning as above we find that qm,k~ < i since 0 < i. But this is 
impossible since qm,~m > (i + 1) (rule (A.iii)) and we have again a contradiction. 

So we have proven that all the terms A, in (A.1) have the cluster property.  

Appendix B 

Here we will derive sufficient conditions for the estimates (3,21) to remain 
valid if there occur deterministic evolution matrices e r~a0 in the ordered 
cumulants in (4. lb)-(4, ld). 

To this end we assume that the t-ordered cumulants of Al( t )  satisfy 

([Al(tl)l)t <~ C~, 

(IA~(tOI... IAl(t,,,)l)t ~< C,, e -u,-''aj'°, 

where t>~ t l> / t2 . . . /> t , ,> / t0 .  The C~'s are positive 

(B. 1 a) 

(B.lb) 

constants and [ . . . I  
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denotes  a matrix norm. For  the cumulants  of A with f we assume a similar 

condition with [A~(t,,)[ replaced by  [[/(t,,)l[, 11..-[[ denoting the norm of the 
vector  f ( t , , ) .  Finally for  the t-ordered cumulants  of  A with u0 we assume 

(IA,(t,)[... [Al(t,.-0[ [A~(tm)l Ilu0- a01l), c "  e -((t'-t°)/7~), (B. lc) 

the C~'s again being posit ive constants.  
The matrix e ta° can be expressed  in the following way: 

e tA° = ~ ,  t t eXktZkt, (B.2) 
E~--t /=0 

where h~ , . . ,  h~ are distinct eigenvalues of  A0 with ~k having multiplicity ink. 
The matr ices Zk~ have constant  e lements  and depend only on A0. 

Using (B.1)-(B.2) we will now show that the est imates (3.21) remain valid if 

1 
(I) (Re h)max --  (Re h)min < - - ,  (B.3) 

Tc 

1 
(II) (Re)~)max < - - ,  (B.4) 

Tc 

where " m a x "  and "min"  denote respect ively  the largest and smallest  value of 

the real part  of  hk, k = 1 . . . . .  o-. 
If  condition (I) is satisfied all limits to in (4.1b) can be replaced by  - ~  after  

a transient time and the est imate (3.21) for  K ~  ) becomes*  

a mK~ - a ~ ,m - l ,  (B.5) 

where 

T" = 1"¢[1 - AAR 're] - I ,  (B.6) 

with 

AAR = (Re h)max -- (Re h),~,. (B.7) 

Similarly, conditions (I) and (II) toge ther  imply that for  t >> ~'c all limits to in 
(4.1c) can be replaced by  - ~  and that I( t l to)  vanishes*: 

a " F ~  ~ (a~-") m ; Im ~ 0, (B.8) 

where 

~'" = max {%[1 - }k R TC] -1, T~}, (B.9) 

with 

hr~ = (Re A) . . . .  (B.10) 

*K,., F~ and I,, are the coefficients of  a m in the expans ions  (4,1b)-(4.1d). 
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The conditions (B.3) and (B.4) may be weakened in specific cases,  e.g. if A0 
and A~(t) commute  (B.3) can be dropped.  If  A0 has purely imaginary eigen- 
values both (B.3) and (B.4) are satisfied. 

To derive (B.3) consider the quantity 

B = e(H°)A°(A~I)(t)A~I)(tO... Atl)(tm))p e -(t-'°)A°, (B. 11) 

which occurs in (4.1b). The p-cumulant  (01 . . .  m)p is a sum of m! products  of 
t-cumulants (see appendix A). In each of these terms the time variables of the 
matrices A~)(.) have a definite order which is a permutat ion P of 0, 1 . . . . .  m 
with P ( 0 ) = 0 .  Defining the kth permutat ion ( k - - 1 ,  2 . . . . .  m!)  by Pk(l)= 
kl(l = 1, 2 . . . .  , m) we find 

m! 

B = ~ l B k ,  

Bk = (Al( t )  e"-tk?a°Al(tkl) e%-*k2)a°. • .)t 

• . . ( . . . ) t - . - ( . . -  e ('~- ~-%)A°Al(tk~,))t e (%-')a°. 

Taking the norm of Bk this gives 

(B.12) 

m 

IBkl gI [e(%l-'k?A°lle(%-')A°lflAl(t)l""" ) t . - - ( - . .  Iml(tk,)l)t, (B.13) 
i= l  

where tk0 =-- t. 
Now the r.h.s, of (B.12) contains a product  of a number,  say p, of 

t-cumulants.  The first and last numeral  (each numeral  i stands for Al(ti)) of 
the /th t -cumulant  is denoted by it, resp. jt (where t~, ~- t, tj~ - tkm). If there is 
only one numeral  in a t-cumulant we put it = j~. Within each t-cumulant the 
numerals  increase, so f rom (B.2) we can deduce the estimate (let A0 be a 
N × N-matr ix)  

}e('~,-,-'k,)A01 ~</3 e ' ,  '-tki)(ReX)max t k_  - -  tkll N - I  

~</3(t - tin) N-~ e% i -/ki)(ReA)max (tk, , -  tk, >-O) (B.14) 

for the evolution operators  occurring within a t-cumulant.  Here /3  is a posit ive 
constant  and we used that t,~ ~< tk~ <~ t for all i ~ {0, 1 . . . . .  m}. Going f rom one 
t-cumulant  to the next  the numerals  decrease,  so for  the remaining evolution 
operators  " b e t w e e n "  successive t-cumulants we have: 

le(',,-,-",)~o I ~ /3  e% -,,,)(g~ X)mio Itj,_,- t,,I ~- '  

/ 3 ( t  - -  t in) N-1  e(th- ,- t i l  )(Rex)rain (ti,__,- ti~ ~< 0). (B.15) 
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Using (B.14), (B.15) and (B.1) we find 

[Bk[ ~ /3  ~+1(t - t~) ('~+'¢N-' i(-I {e"')-*J, )(~e ~> . . . .  e-',÷,-'~? <Re A)min} 
l - I  

x D ]z I e-(t',-'J, )l/', (B. 16) 
I=1 

where  tip+,--- t and D is a posi t ive constant .  
Since t~, = t~;+~-- t it fo l lows that 

~=l {t~,+l- t~,} = ~=t ti, - t,,, (B.17) 

so (B.16) leads to 

lBkl <~ Dfl"+t(t  - tm,"+1)(N-1)exp [1~__1 ( t i , - t j ,>{(Re )~)max- (Re)k)min - I }  ]. 

(B.18) 

N o w  tit - ti) ~> 0, and there is a numeral  l' such that t h, = t,,, hence  

ti, - tj, t> ~ t~, - tj,. (B. 19) 

Fu r the rmore  ti,+, - tj~ >1 O, so 

t - tj~ + ti2 - t~ >i  t - ti~. 

Repeating this argument we find from (B.19) 

~ ti~ - tj~ >! t - t~ .  (B.20) 
/ = l  

There fo re  if AAR - 1/T~ ~< 0, 

The es t imate  (B.21) leads to the conclus ion  that in (4. lb)  limt0-,-~ K(t/to) exists  
if f !~ d t j . . ,  f~a-' dtmIBk[ exists  for  all k. This is the case if Z~AR < l/r~, which is 
condi t ion (B.3). 

In the same w a y  w e  find for  the kth term of the quant i ty  

B ' =  e(H°)a°(Atl)(t) . . .  Atl)(t~-l)f")(tm))p, (B.22) 

[B~[ ~< I~ [e(tkH--1~i)Ao[([Al(t)[ "" .)t(-- .)t-. .(. .-[~(h%)l[)t.  (B.23) 
i=1 
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Using (B-14), (B.15) and (B.l) one has 

X &+r -$l(Re AImin e-"',-'j,'l/'c 
9 (B .24) 

where D’ is again a positive constant. By virtue of (B.17) we can write 

(B;( s D,Pm(t _ tm)m(N-l) ,I: e(~i,+,-~i,H(Rc*)..,-(Re*).i.-l/~~)] e(~-~~,K(Re~)m~-l/~~J. 

[R 

(B.25) 

Now we distinguish between two cases: 

(i) (Re h),i” 2 0: Then 

(Re A),,, - (Re h)min c (Re Ahax, 

hence 

(B.26) 

c D’P”(t - t,) MN-11 eW,KhR-l/r,) 
, (B.27) 

where we used (B.17) and (B.20) and the assumption KC l/7, to get the last 
inequality. 

(ii) (Re h),i, < 0: Then 

(Re A),,, - (Re ALin > (Re ALax, 

so by a similar argument as in (i): 

IB;I c vPm(t _ tm)mW-l) e(f-W%&l/Q (B .28) 

Finally consider the kth term of the quantity 

B” = e(*-WAo(Ajl)(t) . . . AP’(t,-,)[Al”(t,)(u, - iio)l)p, 

for which 

IB;I < fi ~e(f4-,-‘~,)A~lle(f~~-‘~)A~~ 

x (IA,(t)1 . . A(. . .>t . . . C . . IMfk,)l 11~0 - iiol()t 

s pm(t _ tm)m(N-l) e(ti,-ti,)(Re Ahtax &+t -t$(Re A)min 
I 

(B.29) 

x fi(tk, _ to)N-l e($,-WReQna. x D” [g e-(G-$WI,) e-C$,-WTc, (B.30) 
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w h e r e  aga in  use  has  b e e n  m a d e  of  (B.14), (B.15) and (B.1) (D" is a pos i t i ve  

cons tan t ) .  B y  r e a r r a n g i n g  the  t ime  va r i ab l e s  in the  r .h.s ,  of  (B.30) us ing  (13.17), 
one  is led  to  

IB~I <~ D"~8"+l( t  _/0)(re+l)(N-l) e(til+l-tjl){(SeX)max-(aeX)min-l/rc} 
LI=I 

X e (t-tkm){(R© A)max-1/¢c} e(tkm -tO){(Re X)max-'l/'rc} 

<~ D"[3m+l(t  - to) ~m÷~)tN-l) e ~t-'°)~xR-I/'c) ~< , (13.31) 

w h e r e  the  a s s u m p t i o n  A)tR ~< 1/rc has  b e e n  m a d e  to  ge t  the  las t  inequa l i ty .  

T h e r e f o r e  if (B.3) and  (B.4) a re  sa t i s f ied  w e  c o n c l u d e  f r o m  (B.27),  (B.28) 

and  (B.31) tha t  the  e x p r e s s i o n  (4.1c) wi th  all l imi ts  to r e p l a c e d  b y  - o o  ex is t s ,  

and  tha t  l i m t ~  I ( t/to) = O. 
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