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Abstract. Euclidean mathematical  morphology is based on the use of  translation-invariant t ransformations of the Boolean 
lattice of  all subsets of  the Euclidean space. We discuss how the theory can be generalized to arbitrary complete atomic 
Boolean lattices with a commutat ive group structure on the set of  atoms, and give some simple examples.  

Zusammenfassung. Die Euklidische Morphologie in der Mathematik basiert au f  der Verwendung verschiebungs-invarianter 
Transformationen des Booleschen Verbandes aller Teilmengen des Euklidischen Raums. Es wird diskutiert, wie diese Theorie 
verallgemeinert werden kann auf  beliebige, vollst/indige atomische Boolesche Verb/inde, die au f  ihren Atomen die Struktur 
kommutat iver  Gruppen haben. Einige einfache Beispiele werden gegeben. 

R6sum~. La morphologie mathrmat ique  Euclidienne est basre  sur l 'utilisation de transformations invariantes par translation 
du rrseau Bool6en de tous les  sous-ensembles de l 'espace Euclidien. Nous  6xaminons comment  la throrie peut ~tre g6neralisre 

des treilles Boolrens atomiques avec une structure de groupe commutat i f  sur l 'ensemble des atomes. Quelques exemples 

simples sont donnrs .  

Keywords. Mathematical  morphology, complete Boolean lattices, translation invariance. 

1. Introduction 

Mathematical morphology on Euclidean spaces 

is by now a well developed branch of image analy- 
sis [1, 2]. The basic ingredients of  the theory are 
a number of elementary image-to-image transfor- 
mations (dilation, erosion, hit or miss transform), 
from which other transformations can be derived 
(thinning, thickening, . . . ) .  An important property 
of  these transformations is that they are translation- 
invariant, i.e., they are adapted to the translation 

symmetry of the underlying Euclidean space. 
For certain applications the use of translation- 

invariant transformations is not appropriate in 

* Contribution to the IEEE-ASSP & EURASIP Fifth Work- 
shop on Multidimensional  Signal Processing, 14-16 Sept. 1987, 
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view of an internal structure which does not 
possess translation symmetry. As an example con- 
sider Fig. 1, which is a photograph of the trees in 
a forest, taken by putting the camera at ground 
level and aiming towards the sky. Such photo- 
graphs are used to measure the amount of sunshine 
in the woods. It is clear that in this case we need 
transformations adapted to the symmetries of this 
polar structure, i.e., rotations about the intrinsic 
origin (the projection point of the zenith) and 
scalar multiplication with respect to the origin. As 
another example where translation symmetry is 
broken, we mention the pictures taken by weather 
satellites of large portions of the earth. At this 
scale the curvature o f  the earth is no longer neg- 
ligible and a "spherical morphology" would be 
in order. 
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Fig. 1. Photograph of the amount of sunshine in a forest (from [1, p. 17]. 

2. Basic elements of Euclidean morphology 

Let E be the Euclidean space R n or the discrete 

grid 7I". By P(E) we denote the space of all subsets 

of  E. A binary image can be represented as a subset 

X o fE .  I f X c E  a n d h ~ E ,  then Xh is the set X 

translated along the vector h: 

Xh ={x+h: x~X}. (2.1) 

On the subsets of E we define the following two 

elementary algebraic operations (we follow the 

notation of  [1]): 

Minkowski addition 

X O ) A = U { X a : a c A } ,  X, A c E ,  (2.2) 

Minkowski subtraction 

X Q A = O { X a : a c A } ,  X, A c E .  (2.3) 

The dilation and erosion of a set X by a so-called 

structuring element A consist of  all points h c E 

such that the translated set Ah hits X or is con- 

tained in X, respectively. In formulas: 
Signal Processing 

Dilation 

X O,~I = {h ~ E: Ah t~ X ~O } 

= u {X_~ : a ~ A}, (2.4) 

Erosion 

X O . 4 = { h  ~ E: Ah c X} 

= m{X_a: a~A}.  (2.5) 

Here ,4 = { - a :  a e A} is the reflected set of A. 

Between dilation and erosion there exists a 

duality relation with respect to set complementa- 

tion (denoted by the superscript "c"):  

( X e A ) c =  x c ® A ,  (2.6) 

i.e., dilating an image gives the same result as 
eroding the background. See Fig. 2 for some simple 
examples. 

Two characteristic properties of dilation are: 

(1) Distributivity w.r.t, union 

(UX , )¢  A = U(  X,¢  A). (2.7) 
i ~ l  i E l  
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Fig. 2. (a) Dilation and erosion in the continuous case; (b) p. 4. dilation and erosion in the discrete case: O points which belong 
to X0),~ but not to X; • points which belong to X; • points which belong to X but not to X~,~. 

(2) Translat ion invariance 

( X (~ A)h = XhO A. (2.8) 

Similar properties hold for  erosion with inter- 

section instead o f  union  in equat ion (2.7). 
A consequence  o f  the distributivity proper ty  is 

that  dilation and erosion are increasing trans- 

formations.  A t ransformat ion qJ : P(E) ~ P(E)  is 

called increasing if 

X =  Y ~ ~ ( X ) = ~ ( Y ) ,  VX, Y =  E. 
(2.9) 

Other  examples  o f  increasing t ransformat ions  are 

the closing and the opening by a structuring element 

A, defined by: 

Closing: X A:= ( X O , 4 ) O A ,  (2.10) 

Opening:  )CA := (X@A)@A. (2.11) 

The opening is the union  of  all the translates Ah 

of  A which are included in the set X. The comple-  

ment  o f  the closing of  X is the opening of  the 

complement  o f  X. An example is given in Fig. 3. 

An impor tant  theorem of  Matheron  [2] states 

that any increasing translat ion-invariant  mapping  

O : P ( E ) ~ P ( E )  is a un ion  of  erosions, or, 
equivalently, an intersection o f  dilations. 
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closing of X by A opening of X by A 

Fig. 3. Closing and opening in the continuous case. 

3. Generalization of Euclidean morphology 

An abstract generalization of Euclidean mor- 

phology was recently initiated by Heijmans within 

the setting of lattice theory [3]; see also Serra [4] 

and Ronse [5] for a related approach. Here we 

confine ourselves to the case of the complete 

Boolean algebra formed by the space P ( E )  of 

subsets of  an arbitrary set E. The sets {x} consisting 

of  one element of E are the so-called atoms of 

P ( E )  and P ( E )  is called an atomic lattice [6]. 

A generalized definition of dilation and erosion 

starts from the following observation. The basic 

algebraic operation in the Minkowski addition and 
subtraction involves the translation of  points of  R" 

or Z n along vectors. That is, only part of the vector 

space structure is actually used, namely the vector 
additions, which define a commutat ive  group. The  

set E is called a commutative group if there exists 

a binary operation * : E x E ~ E which has the 
following properties: 

(i) Associativity: (x * y) * z = x * (y * z), 
x , y , z ~ E .  

Signal Processing 

(ii) Commutativity: x * y = y * x, x, y e E. 
(iii) There is a unit element to c E, such that 

x * t o = x ,  any x ~ E .  

(iv) Every x c E  has an inverse x -~, with 
X ,  x-l_--_to. 

This leads one to the following generalization. 

Let E be an arbitrary commutative group, with 

group operation *. With every x ~ E a mapping 

T x : E  ~ E is associated as follows (we write Txy 

instead of T~(y)): 

T,,y = x * y, y c E. 

In the Euclidean case as described in the pre- 

vious section, Tx is the translation along the vector 

x. The family of all such mappings on E is denoted 
by G={Tx:  x ~ E } .  Note that G is itself again a 

commutative group under composition: 

TxTy- -Tx .y  , x , y ~ E .  

Just as in the Euclidean case our object space 
will be the space P ( E )  of subsets of E. The map- 

pings of  G work on subsets of  E in the obvious 



J.B. T.M. Roerdink, H.J.A.M. Heijmans / Mathematical morphology 275 

way: 

T , , Y = { x * y : y e Y } ,  x~E ,  Y e P ( E ) .  

It is easy to show tha t  for any two subsets X, Y 

of E and a n y z ~ E ,  

Theorem (13]). All increasing, G-invariant mappings 
~b : P( E ) ~ P( E ) are unions of  G-erosions and inter- 
sections of G-dilations. 

Examples are the G-openings and G-closings. 

T~(XU Y) = ( L X ) U (  T. Y), 

T~(XN Y) = (T~X)N(T~Y), 4. Example: A polar structure. 

i.e., the elements of  G preserve unions and inter- 
sections. This is expressed in mathematical  ter- 

minology by saying that G forms a commutative 
group of automorphisms on P(E), see [3]. 

Now one sees immediately that all the definitions 

of  Section 2 carry over to the general case by 

substituting the group operation '* '  for the vector 

addition ' + '  (in fact, one often uses the symbol 

' + '  for any commutative group operation, but to 
avoid confusion we have introduced a ditterent 
notation). So instead of  equation (2.1), use the 
following definitions: 

X h = { X * h : x c E } ,  h ~ E ,  

,4={a  l:a~E}. (3.1) 

All the standard algebraic properties of Minkowski 
addition and subtraction, such as 

X O A = A e X ,  

(X O A ) ~  B = X G(AO) B), 

(X C) A ) ~  B-- X O(AO) B), 

( X u  Y ) O A = ( X O A ) u ( Y O A ) ,  

( X n  Y ) ~ A = ( X G A ) n ( Y C ) A ) ,  

We consider the space E of points in the plane 
with polar coordinates (r, 0), where r is the radial 
distance from the origin O and 0 is the angle with 

the positive x-axis. In the continuous case we take 
r > 0 and 8 c [0, 2,rr), whereas in the discrete case 
r = . . . ,  a-3, a-~, 1, a, a 2 . . . .  , with a ~ R, and 8 = 0, 

2~r/m, 4~r /m , . . . , 2 r r (m- l ) /m ,  m a positive 

integer (see Fig. 4). The group structure of  E is 

defined by the following rule: 

(r,, 8,) * (r2, 82)= (rlr2, 81 + 82), 

rY 

Fig. 4. P o l a r  s p a c e  in the  d i sc re te  case .  

remain valid in the general case. Here X ~ A  and 

X O A  are defined as in (2.2) and (2.3), respec- 

tively, with (2.1) replaced by (3.1). Instead of  

"translation invariance",  equation (2.8), we now 
have "group invariance" or "G-invariance,"  and 
we also sometimes call X-->XO,4 and X-->XC),4 
"G-di la t ions"  and "G-eros ions"  to indicate the 
underlying group structure. 

Finally we mention that there also is a generaliz- 
ation of Matherons theorem: 

So radii are multiplied and angles added, as when 

multiplying complex numbers. It is easy to check 

that the set E with the operation * forms a commu- 
tative group. The identity element of  the group is 

the point (1,0) and the inverse of(r ,  8) is (r -l ,  - 8). 
Note also that every transformation of the group 
can be written as a rotation followed by a scalar 
multiplication, and vice versa: 

(r, 8) = (r, 0) * (1, 8) = (1, 8) * (r, 0). 
Vol. 15, No. 3, October 1988 
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Let us consider transformations based on this 
group E where the structuring element is a disc D 
of  radius 8 < 1 centered at the identity element 
(1,0). After scalar multiplication by (r, 0) this 
becomes a disc of radius r .  6 centered at (r, 0). 
Rotations only change the center of the disc, not 

its radius. The Minkowski addition of D and a set 
X therefore has the form depicted in Fig. 5. To 
obtain X • D ,  "move" the disc D to all points of  
X, taking into account the proper adjustment of 
its radius as the radial distance to the origin 
changes. The union of all the discs {Dx} gives 
X • D. To obtain the Minkowski subtraction of X 
and D, take the intersection of all the sets {Xd : d c 
D}, or compute X C O D  as above and take the 
complement. 

Note that the reflected disc / )  is again a disc: 
this follows from the fact that the reflection 
operation corresponds in this case to the fractional 
linear transformation z --, z -l,  where z = re i°, which 

carries circles into circles. The radius of  / )  is 
8 (1 -82 )  -1 and its center is ( (1 -82)  -1, 0). 

X 

Fig. 5. Minkowski addition and subtraction of a set X (hatched 
area) by a disc D. The interior of the solid curve is XO)D,  the 
interior of the broken curve is X Q D. 

To give an illustration of how the underlying 
group structure affects the outcome of morphologi- 
cal transformations, we consider the opening by a 
disc D of radius 8 centred at (1, 0). The set X to 

be opened consists of a number of discs, some of 

• q 

Fig. 6. (a) The set X (black discs) and the structuring element D (grey); (b) opening X o with E = translation group; (c) opening 
X o with E = rotation-multiplication group. 

Signal Processing 
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which have the same size as D, whereas the remain- 
ing discs are smaller than D, see Fig. 6(a). In 
Fig. 6(b) the result is presented for the case where 
the Euclidean translations form the underlying 
group: all the small discs have disappeared since 
the disc D does not fit into them. The result for 
an opening using the rotation-multiplication group 
is displayed in Fig. 6(c). Here the outcome is totally 
different due to the fact that the radius of the 
structuring element Dx depends on its center x: a 
disc of radius R centered at (r, 0) now disappears 
under the opening if R < r6. 
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