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The cumulant expansion for linear stochastic differential equations is extended to the general
case in which the coefficient matrix, the inhomogeneous part and the initial condition are all
random and, moreover, statistically interdependent. The expansion now invoives not only the
autocorrelation functions of the coefficient matrix (as in the homogeneous case) but also
crosscorrelation functions of the coefficient matrix with the inhomogeneous part and with the
initial value term. As a first illustration we consider an exactly solvable stochastic differential
equation with initial correlations and compare the exact solution with that of the cumulant
expansion. Secondly we show in general how the method can be used for the calculation of
second moments, and treat the harmonic oscillator with random frequency and driving term as an
example.

1. Introduction

Consider a system of linear differential equations of the form
% u(t)= A(t, o)u(t) + f(t, w), (1.1a)

u(te) = up(w), (1.1b)

where u(t) is a vector. The coefficient matrix (or operator) A(t, w), the
inhomogeneous vector f(t, w) and the initial vector uy(w) are all regarded as
random quantities of which the joint probability distribution (or other statis-
tical characteristics such as joint moments, cumulants etc.) are prescribed.
The random nature of these quantities is indicated by the parameter w, which
is an element of a set 2 which, together with a o-algebra 3 of subsets of
and a probability measure P on 3, constitutes a probability space. In the
following we will often omit the parameter w for brevity.

The elements of the matrix A(t) and the vector f(t) are random processes,
i.e. they describe fluctuations in time. They are not necessarily stationary. The
random matrix process A(t) and the vector process f(t) have been called
multiplicative and additive noise respectively'), because they enter (1.1a) in a
multiplicative, resp. additive way. This distinction is only meaningful for
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linear equations, because in nonlinear equations also the noise f(t) will come
in nonadditively in the solution u(t).

The solution u(t, w) of (1.1) is again a random process. The problem is to
find the statistical properties of u(t) as for example its average (u(t)), when
the statistical characteristics of A(t), f(t) and uy are given. Here the angular
brackets (...) denote an average with respect to the probability measure
P:ut))=fou(t, w)P(0w)do.

The case in which A(t), f(t) and u, are statistically independent has been
studied before’™®). The result, which will be described in more detail in the
next section, was that in the case of small and rapid fluctuations in A(t), a
linear differential equation for the average (u(t)) exists for fixed initial
condition u(ty) = u,,

& ut) = Ktk + G, (12)

Here K(t/to) is a non-random matrix, which is obtained as an infinite series of
terms in successive powers of the parameter a7, (sometimes called the Kubo
number), where 7. is the (short, but non-zero) autocorrelation time of the
fluctuations in A(t) and a a measure for their strength. Moreover K(t/to)
becomes independent of the initial time t, as soon as |t — to| = 7.

In this article we are concerned with the case in which A, f and u, are
mutually correlated. We find again that (u(t)) obeys a linear differential
equation, provided that a7, is small,

& ue) = Katltou(®) + Flajt) + 1), (13)

where both the matrix K(t/t;) and the vectors F(t/ty) and I(t/ty) are found in
successive powers of at.. K involves the moments of A(t) alone, and is the
same as in (1.2); F involves the joint moments of A and f and I those of A
and u,. In this case there are three correlation times involved: the autocor-
relation time of A(t), the crosscorrelation time of A(t) with f(t), and that of
A(t) with u,. All of them are assumed to be finite, and the largest is denoted
by 1.. Then we find that after a transient time of order 7., K and F become
independent of t, while I vanishes, so (1.3) becomes

& )= Raxu)+F@) @) (1.4

If this equation is to be of any value, the transient time should be short
compared to the duration of the process u(t) itself.

A model of type (1.1) with correlated multiplicative and additive noise
recently arose within the context of meteorological investigations®). The first
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two terms of F were derived by a method different from ours, as discussed by
Soong®).

Apart from specific models as the one mentioned above, another motivation
for admitting a correlation between A and f in (1.1) lies in the following. If
one considers the second moments of u(t), satisfying (1.1) with A and f
uncorrelated, then these second moments can again be studied by an equation
of this type, but now with a new A’ and f’ which are correlated.

In the following we first review some basic results for the homogeneous
case (section 2). Then we derive the results for the inhomogeneous case
(section 3), which are summarized in section 4. In section 5 an example is
given for which one can explicitly show the decay of initial correlations
between A and u, In section 6 we give the general result for the second
moments of u(t), if A and f in the original equation for u(t) are uncorrelated.
As an application we show that the expansion (1.3) reproduces the results of
West et al. for the damped harmonic oscillator with stochastic frequency”®).
In the final section an alternative derivation of some of the results of section 3
is given via the so called *‘stochastic Liouville equation”.

2. Summary of previous results for the homogeneous case

We briefly review here the results of Van Kampen?®) for the homogeneous
case (f(t) =0) with non-random initial conditions.

2.1. The cumulant expansion

The solution of
aq; u(t) = aA(u(t), 2.1
with initial condition u(ty) = uy (fixed) is given by

u(t) = T[exp {a f dsA(s)}]uo, 2.2)

where T denotes time-ordering (latest times to the left) with respect to the
operators A(.). From (2.2) one obtains the moment expansion

u(t)) = {1+a f de(AD) + f dt, f At (A AL + - - -}uo. 2.3)
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The series (2.3) in general converges very slowly and in particular, finite
approximations are only valid for a limited time of order o ': the expansion
(2.3) is nonuniform as t >, To get a more uniform expansion, which avoids
secular terms (although it may be asymptotic) one expands the average of
(2.2) in cumulants, rather than in moments.

To this end, operators K,, K, ... are constructed in successive steps such
that the average (u(t)) can be written as

t
() = T[exp {2 " dsKm(slto)” o, (2.4)
m=1 o
where the time-ordering T now acts with respect to the operators Ko (./to).

The remarkable implication of (2.4) is that the average (u(t)) itself again obeys
a differential equation

L (uen = Kauey, @.5)
where
K(t) = 3 a"Kn(tlto). @.6)

It turns out that the operators K,, are given by

t

m-2

t t
Km(t/to) = f dtl I dt2 e I dtm_lcm(t, tl, ey tm—l)) (278)
1y t

to

with
Cult,ty, ..., tm) =(AWMAM) ... Altm-D)ps (2.7b)

where by definition K (t/tg) = C\(t) ={A(t)). The expression (2.7b) is the so-
called “time-ordered cumulant”, which is a certain combination of moments
of A(.) with a specific ordering of the time-variables. As first pointed out by
Kubo, various orderings are possible'®). The one meant in (2.7b) is the
so-called “partial time-ordering”''?). Consequently, the ordered cumulant
(2.7b) will be called “partially time-ordered cumulant” (p-(ordered) cumulant
for short) and it is indicated by (...),. In section 3 another type of ordered
cumulant will be encountered, namely the ‘‘totally time-ordered cumulant™
corresponding to “total time-ordering™'') (or ‘‘chronological time-order-
ing”'?)). This one will be denoted as t-(ordered) cumulant and indicated by
{...% For a relation between these two types of ordered cumulants, see
appendix A. If not explicitly stated, the term ‘“ordered cumulant™ is to be
understood as ‘‘p-ordered cumulant™.

The connection between the moments and p-ordered cumulants of A can be
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found by comparing equal powers of a in the expansion of (2.3) and (2.4)").
The rules for constructing the p-ordered cumulants from the moments were
first given by Van Kampen?®). For later use we give them here in a slightly
more general form. Consider m (non-commuting) time-dependent quantities
(operators, matrices, vectors) Ae(t), Ai«(t), ..., Am_i(t). The ordered cumulant

(Ao(DA (L) ... Api(tm-D))p, EZH = Z oy, (2.8)

is obtained in the following way:

i) Write a sequence of m-dots.

ii) Partition them into subsequences {...) (denoting moments) by inserting
angular brackets in all possible ways (excluding empty subsequences).

iii) For each partition consisting of p subsequences supply a factor (—)""".

iv) For each partition write a zero on the first dot, and any permutation of
the numerals 1,2,...,m — 1 on the remaining dots, subject to the condition
that in each subsequence they must not decrease.

v) Replace each numeral n written on the kth dot by the quantity Ai-(t,)
(the numeral 0 stands for t,=t).

For example (for the interpretation of the numerals see rule (v)):

(0), =(0), (01), =(01)—(0X1), (2.9a)
(012), = (012) — (0X12) — (01)(2) — (02)(1) + (0)1)(2) + (OX2X1). (2.9b)

The reverse transformation from cumulants to moments is given by the rules
(i)~(v) with the following modifications:

—in (ii) replace (...} by (.. .),

— omit (iii)

—in (iv) add the condition that also the first numerals in successive sub-
sequences do not decrease.

For example
(O> = <0)p9 (01) = (01>p + «»p(l)p, (2103)
(012) = (012), + (0)5(12), + (01)5(2)p + (02 1)+ (0)p(1)p(2),.. (2.10b)

The p-ordered cumulant (2.8) reduces to that of Van Kampen’s definition if
Ag=A,=-++=A, = A. If all quantities commute at different times it is
identical to the ordinary cumulant in the many variable case'). For a scalar
Gaussian process, all cumulants beyond the second vanish (the same holds for
a delta-correlated vectorial Gaussian process')).
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2.2. Cluster property and large time estimates

An important property of the ordered cumulant is the “‘cluster property”,
meaning that the cumulants vanish as soon as the moments factorize>'). More
precisely, suppose that A(t) has a finite auto-correlation time 7., such that all
matrix elements of A(t) are statistically independent of those of A(t') if
|t —t'|= .. Then the cumulants (A(t)A(t) ... A(tn-1))p, With t=t;=-- =
tn-1, vanish if there is a gap between two successive times which is large
compared to 7. (in general this is strictly valid only asymptotically).

This cluster property implies that for large time the contribution to the
integrals in (2.7a) comes essentially from the region

t—’Tc$t1$t;...;tm_z'—‘TcgtmalstM_z.

So t and t,-, are at most a distance (m — 1)7. apart. Therefore if |t — to| =
(m — 1) 7. the expression (2.7a) approaches

t 1y

tm-2
Kn(t) = f dt, f de;... [ Aty 1 Gt tr, - . o, =)y (2.11)

—o

which is independent of the initial time t,. From this we also deduce that for
large time the mth order term in (2.6) is of order a™r™"' (assuming that A is
of order unity). The resulting equation

a‘it (u(t)) = K(t)u(t)) (2.12)

is now satisfied by all solutions of (2.1) after a transient time of order r,
independent of the time at which the initial value u, is fixed. If in addition the
process A(t) is stationary or becomes stationary on the same time scale 7. as
the correlation functions decay (as is the case for so-called “switched-on
processes™'), then K(t/t;) approaches a value K as t—ty>r. which is
independent of ¢, and t.

3. The derivation of (1.3)

In this section the central result (1.3) will be derived by constructing first an
integro-differential equation for the average (u(t)) which subsequently is
turned into a differential equation. This method was used by Terwiel®) who
gave an alternative derivation of the results of the previous section for the
homogeneous case.

So consider (1.1) with A(t) of the form

A(t) = Ao(t) + A1),
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where Ay(t) is a sure matrix, and A,(t) random (not necessarily with zero
mean). First we transform u(t) to the interaction representation v(t) by

u(t) = U(tlt))v (1),

where

t
Ultlte) = T[exp f dsAo(s)].
to
Then (1.1) transforms to

d% o(t) = aV()o(t) + ag(t), (.12)
with
A() = Ut VIOU'(t/te), f@t) = U(t/t))ag(t). (3.1b)

For convenience we took the magnitude of f to be also of order a. If we
finally transform back to the original representation this « will disappear
again. The eq. (3.1a) will be the starting point of the derivation.

3.1. The integro—differential equation for (v(t))

By well-known projection operator techniques®) one can derive from (3.1a)
an integro—differential equation for the average (v(t)) with random initial
condition v(t,) = uo. That is, defining the averaging-operator ? by

Po(t) = (v(t)),

one finds for the average (v(t)) the following equation*), where 2 = 1— %
d
ar (v(1) = a(V()Xv(t))

+jdsa2<V(t)T[expa de'EZV(S’)]QV(S)>(U(S))

0

+alg(t) + f dsa2<V(t)T[expa f ds’QV(s’)]éZg(s)>

+ a<V(t)T'[exp « j dsszV(s)]gzuo>. (3.2)

*The first two lines of (3.2) to second order in a are identical with Bourret's integral
equation'®*™).
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Usually one takes a fixed initial condition u, which implies that the last line of
(3.2) vanishes, since then Qu, = 0. We will not make this assumption here. To
condense the notation somewhat, we first note that the last line of (3.2) can
also be written as

a(V(t)2ue) + f dsa2<V(t)T[expa f ds'ng(s')],on(s)szu0>.

Therefore, if we define a ““vector’” X (t) with components
Xi(t)=V(t), Xit)=g(), Xit)=V(t)Qu,, (3.3)

(3.2) can be written as
%(U(t)) = fdsl“‘”(t/s)(v(s))+ j ds{I'®(t/s) + LV(s)}, (B4
where T (i = 1 2, 3) is given by ’
TO(t]s) = a(Xi(s))B.(t — 5) + a2<V(t)T[exp o f ds’SZV(s’)]SZX.-(s)> 3.5)

and f§ dt5.(t) = 1 (e > 0). For later use we expand the I'” in powers of «

rous) = 3 o T{(s), (3.6)
=1

where

ritls) = (Xi(s))d.(t — ), (3.7a)

rtls) = (V()2Xi(s)), (3.7b)
and I'®,, with m =1 is given by

T (ts) = f dt, f dt,. .. f dt,COt, t, ..., tn, s), (3.7¢)
with

COt ty, ...t ) =(V(DAV(t)... 2V ()2 Xi(s5)). 3.7d)

The average (3.7d) is the so-called “totally time-ordered cumulant”'-'?). For m
non-commuting quantities Aq(t), Ai(t), ..., A,—i(t) the t-ordered cumulant is
defined as (A, () being abbreviated as k; t; = t,,1):

012...(m —1))=(02122...2(m —1)); (0)=(0). (3.8)
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In all terms contributing to (01...(m — 1)), the numerals are in decreasing
time order (it can be obtained from (01...(m —1)), by allowing only the
identical permutation of 1, 2,...(m — 1); see also appendix A), which clarifies
the adjective “totally time-ordered”. As shown by Terwiel?) also the t-ordered
cumulant (. ..) has the cluster property.

3.2. Derivation of the differential equation for {v(t))

Now we want to convert the integro-differential equation for (v(t)) into a
pure differential equation, making use of the fact that the memory effects in
(3.4) are small if a1, is small. Here 7. is the largest of the autocorrelation time
of V and the crosscorrelation times of V with g and u,, which are all assumed
to be finite.

Following Terwiel’s iteration method*) we put

() = (o)~ [ db 3 (ot 3.9)
and substitute this in (3.4). This leads to

£ ) = [ asTOus) )

+ f ds{T(t]s) + It/ 5)} - f ds f dtlrm(t/s)ditl(u(t,)). (3.10)

Then we substitute again (3.4) with t = t, in the r.h.s. of (3.10), use again (3.9)
and so on. Iterating this procedure one obtains

L (o) = KO(WtoKo(0) + KO(tito) + KOtlto), G310

where KO(t/te) (i = 1, 2, 3) is defined as

KO(t/t,) = J' dsTO(t]s)+ é}l(—)"{ f dsT(t/s) f dt, f ds, Tt /s,)

t thy t th
PP f dtn—l f dsn«lr(l)(tn—l/sn—l) J’ dtn I dSnF(i)(tn/sn)}-
Sn-2 to Sn-1 fo

n—

(3.12)

Note that each term of K contains a product of I'""’s ending with a I'®.
Inserting the expansion (3.6) in (3.12) and rearranging the terms according to
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increasing powers of ¢, we find

KOt = 3 a"Ktlt) (=1,2,3) G.13)

where

0

k=1&=1 Ky =1

K&t = [ T8+ 3 (<13 S S berne

f dsTi(t/s) f dt, f dsi Tt/ 51)

t

t [ ty
. I dtn_l J' ds,HI‘}(L)_,(t,lfl/s,._l) dtn fds,.rfn)(tn/sn)}.
Sn—2 to Sn~1 fo

(3.14)

By careful examination of (3.7) and (3.14) one notes the following. The only
difference between K, K? and K¢ lies in the fact that in each term of (3.14)
the last quantity in the last t-ordered cumulant is X, X, and X; respectively,
with the same time variable. This conclusion will be needed in the next
section.

3.3. Identification of the ordered cumulants

Now we make a connection between the results (3.11)-(3.14) and those of
section 2, where the homogeneous case was discussed. Let us write down
explicitly the lowest order K{’s as calculated from (3.14) and (3.3):

K{t/te) = j dsT(ts) = (V (1)), (3.152)
K{(tto) = f dsT(t]s) = f ALV V) — (VIOXV ), (3.15b)

K$(t/tg) = f dsT9(ts) - f ds f dt, f ds,TP(t) )Tt s1)

to

- f dt, f AUV VIV~ (VIO VI V(L)

—(VIOXV (1) V(1)) = (VO V(EIXV (1))
HVIOXVEIKV (1)) + (VIOX VKV ()} (3.15¢)
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The integrands of the expressions (3.15) are now easily recognized as the
p-ordered cumulants of V, as defined in section 2. In fact we know that (3.11)
must reduce to (2.5) if we take f(t) identically zero and a sure initial condition
uo. Therefore the K< as defined by (3.14) can be identified with (2.7)

t ty tm-2

Ki,‘.’(t/to)=fdtlfdtz... f dt,-(VOV(ED) ... V(tm-1))p- (3.16)

fo fo to

This can be explicitly verified by inserting the expressions (3.7) for i = 1 into
(3.14) and rewriting the result as an integration over the domain t=t,=
t;: - =t,_;. This is achieved by splitting up the original domains of in-
tegration and/or a relabeling of time variables and changing the order of
integration. For example

f dsT(t/s) f dt, f ds:TPAt/sy)

t 4 s
= [ar. [ as [ asrows rieso+ TP/,
to fo fo

The new integrand contains one or more new terms which can be obtained
from the original integrand by a permutation of time variables. The crucial
point is that no interchange of operators (or matrices, vectors) is involved.

The same manipulations which lead from (3.14) to (3.16) can also be carried
out for KP/K. Since we showed that

i) the only difference between K?/K$ and K is that the last quantity in
each term which contributes to K?/K® is a g()/V(.)2u, instead of a V(.
(section 3.2),

ii) no operators (matrices, vectors) are interchanged going from (3.14) (with
i=1)to (3.16),
we conclude that

K9(t/to) = j dt, J' dt,. .. f it (VOV()... V(tn2)g8(tny  (3.172)

where

KP(t/to) = (g(1)) (3.17b)
and :

KO/t = f dt, f d, ... f At VIOV . . . Vtn-)V (tn-1)2t0]),,

(3.18a)
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with
KP(t/te) =(V (1) Quo). (3.18b)

The integrands of (3.17) and (3.18) are multivariate p-ordered cumulants as
introduced in section 2. They can easily be obtained from the K{ in (3.15)
and (3.16) by replacing the last operator V(.) in each term which contributes
to K by the corresponding vectors g(.) and V(.) Qu, respectively. Note that
in (3.18a) the vector V(t,-;) 2u, has to be considered as a single quantity with
time variable t,_,. The results (3.17) and (3.18) can be verified to a given order
by explicit evaluation of (3.14) for i =2, 3 using (3.3) and (3.7).

If g is independent of V, K =0 for m =2, while K¢ vanishes for all m if
uo is non-random or statistically independent of V. This last statement follows
from the fact that all moments, which satisfy

(VIOV(t) ... V(tw D V(tw-1)2ue) =(V(O)V (1) . . . V(Em-1)X2u0),

if the factor 2u, is independent of the others, vanish since (2u,) = 0. There-
fore also the ordered cumulants

(VOV(t) ... V(tw D[ V(tm-D2uel)y (m=1)

vanish, although the last factor V(t.-) 2u, as a whole need not be in-
dependent of the others, because of V(t,-1).

Notice that the correlation of u, with g(.) does not enter (3.17) or (3.18).
However, it does come in if one studies the second moments of v(t).

3.4. Large time estimates

The expressions (3.16), (3.17) and (3.18) still contain the initial time t,, while
(3.18) in addition depends on the initial value (distribution) uy. At this point we
use the assumption that the autocorrelation time of V, the crosscorrelation
time of V with g and that of V with u, are all finite, the largest of them being
denoted by 7.. We will now show that after a transient time of order 7., the
expression (3.16) for K)(t/t;) approaches (2.11), while (3.17a) tends to

t f1 tm-2

KE0= [ an [ do.. [ da VOV . Vg, G19)

and

KPtit)»0 (m=1,2,..). (3.20)

The expression (3.16) is the same as (2.7a) of which it was shown in section
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— -l —————

| s t t } } — (a)
t L t2 t3... coitm-3 tm-2 tmoy to

- mr.

R —+———— (b)

t otz t... voetm3s tm2 tmr lo

Fig. 1. Maximal extension of the integration domains in (a) K&7; and (b) K o

2.2 that it tends to (2.11) if |t — | = (m — 1)7.. An analogous argument can be
given for K. In (3.17a) t and t, are at most a distance of order 7. apart
(otherwise V(t) is independent of V(t;), but then also of V(t), V(ts) etc.
because of the ordering of times, and also of g(t.—;) because 7. is the largest
correlation time: so the ordered cumulant vanishes). Repeating this argument
one finds that the distance between successive time variables is at most 7, so
that t and t,,_, differ at most a time of order (m — 1)7. (see fig. 1a). Therefore
if |t — to| = (m — 1), K2(t/t,) approaches the expression (3.19).

Now consider (3.18). By the same argument as above we see that t,_ is at
most a distance of order (m —2)7. away from t. Also t,-, cannot be further
apart from t,_, than 7. because otherwise the whole factor V(t.-1) 2uo is
independent of V(t,-,) and the cumulant vanishes. On the other hand, if tn 1
differs more than 7. from t, the factor 2u, is independent of all the operators
V(t), V(t),..., V(tm_1), and the ordered cumulant vanishes (see the argument
at the end of section 3.3). We conclude that ¢t and t, can be at most a distance
of order mr. apart, otherwise K& vanishes for all m (see fig. 1b).

So after a transient time* of order 7., K®(t/t,) is independent of to, while
K®(t/ty) which was due to initial correlations between V and u,, vanishes.
This implies that the quantities (3.13) are expansions in powers of a7 and we
obtain the large time estimates

a"KD ~ a(ar)™!, a"K@~a(at)™', K& ~0. (3.21)

4. Summary of the results

Going back to the original representation u and taking A(t) = A+ aA(t),
we have shown that, if ar. <1, the average of (1.1) obeys the linear differen-

* This time t should be such that 7.<T{ <14, where 74 is a measure for the duration of the
process v(t).
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tial equation
() = K(toKu(®) + F(@lto) + 11, (4.12)

where

t

K(t/tg) = Ao+ a{A\(t)) + 2la'"+'fdtl fdtz

fo
tm—1

. f dt e TO%ANDAP(R) . .. A(t)), e ¢, (4.1b)

to

F(t/to)=(f(t)>+2l o [t f dt,

: f dt,, e" (AP AL(R) . .. AP )f () (4.1¢)

t

f
I(t/to) = a (A (t) e~y — o)) + >, o™ f dt, f dt,
m=1
ty

)
t

- I dt,, e APDAL() ... APt )ALt ) U — @), (4.1d)
fo
Here the superscripts (1) denote the interaction representation
AP(t) = e WA (1) e0R; f(1) = e 0A0f (1) 4.2)

and ii, denotes the average (u(tp)). In calculating the ordered cumulants in
(4.1d) the vector A{"(t..)(uo — ily) has to be considered as a single quantity with
time variable t,.

The presence of the deterministic evolution operators e in (4.1b)—(4.1d)
poses a difficulty. Namely in deriving the large time estimates (3.21) we
assumed that the lower limits t, in (3.16)—(3.18) can be replaced by — = if the
time t is large. Because of the operators e'“ this need no longer be true in
(4.1b)-(4.1d). Roughly speaking the possible growth of the deterministic
evolution operators with time must not compensate the decay of the ordered
cumulants. More precise criteria are derived in appendix B. If A, has purely
imaginary eigenvalues the estimates (3.21) remain always valid.

The condition a1 <1 is always necessary for the validity of the expansion
(4.1) (excluding secular terms) except for the case in which the expansion is
actually finite (as (2.6) is for a scalar Gaussian process). The fact that the
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transient time of the mth order cumulants increases linearly with m (in
general at least) indicates that the expansion may be asymptotic, unless the
cumulants are negligible after a certain m>').

‘Finally we give the result (4.1) to first order in ar. for times exceeding the
transient time (assuming that the deterministic evolution does not spoil the
decay of the cumulants):

2 ey = { A0+ ata i+ * [ aria e A =), e luo)
o

)+ o j dr{A(t) e (t — 1))y @)
0

If in addition we assume that
JAd <1, (4.4)

i.e. the deterministic motion of u(t) is slow compared to the fluctuations in A,
then (4.3) reduces to

Sty = { Ao+ kA @) + o2 oj dr(ADALE - 1) Ku(®)

+{f(tPH+ea f dr{A(Df(t — 7). 4.5)
0

This result is exact in the white noise limit:
ar.—>0, o7 fixed, (4.6)

since the higher order terms in (4.1b) and (4.1c) are of relative order (at.)",
m = 1, compared to the r.h.s. of (4.5).

5. First example: decay of initial correlations

As a first illustration of the expansion (4.1) we now discuss an example of
an exactly solvable stochastic differential equation in which the random
coefficient matrix is correlated with the initial value. As a check of the
expansion (4.1d) we show that its lower order terms for this case reproduce
the exact result if this is expanded up to the same order.

Consider the equation

d% u(t) = ou(t) + aé(t)o,ul(t). .1
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Here u(t) is a two-component vector and o, and o, are Pauli-matrices. For
the sake of clarity vectors will be printed in bold-face type in this and the next
section. For £(t) we take a dichotomic Markov process®) with values +1 or
—1. The composite process (u, £) is again a Markov process. Its joint
probability density P(u, £, t) satisfies’)

S P ED =0 [ow + atDow)P(u, & D)+ 3 WEEP (£, 1),

(5.2a)
with
W(EE) =y — 278 (5.2b)
The evolution of the “‘marginal averages”
{(U)s = [duP(u,_t Low (=12 (5.3)

arranged as a vector with components (u)., (u;)-, (4;). and {u,)_ respectively,
is determined by the matrix

we (i gl )

oo, ~i+ Yo,
Here 1 is the 2 x 2 unit matrix. The eigenvalues of (5.4) are
AMa==Ytps, Aa=—vip; pe=Val+(yz1) (5.5)

In terms of the sum and difference of the marginal averages

(i) = Ui+ + (i), (o) = (Ui)s — (wi)-, (5.6)
we find

(ui(t)) = ¢+ ()(ur(0)) + d+(t){vx(0)), (5.7a)

(ua(t)) = c-(t)Xux0)) + d_(t){v:(0)), (5.7b)
where

C:(t) = {EELZ(,%;_-’:-Q} e(—7+u:)l + {&___Z%tﬁg} e(—v—#:)l, (5.83)

d.(t) = ﬁ— e et — g ), (5.8b)

To compare the result (5.7) with that of the cumulant expansion, we differen-
tiate (5.7) and express the result in terms of (u(t)) and (v(0)) by eliminating
(u(0}) from (5.7) and its derivative:
(1)) = k. (t)(ui(t)) + i (1)X02(0)), (5.9a)
(x(2)) = k-(£)XuxAt)) + i-(t)X0:(0)), (5.9b)
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where
k.(t) = ad; {Inc.(t)}; i.(t)= d.(t) — d-(t)k=(1). (5.10)
For large t,

2a e
ko(t) > — v+ pe, it {—————} Crmmat 5.11
(> —v+ps, i) [+ 0y Dip.) © (.11
If t really goes to infinity, i.(t) >0, but for comparison with the cumulant
expansion we retained its asymptotic time dependence. Expanding the result
(5.11) to third order in «, one finds in the case that y > 1:

2

_ a
kt—¢1+2(yi1),

(5.12a)

L) =a e““”"{l +4—(7"‘£W(1 —2y = 1):)}. (5.12b)

Now we apply the result of the cumulant expansion to (5.1). The term (4.1d)
only yields a nonzero result if the initial condition u, is correlated with £(t).
As an example we take the following initial distribution for u and &:

P(u,£0)=18,.8(u~p)+18,-8(u—q) (p#q). (5.13)
From (5.13) follows the initial distribution of &,

P(£,0) =18, +16;-, (5.14)
and one finds that

() =3(p +q), (2(0)=1(p — q) = (£O)u(0)). (5.15)

Since the process £(t) evolves independently of u(t), the many-time dis-
tributions are easily obtained as

Pt 6t . 5 bty u,0) = ; T (&t &) T (L2t &3ts)

o T(&t/EO)P (', u, 0), (5.16)

where t,=t,...=t, 20, and T is the transition-matrix of the dichotomic
Markov process (& =x1)

T(EHlEE) =H1+ £&Ee™0D) (1 =1y). 5.17)
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Using (5.13)-(5.17) we find* (n =1,2,3...)

(E)E) - .. £(tan-D) =0, (5.18a)

(E(DE() - . - E(t2n)) = (E(ED)EAINEENELS)) - . - (§(f20-1)E(L20)), (5.18b)

(E(t)E() - . . E(tan)u(0)) = (£(11) . . . E(t20)Xu(D)), (5.18¢c)

()&t . . . E(tan-)u(0)) = (&(11) . . . E(t20-)HE(t2n-1)u(0)), (5.18d)
where in particular

(E(t)EM)y =™ (ti=1), (5.192)

(Et)u(0) =" (0(0)) (t,=0). (5.19b)

The cumulant expansion (4.1) to third order in « yields in this case (t, = 0):

(1) = [az ra j dt e (n(Om e‘"’z]<u(t»
0

+a e(n(t)(uo— o)) + o? j dt; e(n(t)[n(t)(uo— @o)l),
D

+al j dt, j dt €< (O ()N () (o — Go)])p, (5.20)
0 1]

where
n(t) = £(t) e oy e = E(1)ox(t)
and we already used that (£(t)) = 0. From (5.18) and (5.19) we find
()Y = e W "G, ()G (1) €7,
(M(t)(uo— o)) = ax(t) e (v (0))
(n()[n(t1)(uo ~ o)), = 0,

(O (tHuo— o)), = — G:(1)5:(12)G:(t1) e 72772 e 271(p(0)).
Inserting this in (5.20) and taking t - « in the first line of (5.20)1 and t large

* The eqs. (5.18) imply that"”) (&(1)) . .. £(t)) = (£(t1) . . . E(ta-DEE)U O] =0, n >2.
{This is possible if y > 1, i.e. 2y = r;' > 2 in agreement with (B.3).
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but finite in the remaining lines, one finds for y > 1:

(0 = {or + 3= Ju )

ta e“z’“”)'crx{l + z(gf‘i . (t > (011_ y))}<v(0)>, (5.21)

which is easily shown to agree with the exact results (5.9) and (5.12) for the
individual components u, and u,.

6. Application to the calculation of second moments

6.1. The general case

Consider again the system of differential equations
50 = {Ao+ @A, (V) + f(t, ), 6.1

with a fixed initial condition. In studying the second moments of u one again
is lead to an equation of type (6.1) (see below), which can be treated by the
method of section 3 (the same is true for all higher moments of u). We will
restrict ourselves here to the case in which A, and f are statistically
independent, and show that even then the equation for the second moments is
of the general type (1.1) with correlated multiplicative and additive noise.

To study the second moments of u(f) we construct the vector

u(t) 62

O :
U= (@ ) = | OO |-
un(u(t)

where the symbol  indicates a Kronecker product. The vector U(t) has
(n + 1)n components (if the symmetry condition wu; = uu; is satisfied it is
sufficient to consider a vector U with n +in(n+1)=in(n +3) components).
As a consequence of (6.1) U(t) satisfies the differential equation

L UM = Ao+ AW +F1), 6.3)

A0-<f?.ﬁ...‘?> At (f’fff‘_}.‘_‘..)._i ______ 9 > i <f<t>>
014 MO\ Tadm/ FO=\ g 6.4)
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and the ~ symbol is defined for a n X n-matrix or n dimensional vector C by
C=1c+c®i. 6.5)

Here 1 denotes the n X n-unit matrix.

Eq. (6.3) is again of type (6.1) but now with A(t) and F(t) correlated as they
both contain f(t). Hence the method of section 3 and 4 must be employed. So
consider the series (4.1b) and (4.1c) for the case (6.3) (in this case I(t/t))=0
since we took a fixed initial condition). The lowest order terms of (4.1b)
involve

_ [ a(A ) g
Ao = (<3fa'55'""@:;z‘;i‘;a‘>‘>> ’ o
(AP(DAP(11)),
(o oHAPWAC), L 8 ) (6.6b)
alfODAL )+ APOFOE)), | a(APDAP(E)),

where

AP(r) = e T 0MA (1) e,

AP(t) = e 0100 A(t) e 040 (6.7a)
and

FO(t) = e t-0hof(g) e-t040, (6.7b)

The lower left submatrix in (6.6b) vanishes because of the presupposed
statistical independence of A(t) and f(t). This remains true for the higher
cumulants of A{’(t): they too are of the form (6.6b) with an upper right
submatrix which is identically zero and a lower left submatrix which vanishes
because it contains the ordered cumulants of one f with two or more A;’s. In
the upper left submatrix the mth order cumulant of «A{" appears, and from
this the lower right submatrix in mth order can be obtained by replacing A,
and A by Agand A,, respectively.
From the series (4.1c¢) only two terms survive:

(F(t))= (Ug» ) (6.8)

and

(t-1)Ag
(A(t) " VNF(1)), = (aéf{?;()tg(ir,),xof(ftg)l:)p). (6.9)

The first n components of (6.9) are again zero because of the statistical
independence of A, and f, and for the same reason all higher order cumulants
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of A" with F® are zero since always ordered cumulants of one or more A,’s
with one or two f’s are involved.
Summarizing the above results we have found that (U(t)) obeys

(U ®) = KXV ) + F@lt), (6.10)

where

K(tfte) = (E_S‘.’f?.)_ ” >
(Fay iR(tit)))

[ (F(2) ,
Pt} = < f dt,(f(2) e* D 4of (1)), > 6.1))

The matrix K(t/t,) is the same as (4.1b), while K(t/t,) is obtained from K (t/t,)
by the replacements A;— Ay, Ai(t) > A(t) (the ~ symbol is defined in (6.5)).

We will discuss now an example for which the matrices K and K of (6.11)
can be exactly calculated (only a finite number of terms contributes).

6.2. Example: harmonic oscillator with stochastic frequency

Recently West et al.”) treated the driven harmonic oscillator with stochastic
frequency modelled by
x(t)=p(), (6.12a)
p(t) ==2Ap(t) — 2’x(1) — y()x(t) + fo(t). (6.12b)
Here y(t) is a process with zero mean and delta-correlated cumulants*
y(t)y(tD) ... y(tu))) = m!Dpd(t1 — 1) . .. 8(tm-1— tw) (M =2), (6.13)

where the brackets ({...)) denote ordinary cumulants, and f,(¢) is a stationary
process with zero mean, but otherwise unspecified. Its correlation function is
denoted by

(fAD)fot — 7)) = 2Debp(7). (6.14)
It is assumed that y(t) and f,(t) are statistically independent. The vector

x(t)
p(t)
x*(t)

UO=1 xp) (6.15)
p(t)x(t)
p(t)

* We use a coefficient m!D,, instead of 2™D,, as in ref. 7.
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satisfies eq. (6.3), where the quantities in (6.4) are now specified as follows
(dots denoting zeroes):

. 1 1 .
. _ S O, ) S
A":(—m —2)\)’ A=\ —* . -1 | (6.16)
N U Y
and
At)=y()B,, At)=y(t)B,,
) = f2(0fo, F(t) = f2(O)fo, (6.17a)
where
- -1 1
Bl:(—l ) B={ . . ) fo—(l)’ fo={ 1 |
=1 -1 . L2

(6.17b)

Now we have to calculate the quantities in (6.11). First consider K(tft;) which
is given by (4.1b) with « = 1. Since y(t) is delta-correlated the integrations can
be performed, because the integrands of (4.1b) only contribute if all ¢,
t2, ..., tm are equal to t. The mth order term then contains the matrix D,B7*".
Explicit calculation shows that B}=0, so B]"*' =0 if m = 1*. Since (y(t)) =0,
we find that

K(t/to) = A, (6.18)

In the same way we find that from the series for K(t/t;) only the m = 1 term
survives since BT =0, m =2.

K(t/te) = Ag+ D,B1. (6.19)
Furthermore we have that
@) =90, Fun=0o, (6.20)

because f,(t) has zero average.
So we have found that the average of (6.15) obeys

t—tg
.

SO =g oo of 7 yBpmfemp) - 62D

* The nilpotency of B, also implies that the It6- and Stratonovich interpretations of (6.12) yield the
same result®).
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The eigenvalues of A, are (assuming subcritical damping)
Ae=—Axiw;, o =(022-21H)" (6.22)
and the deterministic evolution matrix is easily found as
A 1 .
COS Tw; + (—n— SN Tw w_ S1N Tw)
e = 2 ' ! \ e ™. (6.23)
——sin Tw, COS Tw; —— SIN Tw;
w w1

Combining (6.16), (6.17b), (6.21) and (6.23) we write down the result for the

individual components of (6.15), where we make use of the symmetry xp =
px:

'(% xXh={ph
L ox=—2%00- 20000,

% (x 2)t =2({xp),

t—ty

% xph=— QX xD~2A(xp)+ (P + I d1—2f)¢(1-)mil sin wTe ™,

& %=~ 207p),— 4N (p?: + 2D
t-to

+2 f d72ﬁ¢(7) (cos T, — —(f:— sin ‘rwl) e ™, (6.24)
1
0

Here (x); = (x(t)) etc. From (6.24) we derive the equilibrium values (assuming
they exist, i.e. D, <2A?)

{X)eq = (P )eq = (Xp deg =0 v (6.25a)
2X ~ A =
(xPeq = W=D, {Dc o Ds}, (6.25b)
P = 5358, D+ = (D2 - 20, (6.25¢)
where
% bc(), ¢c(°°) f dr¢(7) cos Tw, ™™,

>’|Ul

O(®), P(®)= f dré(7) sin Tw; e ™.
0
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These equilibrium results agree with the result (A.38) of West et al.”), which
was obtained by a different method.

In the case that y(t) and f,(t) are correlated, we cannot use (6.11), but we
have to apply the cumulant expansion (4.1) to (6.3). However, if y(t) and fx(t)
are also delta-correlated to all orders, i.e.

(y(t)y(tD) . .. Y(tm-Df2(tm))) = MIC8 (81— £3) . . . 8(tm-t — tm) (6.26)

one easily finds that the only modification in (6.24) is an extra contribution
—4Cx(x) to the last line of (6.24). But since (x)., =0, the equilibrium results
(6.25) are unaffected.

7. Alternative derivation via the stochastic Liouville equation

The results (4.1a)-(4.1¢) (fixed initial condition) can also be derived via the
so-called “‘stochastic Liouville equation™®) which is a continuity-equation for
the probability density p(u,t) in the state space of u (also called ‘“‘phase-
space” or “‘u-space”). If the vector u(t) obeys

£ 4O = {Ao+ At wu(t) + (1, 0), .0

with a fixed initial condition u,, the corresponding equation for p(u, t) is*®)

% (1) = = {(Ao + @A (t, w)u(D) + (1, w)lp(u, 1), (7.22)
with

p(u, to) = 8(u — uo). (7.2b)
Eq. (7.2a) can be written as

= p(u, 1) = {Lo+ Li(t, w)}p(u, 1), (7.38)
where

Ly...= —% HAou}.. ], (7.3b)

L,...= —5"’; CHALL, o)u + fE, o)) . . 1. (7.3¢)

According to Van Kampen's lemma’) the average (p(u,t))=
JodoP(w)p(u,t, w) equals the probability density P(u,t) (with P(u,ty) =
8(u — ug)) as determined by (7.1).
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Since (7.3a) is a homogeneous stochastic differential equation for p(u,t),
the ordinary cumulant expansion (2.5)—(2.7) can be employed. So we have

-(% P(u,t)= [Lo +(L,(t) + mﬁ; {j dty f de,

tm—1
. f dt.. e"“°)L°(L(1”(t)Lﬁ”(t1)...L‘,“(t,,,))pe“”"’)L“}]P(u, t), (7.4)
fo

where
L{(t) = e ¢~Who (1) e W0Lo,
The mean (u(t)) is obtained as

(u(t)) = fduuP(u, t). (7.5)

We assume that P(u,t) and its derivatives* P™(u,t)= (9"/ou*)P(u,t)
decrease sufficiently fast near the boundaries of the integration domain, so
that for any polynomial ¢(u) = Zq,; c{Aul ... ur(x=0,1,2...)

fdu B%j{lp(u)P""(u, D=0 (i=1,2,...n).

This implies that for all x; =0,

[ duLofy P, 0} =0, [ duLOWw@Pw, 0} =0 (7.6)
and

fduuLo{([/(u)'P(")(u, )} = fdu{Aou}w(u)P""(u, t), 7.7

fduuLl(t){lll(u)P(")(u, )} = fdu{aAl(t)u + O ()P (u, t). (7.8
By repeated application of (7.6)—(7.8) we finally have

fdu el (u)P“(u, t)=fdudr(u)P("’(u, 1), (7.9)

Iduu e'Toy(W)P“Y(u, t) = e"“’fdump(u)P‘"’(u, 1) (7.10)

3" _an g
W un g =0,1,2....
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and
jduuLﬁ”(t)x[;(u)P""(u, t)= J du{aAP()u + FODO ()P (u, t), (7.1D)

where A{(t) and fP(t) are defined in (4.2). Now from (7.4) and (7.5) the
differential equation for (u(t)) can be derived by calculating

Gty = f duu % Pu, 1), (71.12)

where the r.h.s. of (7.4) is substituted in (7.12). As a consequence of (7.7) and
(7.8), the first two terms of (7.12) are

f duu{Lo -+ Lit}P(, 1) = {Ao + a{A(WKu(t)) + (F()), (7.13)

where we used (7.5) and the normalization of P(u, t). To calculate the higher
order terms in (7.12) consider the quantity
B, = f duu{e®(LO@OLPE) . . Lta)), e 0P, 1)) (m=1).

(7.14)

Making use of (7.10) and (7.11) we can move the factor u through the first
operators

B, = f du{e" (@A (Ou + FOOILY(H) . . . L)) 6™ TOHP (u, 1)}.
From the first factor between brackets (. . .), only the first term survives, since
fP(t) is “annihilated” by L{’(t,) (see (7.6) and (7.9)). By repeating this the
factor u can be moved through all the operators L{":

B, = j dua™{e" (AP AP(L) . . {aAP(tn)u

+ fO(tm)})p € VP (u, 1)}
= a™ e O APDAL(D . .. AP(tn))p e T TONKu (1))
+a™ e APMALE) ... ALRn-DFPtn))s (7.15)
since (7.9) and (7.10) imply that

f duu e-—OLP (y, £) = e Ay (1)),
jdu e tlop(y, t)y=1.

Substituting the results (7.13) and (7.15) into the r.h.s. of (7.12) one again finds
the previous equations (4.1a)-(4.1c).
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Note however that (7.4) now also provides an equation for the distribution
function of u, not only for its average. Let us apply this to the harmonic
oscillator (6.12) for which

Loy= —%p +%{92x+2)\p} (7.16a)
and
/] d
L= v(t)ﬁx ‘fz(t)g- (7.16b)

Using the statistical properties of y(t) and specializing to the case that fy(t) is
Gaussian white noise (¢(7) = 8(7)), one finds from (7.4)

9 _[_98 .8
atP(x,p,t)—{ axp+ap(flx+2)\p)

) _a__ m - az
+m§=)2Dm(ap x) +DW}P(x,p, t). (7.17)

Now we can write

> Da(Z x) Pp,0=p [dESE@P(p+Ex,0-p [ass@Pp.0),

m=2
(7.18)

where
miDu = p [ dép(©)€™ (7.19)

since the Lh.s. of (7.18) is just the Taylor expansion of its r.h.s. Here ¢(¢) is
the probability density of the jump size ¢ (note that [ d&d(£)€ =0 since
{(y(t)) = 0). Substitution of (7.18) in (7.17) leads to a master equation for the
process (x(t), p(t)), which is a consequence of the fact that both y(¢) and f,(¢)
were assumed to be delta-correlated. It was derived by Van Kampen in a
different way?®).

A final remark is that the method of this section can also be applied to
nonlinear equations®). The approximation of (7.4) to second order in L,
produces a partial differential equation of second order in u, with coefficients
which in general still depend on t, and t. On a time scale large compared to 7.
the dependence on t, vanishes and one obtains a Fokker-Planck like equation
with (in general) time-dependent coefficients. In the white noise limit (4.6) this
becomes a genuine (nonlinear) Fokker-Planck equation for a Markov process

u(t).
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Appendix A

Connection between partial and total time ordered cumulants

To find the connection between partial and total time ordered cumulants we
first note that the rules (ii)-(iv) following eq. (2.8) for constructing the
p-ordered cumulants can be replaced by three equivalent rules:

(ii") Write a zero on the first dot and any permutation of the numerals 1,
2,...,(m —1) on the remaining dots.

(iii’) In every permutation insert an operator % (defined by ?...=(...))
between two successive numerals i and j if i > j and an operator 2 =1— @ if
i <j and place this whole expression between brackets (.. .).

(iv') For each permutation with p — 1 operators ? (p subsequences) supply
a factor (— ).

So each permutation of 1, 2,...(m —1) yields a contribution to (01...(m —
1)), which is of the form

A= (=102, . bPh2. .. (i Pis...... Pipor ... p)
=(=)02. . JoXi 2. e ot (A.1)

if there are precisely (p — 1) pairs (., i+1) with j. > i.+;. Now each of the p
subsequences in (A.1) is precisely a t-ordered cumulant (as defined in section
3.1) containing one numeral or a number of increasing numerals. Therefore
the rules for obtaining the p-ordered cumulant (A¢(t)A(t) ... An_1(tm-1))ps
t=ty...=1t,-1, from the t-ordered ones are as follows:

(A.i)) Write a sequence of m dots.
(A.ii) Write a zero on the first dot and any permutation of the numerals 1,
2,...(m —1) on the remaining dots.
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(A.iii) Partition each of the (m — 1)! permutations of numerals into sub-
sequences by inserting angular brackets (...) in such a way that two suc-
cessive numerals belong to the same subsequence if and only if the first one is
smaller than the second.

(A.iv) For each partition consisting of p subsequences supply a factor
(=y.

(A.v) Replace each numeral n on the «th dot by A._(t,).

For the lowest order cumulants this yields:

(0)p = (O}, (01),=(O0L), (012), = (012)~(02)(1), (A.2)
(0123), = (0123) — (023)(1), — (013)(2), ~ (03)(12),
= (02)(13)c + (03)(2)( - (A.3)

Note that these connections are also given by eq. (3.14) in a somewhat hidden
form.

Proof of the cluster property for the individual terms A,

As shown by Terwiel*) the t-cumulants of identical quantities A(t) have the
cluster property. This remains true for the t-cumulant of non-identical quan-
tities if they all have a finite crosscorrelation time (or autocorrelation time for
those which are identical) with maximum 1. Then the t-cumulants
(01...(m —1)) vanish as soonas t;,—t;,, =7, i=0,..,(m—2).

We will now show that this implies that each of the (m — 1)! terms in which
the p-cumulant (01...(m —1)), is split up by the rules just defined, also has
the cluster property.

Since the times are ordered, t =t,=- - - = t,_,, it is sufficient to prove that
each term vanishes as t; — t;,; = 7., i =0, ..., m — 2. We distinguish two cases
(for each term):

(I) The numeral i is in the same subsequence as (i + 1), (consequently it
comes next after i), so this subsequence vanishes as t;—t.., = 7. (each
t-cumulant with more than one numeral has the cluster property).

(II) The numeral i is in a different subsequence as (i + 1). There occur three
cases ((i) and (ii) are not mutually exclusive):

(i) There is a numeral p succeeding i within the same subsequence as i.
Then it must be (i +2) or higher, so if t; —t.,= 7., then certainly t, —~t, = 7.
and the subsequence vanishes. (This is always the case if i = 0).

(ii)) There is a numeral p preceding (i + 1) within the same subsequence as
(i + 1). Then it must be (i — 1) or lower, so if t;, — ti,; 2 7, also t, — t;;; = 7. and
the subsequence vanishes.
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(iii) Neither (i) nor (ii) is the case (so in particular i# 0). Then there occur
two subsequences of the form (... i) and {(i +1)...). If these were the only
ones then because of rule A.iii) the combination should be ((i +1).. ). .. i),
but this is impossible since on the first dot there must be a zero. So there are
more subsequences. We will demonstrate that the following proposition R
holds: at least one of these other subsequences is of the form (qiq;. .. qi)
k>1, with g, <i and g, > (i + 1) (so that it vanishes if t; — t;,, = ., because
then t, —t, =7.). To prove this, we show that the negation R of the
proposition leads to a contradiction. There are again two possibilities:

a) The subsequence (... i) precedes ((i +1)...). Then between them there
are m subsequences, m =1, so we have an expression like

P R S X ¢ PR qul)z(qu e Qrigh
RO (PRI, M X ({1 0 § S "R { /= B

Now we apply rule (A.iii) and the proposition R, and infer the following chain
of deductions

(Aiii) R (A.iii) .
——>q1,1<i—>q,'kl<i——>q2'l<i—> e 2 qmg, <L
But the last statement cannot be true since by rule A.iii) we have that
dumx, > (i + 1): contradiction.
b) The subsequence (...i) occurs after {((i+1)...). Then we have an
expression like

... ql,k|>t<q2,1 R T
RN (¢ TR, S X (€ 25 ) IR TN Lo, (k=)

By the same reasoning as above we find that gm., <i since 0 <i. But this is
impossible since gy, > (i + 1) (rule (A.iii)) and we have again a contradiction.
So we have proven that all the terms A, in (A.1) have the cluster property.

Appendix B

Here we will derive sufficient conditions for the estimates (3.21) to remain
valid if there occur deterministic evolution matrices e in the ordered
cumulants in (4.1b)-(4.1d).

To this end we assume that the t-ordered cumulants of A,(t) satisfy

(At =C,, (B.1a)
JA)| ... JA It < Cp e 17tV (B.1b)

where t=t,=t,...=t,=1t,. The C/’s are positive constants and |...]|
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denotes a matrix norm. For the cumulants of A with f{ we assume a similar
condition with |A(t,)| replaced by [[f(t.)|, |- .- || denoting the norm of the
vector f(t,). Finally for the t-ordered cumulants of A with u, we assume

(A . . - JA -] [As(tn)] [0 = ol < Cp e ™10, (B.1c)

the C/{s again being positive constants.
The matrix e'* can be expressed in the following way:

o m—1
et=3 $ temz, (B.2)
=1 120

where A, ... A, are distinct eigenvalues of A, with A, having multiplicity n.
The matrices Z, have constant elements and depend only on A,.
Using (B.1)-(B.2) we will now show that the estimates (3.21) remain valid if

(I) (Re M)aas = (Re NJia <=, (B.3)
(ID) (Re A)mes < - (B.4)

where “max” and “min” denote respectively the largest and smallest value of
the real part of Ai, k=1,...,0.

If condition (I) is satisfied all limits t, in (4.1b) can be replaced by — « after
a transient time and the estimate (3.21) for K¢ becomes*

amK, ~a™r"", (B.S)
where

ti= 11— A 7], (B.6)
with '

AXg = (R€ A)max — (Re A pin (B.7)

Similarly, conditions (I) and (I) together imply that for t > ~. all limits ¢, in
(4.1¢) can be replaced by — = and that I(t/t,) vanishes*:

a"F, ~(atd)™; In~0, (B.8)
where

0= max {71 — Ar7el ", 72, ' (B.9)
with

Ar = (Re A)max- (B.10)

*K,., Fn and I, are the coefficients of o™ in the expansions (4.1b)~(4.1d).
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The conditions (B.3) and (B.4) may be weakened in specific cases, e.g. if A,
and A(t) commute (B.3) can be dropped. If A, has purely imaginary eigen-
values both (B.3) and (B.4) are satisfied.

To derive (B.3) consider the quantity

B = e 04 APDAN(L) . .. A(tn)), e A, (B.11)

which occurs in (4.1b). The p-cumulant (01 ... m), is a sum of m! products of
t-cumulants (see appendix A). In each of these terms the time variables of the
matrices A{’(.) have a definite order which is a permutation P of 0, 1,..., m
with P(0) =0. Defining the kth permutation (k=1, 2,...,m!) by Pi(l)=
k(l=1,2,...,m) we find

B = S: Bk,
k=1

By = (A((t) e PMA (h,) e ),

U GO YU G L S L ST (D ) W (B.12)

Taking the norm of B, this gives

Bi| < ﬁ e A YA D] e (- At)Do (B.13)

where t,,=1.

Now the r.h.s. of (B.12) contains a product of a number, say p, of
t-cumulants. The first and last numeral (each numeral i stands for A(t;)) of
the Ith t-cumulant is denoted by ij, resp. ji (where t;, =t, t; =t ). If there is
only one numeral in a t-cumulant we put i = j. Within each t-cumulant the
numerals increase, so from (B.2) we can deduce the estimate (let Ay be a
N X N -matrix)

}e(tki,,“fki)f\o' <B etk i) Re A)maxltki“‘ — tki'Nv]

< B(t _ tm)N-l e(‘k.-f.“"i’m‘ Mmax (tkH _ tki = 0) (B.14)

for the evolution operators occurring within a t-cumulant. Here B is a positive
constant and we used that t, <t, <t foralli€{0, 1,..., m}. Going from one
t-cumulant to the next the numerals decrease, so for the remaining evolution
operators ‘‘between’ successive t-cumulants we have:

eG4 < B @ Uiy WReMmin |, — N

< B(t — tp)V el TR Dmin (f, — 1, <0). (B.15)
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Using (B.14), (B.15) and (B.1) we find

IBkl < Bm-H(t _ tm)(m+l)(N—l) IE[ {e('i,—‘i,)(Re Mmax . e—(tiHl—tjl)(Re )‘)min}
i=1

x D [T et (B.16)
1=]
where t;, =1t and D is a positive constant.
Since t;, = t,, =t it follows that
2 {t,-Hl - tj,} = g t,', - t,‘,, (B17)

so (B.16) leads to

,Bkl = Dﬁm+1(t - tm)(m+])(N_1) exp [li (ti| - tj,){(Re A)max - (RC A)min _;_1_}]
=1

c

(B.18)

Now t;, —t; =0, and there is a numeral I’ such that ;, = t,, hence

é}l t—t, = 1:1 t, — t. (B.19)
Furthermore ¢, —t;, =0, so

t—t+t,— =t — 1,
Repeating this argument we find from (B.19)

,2 ty—t =t (B.20)
Therefore if AAg— 1/7. <0,

|Bi| < DB™*'(t — tw) "NV exp [(t - tm)(ATR— Tl)} (B.21)

The estimate (B.21) leads to the conclusion that in (4.1b) lim,,-.. K(t/t,) exists
if f1.dt,... [ dt,|By| exists for all k. This is the case if AAg < 1/7, which is
condition (B.3).

In the same way we find for the kth term of the quantity

B’ = e " 0(AP(Y) ... AP(tn-))f P tm)s, (B.22)

IBi| < ]j e A LD - e Dee s oo I B (B.23)



56 J.B.T.M. ROERDINK
Using (B.14), (B.15) and (B.1) one has
1Bl < B7(t — 1) [T ettrtomeen}
=1
X {j:[: e“'-'uf'iu"R“)m‘"}D'f[ e Wl (B.24)
= 1=1
where D' is again a positive constant. By virtue of (B.17) we can write

—1
|B‘I(| < DIBm(t _ tm)M(N—l)I:i_[ e(tilﬂ—ljl){(Re Amax—(Re A)mi“—ll’fc):, e(l-—tkm)((Re )«)max—llrc).
1=1

(B.25)
Now we distinguish between two cases:
(1) (Re A)yin =0: Then
(Re A)max — (R€ A)min < (R€ A)ax, (B.26)
hence
Bl < D'B"(t — )"V f[l €~ Vi)
<D'B"(t —t,)"NV etmiir170) (X;s Tlc), (B.27)

where we used (B.17) and (B.20) and the assumption Ars 17 to get the last
inequality.
(ii) (Re A)pmia <0: Then

(Re )\)max - (RC )‘)min > (Re )\)max,

so by a similar argument as in (i):

[Bi] < D'B™(t — t) ") AR (ﬁ—k < l). (B.28)
Tc
Finally consider the kth term of the quantity
B" = e " AN(L) . .. AL (tn-D)[AP(tn o — )]y, (B.29)
for which

m
BY < e(‘k; ALY e(lk —tg)Ag
I kl Hl L " m |

X (IAl(t)| .. )[( R PR G |Al(tk,,,)| "uo— ﬁo")t

—1
< pmt o of ] e e et e

—1
X B(tkm _ to)N—l e(lkm—t“)(Re Mmax % D" {i‘[ e—(til~r,-|)l1c} e_("',,““)/‘rc’ (B.30)

1=1
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where again use has been made of (B.14), (B.15) and (B.1) (D" is a positive
constant). By rearranging the time variables in the r.h.s. of (B.30) using (B.17),
one is led to

-1
lBZI = D"ﬂ m+1(t - to)(MH)(N—l)[i—[ e(r‘lﬂﬁh)«ke Mmax~(Re )‘)min_llfc)]
=1

Xe (t=tx N(Re A)pyax—1/7c} e(tkm—to)((Re Mmax—1/7)

< DIer+1(t — fo)m DN e(f—lo)(‘A_R—llfc) (msl), (B.31)

Te

where the assumption AAg < 1/7. has been made to get the last inequality.

Therefore if (B.3) and (B.4) are satisfied we conclude from (B.27), (B.28)
and (B.31) that the expression (4.1c) with all limits ¢, replaced by — « exists,
and that lim,_. I(t/t;) =0.
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