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Abstract. Historically, mathematical morphology has primarily focused
on the processing and analysis of two-dimensional image data. In this pa-
per, we survey a number of other areas where mathematical morphology
finds fruitful application, such as computer graphics and solid modeling;
path planning; filtering, segmentation and visualization of volume data;
or visual exploration of high-dimensional data. We also mention tech-
niques for accelerating morphological computations by using graphics
hardware (GPU computing).
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1 Introduction

Historically, mathematical morphology originated as a methodology for process-
ing and analyzing two-dimensional image data. However, its scope turned out to
be much wider, being applicable to general multi-dimensional data. In this paper
we review a number of such areas which go beyond the image analysis domain.
In constructive solid geometry, Minkowski operators are used for modelling and
visualization of 3D objects. Group morphology is applicable to path planning
and configuration space analysis. Morphological operators have been used for
transfer function design in volume rendering. Morphological pyramids and con-
nected morphological operators find application in multiresolution visualization
and filtering of (medical) volume data, while for volumetric segmentation mor-
phological active surface models have been proposed.

More recently, mathematical morphology has been applied in visual explo-
ration of high-dimensional data. For example, the watershed transform has been
adapted for fast reconstruction and visualization of brain networks; connected
filters are used for finding relevant subspaces in high-dimensional scientific data,
or for filtering tensor fields such as diffusion tensor imaging data. We also briefly
discuss recent techniques for accelerating morphological computations by using
graphics hardware (GPU computing).
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Fig. 1. (a): Set-up for ray tracing of a 3D scene. Visualization of the Minkowski sum
of: (b) two perpendicular circles, a quartic surface defined by the equation (x2 − y2 +
z2 + r2z − r2y)2 = 4x2(r2z − y2); (c) two perpendicular flat discs [35].

2.1 Computer Graphics

In computer graphics various techniques are used to synthesize realistic images
of real-world scenes. In Constructive Solid Geometry (CSG), composite solid
objects are formed by applying set operations (union, intersection and differ-
ence) to simple solids, such as spheres, blocks, or cylinders. Visualization of
these objects is possible by incorporating the CSG operations in the ray tracing
technique, which visualizes 3D objects by simulating the physical processes of
ray propagation, reflection and transmission [11,13].

Various authors have found the Minkowski addition and subtraction opera-
tors to be suitable tools in CSG [30,40]. Other uses of Minkowski operations in
shape description and solid modeling were presented by Ghosh [12]. In special
cases the Minkowski addition reduces to the sweep representation (a special case
of translation surface) in solid modeling [11,13].

A different approach was followed in [35]. Using a basic set of elementary
shapes, a decomposition was derived of a multiple Minkowski sum of any number
of objects, chosen from the basic set, into a union of standard primitives. This
union can then subsequently be visualized by standard CSG combined with
ray tracing; see Figure 1 for an example. The advantages of this method are
efficiency (once the decomposition has been carried out, the ray tracing process
is comparatively fast) and compactness of the representation.

2.2 Path planning and configuration space analysis

In path planning the problem is to find a path for an object, say a robot or a
car, moving in a space with obstacles. The problem falls apart into two distinct
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subproblems [15]. First, the empty-space problem: find the allowed states of the
robot (moving object); second, the find-path problem: find a trajectory in the
empty space, subject to certain constraints.

Morphological operations can be used to address the empty-space problem.
For robots with only translational degrees of freedom, one can find the allowed
positions of the (arbitrarily chosen) center of the robot by a standard erosion
of the space outside the obstacles, where the structuring element B is the robot
itself. Equivalently, one may perform the dilation by the reflected set B̌ of the
set of obstacles to find the forbidden positions of the center of the robot. This
is more efficient when the obstacle space is smaller than the space outside the
obstacles. If the robot has rotational degrees of freedom or rotating joints, the
framework of group morphology is appropriate.

Group morphology. The theory of group morphology deals with the construc-
tion of morphological operators on an homogeneous space (T,X ), where T is a
group acting transitively on X . For background, see Heijmans and Ronse [17,38]
for the case of abelian symmetry groups, and Roerdink [31,34] for the case of ar-
bitrary (abelian and non-abelian) symmetry groups; see also [19]. For example,
when X = Rd any appropriate group T may be chosen, such as the transla-
tion group, the motion group, the affine group, or the projective group, where
in each case the morphological operations of interest are invariant under the
corresponding group T.

As shown in [32], translation-rotation morphology, where T is the motion
group, is applicable to the empty space problem for robots with rotational de-
grees of freedom. Another application is the tailor problem, which concerns the
fitting of sets without overlap within a larger set [33].

An interesting approach to configuration space analysis and similar problems
was presented recently by Lysenko et al., who reformulated the framework of
group morphology in terms of group convolution algebras [27].

2.3 Shape comparison and symmetry detection

Shape comparison is one of the fundamental problems of machine vision. For
the case of convex polygons and convex polyhedra shape similarity measures
have been studied based on Minkowski addition and inequalities related to the
Brunn-Minkowski theory [18,47]. The same theory can be applied for symmetry
detection of convex polyhedra, see for example [48]. Also, group convolution
algebras have been applied for this purpose [27].

If one considers measures which are not only translation-invariant, but also
invariant under the group of orthogonal transformations, the direct computation
of similarity measures in the 3D case becomes very time consuming. In principle,
optimization should be performed for all possible positions of rotation axes and
rotation angles. As shown in [47], for certain measures based on (mixed) volume,
it is sufficient to consider only a finite number of “critical” rotations; see also [1].
By using geometric inequalities in the slope diagrams of the polyhedra, the set
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of relative orientations to be considered can be narrowed down, so that the time
complexity of O(n6) is reduced to O(n4.5) [37].

3 Volume processing and visualization

Volume visualization, or volume rendering, is a technique which produces two-
dimensional image representations of three-dimensional data from different view-
points, using computer graphics techniques such as illumination, shading and
colour [16]. Two types of rendering are distinguished: (i) surface rendering, where
the volume is reduced to one or more isosurfaces S(c) : f(x, y, z) = c of a density
function f representing the boundary between materials; (ii) direct volume ren-
dering, which maps the volume data directly on the screen, with semi-transparent
effects (see Figure 2). Two volume rendering methods which are widely used in

Fig. 2. Left: surface rendering of a frog data set with partially transparent sur-
faces corresponding to different tissues (data source: the VTK distribution [42]).
Right: direct volume rendering of tooth data (data source: the Volume Library
http://www9.informatik.uni-erlangen.de/External/vollib).

medical imaging are X-ray rendering and maximum intensity projection (MIP).
Here one generates, for each pixel of the view plane, a ray through the data
parallel to the line of sight (i.e., perpendicular to the view plane), and assigns
either the average or the maximum data value encountered along this ray to the
pixel. Because of its computational simplicity and effectiveness, MIP is widely
used in the display of magnetic resonance angiography (MRA) and ultrasound
data.

Especially when interactive rendering rates are required (i.e., there must be
a fast response of the rendering system to actions of the user), volume rendering
is a very demanding problem when the sizes of the volume data are large. Two
general approaches are available for accelerating the involved computations.
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– Special hardware. In this category we will briefly discuss general purpose
computation on graphics hardware.

– Special data structures. Hierarchical structures like wavelets or morphological
pyramids are of special interest here.

3.1 General purpose computation on graphics hardware

A recent development which has a major impact on interactive data processing
and visualization, is new programmable graphics hardware. The Graphics Pro-
cessing Unit (GPU), originally used for graphical tasks only, has evolved into
a so-called General Purpose GPU (GPGPU). The computing power of GPUs
is currently increasing at a faster pace than that of CPUs, so that the GPU
is now a major computational device for diverse applications, such as physics
simulations, neural networks, image processing and computer vision, graphics
and visualization, and even database sorting.

Initially, GPGPU applications, even though not concerned with graphics ren-
dering, did have to use the rendering paradigm, involving the use of textures.
As an example we mention the GPU-acceleration of elementary morphological
operators as pioneered in the nineties by Hopf and Ertl [20]. However, in 2006
NVidia introduced a programming environment called CUDA [25], which allows
the GPU to be programmed through more traditional means. At this moment a
dedicated programming effort is still required to develop algorithms that perform
efficiently on GPU hardware, but efforts are underway for automatic transfor-
mation of CPU programs into GPU counterparts [24].

3.2 Morphological operators for transfer function design

In volume rendering, one of the most difficult tasks is the process of classifica-
tion, that is, to determine for each voxel to what type of material, tissue, etc., it
belongs. Classification is usually done by using a transfer function that defines
the colour and opacity values of each voxel. These are then used when the values
of voxels along viewing rays are combined into a single pixel color. Finding a
suitable transfer function is often done by an interactive process which can be
very complicated and time consuming [16, Ch. 9]. To make this process more au-
tomatic, Lürig and Ertl [26] proposed multiscale morphological operators which
incorporate spatial neighbourhood information, as an alternative to traditional
transfer functions.

3.3 Morphological pyramids for multiresolution visualization

For very large data sets, a multiresolution approach is an obvious choice, which
allows a quick visualization of reduced versions of the data that can be progres-
sively refined if needed. For maximum intensity projection (MIP), the transform
is nonlinear, so the standard linear multiresolution models based on wavelets



6 Jos Roerdink

(see, e.g., [50]) are not applicable. Instead, the framework of morphological pyra-
mids as developed by Goutsias and Heijmans [14] can be used as the basis for
developing multiresolution algorithms for MIP; see [36] for a survey.

The multiresolution MIP algorithm can be summarized as follows. In the
pyramid analysis phase, which is a preprocessing step, a 3D morphological pyra-
mid of approximation and detail coefficients is computed by repeated morpho-
logical filtering followed by downsampling. The original data at each level of the
pyramid can be recovered by successive upsampling and morphological filtering
of higher-level data; this process is called pyramid synthesis. Particularly suit-
able for multiresolution MIP are dilation pyramids, where the filter operation
during synthesis is a dilation. For such pyramids, the MIP operation and the
pyramid synthesis work nicely together, in the sense that the maxima along the
line of sight can be computed first from pyramid data on a coarse level (where
the size of the data is reduced), after which a fast 2D morphological synthesis
operator is used to perform reconstruction of the projection image to full grid
resolution [36].

1

0
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30 Error
(gray levels)

1% 5% 10% 100%

Fig. 3. Streaming MIP-splatting of the complete Visible Woman dataset (source: http:
//www.nlm.nih.gov/research/visible) in a 800 by 2000 window. The rendering is
shown at various quality settings (given as percentages of the total number of detail
coefficients). The second row shows a detail image for each quality setting, and the
third row shows the difference image in gray levels [23].

Several approaches based on pyramid schemes (all of the dilation-pyramid
type) were compared in [36]. The most efficient approach was found to be stream-
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ing MIP-splatting. In this method, detail coefficients from all levels are jointly
resorted with respect to decreasing magnitude of a suitable error measure. In
the rendering phase, all resorted coefficients are projected successively, until a
desired accuracy is obtained. As shown in [36], streaming MIP-splatting out-
performs earlier methods based on morphological pyramids, both with respect
to image quality with a fixed amount of detail data, and in terms of a flexible
trade-off between approximation error and computing time.

Streaming MIP-splatting on the GPU. A GPU implementation of the streaming
MIP algorithm was studied in [23]. The load and the dataset can be spread
over multiple graphics cards in a straightforward way, thereby achieving support
for large volume data with an almost optimal speedup. An example is given
in Figure 3. The method achieves interactive frame rates, ranging from 20-50
frames per second, depending on the allowed error.

Fig. 4. MIP rendering of the aneurysm data set (rotational b-plane X-ray scan, courtesy
Philips Research, Hamburg, Germany; http://volvis.org), filtered according to a
non-compactness criterion with value λ = 2.0 [51].

3.4 Connected operators for combined filtering and visualization

Connected filters are based upon an axiomatic definition of connectivity within
a complete lattice framework [19, 43]. They are used to perform filtering based
on various shape and size attributes. A key property of connected filters is their
edge preserving nature. Connected filters can be efficiently computed by the
Max-tree data structure, in which the nodes represent connected components
for all threshold levels in a data set [41]. The basic Max-tree data structure
can be augmented by extensions that allow (i) direct volume rendering, (ii)
representation of the Max-tree on graphics hardware, and (iii) fast active cell
selection for isosurface generation. In all three cases, the Max-tree representation
can be used to change filter parameters interactively and visualize the result at
interactive rates [51]; see Figure 4 for an example.



8 Jos Roerdink

3.5 Segmentation and visualization by active surface models

Segmenting images using active contour models (snakes) involves the evolution of
a curve or surface (i.e., an interface), subject to constraints derived from a given
input image or volume. State-of-the-art active contours are based on the level
set framework, which is able to handle complicated topologies of the underlying
shapes [46]. The evolving curve C(s) : [0, 1] → R2 is given by the zero level-

Fig. 5. Segmentation of multiple nested objects. Left, center : volume renderings of the
tooth data set (cf. Figure 2); right : the segmented constituent parts: the enamel, dentin
and root canal [21].

set at time t of a function φ(x, y, t) that satisfies an evolution equation of the
form ∂φ

∂t = F ||∇φ||. In the context of image segmentation, various formulations
for the speed function F have been proposed. Traditionally F is set to some
function of the gradient image [6, 28], such that the active contour stops its
evolution whenever important edges in the input image are encountered. Chan
and Vese [7] used a minimum-variance criterion of the segmented regions. Their
active contour model leads to the evolution equation:

∂φ

∂t
=

{
µ · κ− ν + λ

[
(I − c2)2 − (I − c1)2

]}
||∇φ|| , (1)

which has to be solved for φ, with I the input image, κ the level set curvature,
c1 = average(I) in {φ ≥ 0} and c2 = average(I) in {φ < 0}. The first term in
Eq. (1) represents the curvature flow and minimizes the length of the curve,
the second term represents inwards motion at constant speed and minimizes the
area of the region, whereas the last term represents region competition by the
minimum-variance criterion.

As shown in [21], Chan and Vese’s minimum-variance model can be reformu-
lated within the context of discrete multi-scale morphology [29] as follows:

uk+1 = sgn
(
uk ∗ χBp

+ sgn(fk) (|Bp| − 1)
)
, (2)

where k is the discrete time (scale) parameter, sgn(x) = 1 if x > 0 and −1
otherwise, Bp is the unit ball w.r.t. the p-norm, χBp

the characteristic function
of Bp, |Bp| the number of elements of Bp, and ‘*’ denotes linear convolution.
The ‘speed function’ fk is given by

fk = λ
(
(I − ck2)2 − (I − ck1)2

)
+ α · sgn(uk ∗ χBp + β), (3)
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where λ ≥ 0, α ∈ R and β ∈ Z.

By varying the free parameters in the definition of fk, various filters are
obtained, such as median filtering, local dilations and erosions, or open-close
and close-open filters. Both the PDE-based model and the discrete model were
implemented on the GPU in [21]. Experiments showed that the discrete model
produces results which are comparable to those of the continuous PDE model
based on level sets, while being almost two orders of magnitude faster. An ex-
ample is given in Figure 5, showing the segmentation of multiple nested objects.

4 Visual exploration of high-dimensional data

4.1 Reconstruction and visualization of brain networks

Electroencephalography (EEG) is a method to measure the electrical activity
of the brain by means of electrodes attached to the scalp at multiple locations.
Synchronous electrical activity in different brain regions is generally assumed to
imply functional relationships between these regions. A measure for this syn-
chrony is EEG coherence, calculated between pairs of electrode signals as a
function of frequency.

Fig. 6. Functional Unit maps for multichannel EEG coherence visualization. Brain re-
sponses were collected from three subjects using an EEG cap with 119 scalp electrodes.
During a so-called P300 experiment, each participant was instructed to count target
tones of 2000 Hz (probability 0.15), alternated with standard tones of 1000 Hz (prob-
ability 0.85) which were to be ignored. After the experiment, the participant had to
report the number of perceived target tones. To each electrode a Voronoi cell in a
graph layout is associated and all cells belonging to a functional unit (FU) have a
corresponding color. Lines connect FU centers if the inter-FU coherence exceeds a sig-
nificance threshold. The color of a line depends on the inter-FU coherence. Shown are
FU maps for target stimuli data, with FUs larger than 5 cells, for the 1-3Hz EEG
frequency band (top row) and for 13-20Hz (bottom row), for three datasets [5].
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A typical data-driven visualization of electroencephalography (EEG) coher-
ence is a graph layout, with vertices representing electrodes and edges represent-
ing significant coherences between electrode signals. A drawback of this layout
is its visual clutter when the number of electrodes is large. To reduce clutter,
ten Caat et al. [5] defined a so-called functional unit (FU) as a data-driven re-
gion of interest (ROI). An FU is a spatially connected set of electrodes recording
pairwise significantly coherent signals, represented in the coherence graph by a
spatially connected clique. Computing such cliques is very time-consuming: its
time complexity is O(3n/3), with n the number of vertices.

As an alternative, a modified watershed method (time complexityO(n2 log n))
was developed, which merges basins representing FUs during the segmentation
process if they are spatially connected and if their union is a clique [5]. The
modified watershed method produces FU maps which are comparable to the
clique-based method, and is up to a factor of 105 faster for a typical setting with
128 EEG channels, thus making interactive visualization possible; see Figure 6
for an example. The method can also be extended to find averaged maps for
data-driven group analysis. The method was applied to mental fatigue [4] and
neurodegenerative disease [8].

4.2 Filtering and visualization of diffusion tensor imaging data

Processing and visualization of tensor fields has become very important over the
last decade [49]. A prime application area is medical imaging, where magnetic
resonance diffusion tensor imaging (DTI) enables the in vivo exploration of the
structural organization of fibrous tissue, such as the brain or the heart. An

(a) (b) (c) (d)

Fig. 7. Illustrative visualization of DTI fiber tracts. (a): Initial set. (b)-(d): Three ex-
ample stages of filtering, using the fractional anisotropy (FA) value of a DTI fiber tract
data set. With the growing filtering threshold for FA, more of the internal structure of
the data set is revealed [9].

interesting feature of DTI is its ability to derive local information, such as the
amount of anisotropy in a single brain voxel; this can be visualized by tensor
glyphs [22], which represent iso-probability surfaces of the diffusion process (in
ordinary DTI these are ellipsoids oriented along the main fiber direction). In
addition, one can track fiber bundles from a selected brain area. This allows the
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determination and visualization of structural connectivity between brain regions;
see Fig. 7 for an example [9].

For connectivity-based morphological filtering and visualization of tensor
fields, new developments in (hyper)connectivity, constrained and partial con-
nectivity are of current interest [3, 39,44,45,52].

4.3 Finding relevant subspaces in high-dimensional data

Data sets in many scientific areas are growing to enormous sizes with high dimen-
sionality. Exploration of such large data spaces poses a huge challenge. Subspace
clustering is one among several approaches which have been proposed for this
purpose in recent years. This method detects subspaces of a high-dimensional
space which are potentially “relevant” or “interesting”, as defined by specific
criteria. The actual clustering can then be limited to the relevant subspaces.
Ferdosi et al. [10] recently proposed a subspace finding method based on con-

Fig. 8. Schematic diagram of the interactive search and exploration system of high-
dimensional data spaces [10].

nected morphological operators. First a transformation is performed from the
high-dimensional parametric space to discrete image space where the data are
represented by a grid-based density field. Then connected operators are applied
on this density field that provides visual support for the analysis of the impor-
tant subspaces. The importance of a cluster is measured by a quality criterion
based upon the notion of dynamics [2]. The search for modes/local maxima is
done on the Max-tree representation of the density image [41]. For subspaces
of dimension higher than three, principal component analysis (PCA) is applied
and the first three principal components are used for subspace ranking.

During computation the user can interact with the system to improve the
results. In the result stage, three visualization toolkits are used that are linked
within a graphical user interface for in-depth exploration of the ranked subspaces;
see Figure 8, where the system is used in an astronomical application. Current
work involves the extension of this approach to large touch-sensitive displays,
which support collaborative research.
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5 Conclusions

As is apparent from this brief survey, mathematical morphology is a very versa-
tile methodology, with applications ranging from image processing and computer
graphics to data visualization. Built on a solid mathematical foundation, it con-
tinues to find new theoretical directions such as (hyper)connected filters, as well
as important applications, including tensor imaging and high-dimensional data
exploration.
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