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Abstract

We consider a 2-dimensional square lattice which is partitioned into a periodic
array of rectangular cells, on which a nearest neighbour random walk with
symmetric increments is defined whose transition probabilities only depend on the
relative position within a cell. On the basis of a determinantal identity proved in this
paper, we obtain a result for finite Markov chains which shows that the diffusion
constants for the random walk are monotonic functions of the individual transition
probabilities. We point out the similarity of this monotonicity property to Rayleigh's
Monotonicity Law for electric networks or, equivalently, reversible random walks.

1. Introduction

Consider the following random walk on Z2 with site-dependent transition
probabilities. Define a rectangular unit cell with N sites to be the subset

£/ = {l,2,. . . ,m1}x{l,2 m2}<rZ2,

where m1 and m2 are integers denoting the width and height of the unit cell
(mlm2 =N). A so-called 'inhomogeneously periodic' 2-dimensional square lattice is
obtained by repeating this unit cell periodically in two independent directions, such
that the copies of the unit cell cover the grid Z2 without overlap (see Figure 1). The
translation vectors ajeZ2 and a2eZ2 defining the partition into cells are not
necessarily orthogonal; see Figure 2, where ax = 3el — e2, a2 = 3e2, with et and e2 the
standard unit vectors in Z2. Any point r on the lattice has a representation

r(l, a) = l1al +12 a2 + ax ex + a2 e2,

where the vector I = (llt J2)eZ2 serves to indicate the position of a translate of the
unit cell and the vector a = (ax, a2) e U denotes the relative position within a cell. To
each site a in the unit cell assign a real variable pa, with — \ < pa < \. A periodic
environment with unit cell U is the map e: Z2-»• {px:aeU} given by

e(r) = e(T + l1a1 + li&2) (reZ2),

e(r)=Pl (ret/).
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Then a nearest neighbour random walk XfeZ2 with symmetric increments is defined
by the transition probabilities

P{Xj+1-X, = ± e j = \-P{X,+1-X, = ±e2} = | + e(*,).

In other words, to each site a in the unit cell is assigned a transition probability
ha = \ + pa in the positive and negative x-direction, and va = \—pa in the positive and
negative ^-direction (see Figure 3), and this assignment is repeated periodically. Sites
with this type of transition probabilities have previously been termed anisotropic
scatterers [6-9]. The site-symmetry in the positive and negative space directions
causes the single-step averages of the horizontal and vertical displacements from
every site to be zero. We call random walks with this property locally unbiased.
Instead of infinite lattices we also consider finite lattices consisting of a single unit
cell with periodic boundary conditions. In both cases we will speak of the
'anisotropic scatterer model'.

In our previous work on the anisotropic scatterer model, we have paid special
attention to the diffusion constants, as defined below, for this model [7—9]. Explicit
computation of these constants is only feasible for small size N of the unit cell [7]. It
is therefore of interest to establish qualitative properties of the diffusion constants,
such as upper and lower bounds [9]. In this paper we will look at the dependence of
the diffusion constants on the transition probabilities h^ and va. It appears to be ' self-
evident ' that as the horizontal transition probability from one of the sites increases,
diffusion in the horizontal direction increases as well. Our task will be to substantiate
this intuition by mathematical proof.

We start by giving a definition of the diffusion constants. Both for the finite and
the infinite lattice we define the total displacement x(n) in the horizontal direction
after n steps by

n

x(n) = £ x},

where x} is 1 or — 1 if the ̂ 'th step is in the positive or negative re-direction and zero
otherwise. A similar definition holds for the total displacement y(n) in the vertical
direction. The horizontal and vertical diffusion constants of the random walk are
defined by

Z) i l < » > (Mo)

V -<*/»> (M6)
n^oo n

(see [6]), where the brackets denote an average over all realizations of the walk
(notice that (jc(n)y = (y(n)y = 0, since the walk is locally unbiased).

The calculation of the diffusion constants proceeds as follows [6, 7]. For the finite
lattice, let T be the NxN transition matrix of the associated finite Markov chain with
instates. For the infinite inhomogeneously periodic lattice we define a similar matrix
in the following way [6, 7]. Let the position of the walker be indexed by (I, a), where
I denotes the cell occupied by the walker and a the relative position within the cell
('internal state'). Let the single-step transition probability from site (I',y) to site
(I, a.) be denoted by Ta7(l,l'), which equals Tay(l—V) because of periodicity. Then an
embedded (or lumped [2]) finite state Markov chain with N states is constructed by
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Fig. 1. Construction of a 2-D lattice from a 3 x 3 unit cell with toroidal boundary
conditions: a1 = (3,0), a2 = (0,3).

ignoring the cell the walker occupies and only taking his internal state into account.
The corresponding transition matrix T has matrix elements!

In the sequel T will always denote the transition matrix of the Markov chain on the
finite lattice or, in the case of an infinite inhomogeneously periodic lattice, of the
embedded Markov chain on the unit cell U. If the (embedded) Markov chain is
ergodic there exists a unique stationary distribution vector n which is the normalized
right eigenvector! of the matrix T corresponding to the eigenvalue Ao = 1. For the
anisotropic scatterer problem as defined above ergodicity holds and the diffusion
constants are given by,

N N

Dx=
a - l

N

2
N

(1-26)

(see [7]).
To write down the transition matrix T for the geometry of Figure 1, we label the

sites in the unit cell by a double index (ij), where i runs in the horizontal and j in the
vertical direction ({ = 1,2,.. .,mj,j = 1,2, ...,m2). Denoting the matrix entries by
(ij\T\i'j'y, we have

(see [7]), where i and j are counted modmj and modra2, respectively, because of the
toroidal boundary conditions. For the case of Figure 2, where helical boundary

\ We use coZttTOM-stochastic matrices: Tay is the probability to go from state y to state a,
stationary distributions are right eigenvectors.
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Fig. 2. Construction of a 2-D lattice from a 3 x 3 unit cell with helical boundary
conditions: a! = (3, - 1), a2 = (0,3).

conditions are employed, it is easier to use a single index i running from 1 to N =
m1 m2. In this case the matrix entries are

Pi){$r i+m +^i' i-m }' (I'4)

where now i is counted modiV. Consider now the following

Question. If one of the horizontal transition probabilities is increased, does the
horizontal diffusion constant Dx increase too ?

Notice that in the case of an inhomogeneously periodic lattice, increasing the
transition probability at one site in the unit cell means increasing the transition
probability at all the periodic translates of this site. On the basis of an explicit
example we conjectured in [9] the validity of the following theorem, which we will
prove in this paper:

THEOREM 1-1. If any of the horizontal transition probabilities, say ha = \+pa, of the
anisotropic scatter er model is increased, then the horizontal diffusion constant Dx

increases too. More precisely, for any ae U,

(1-5)

where n is the stationary distribution of the corresponding finite state Markov chain.

Since the horizontal and vertical stepping probabilities are non-zero, ergodicity holds
and the right-hand side of (1-5) is strictly positive, which is the monotonicity
property alluded to above. From (l-2), Dx+Du = \, so the corresponding results for
the vertical diffusion constant are immediate and do not require separate discussion.

The relation (15) is similar to Rayleigh's Monotonicity Law for electric networks,
which says that if the resistances of a circuit are increased, the effective resistance
i?EFF between any two points can only increase; if they are decreased, it can only
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decrease (see [1], p. 67). More precisely, leti?rg be the resistance between sites r and
s of the network, Ir8 the current flowing from r to s and i?E F F the effective resistance
between points a and b of the network. Under unit current flow, i.e. Ia = —Ib = 1,
where /,. is defined as the sum of all currents leaving site c, it can be shown that

—R -PaD -"EFF ~ 1rs

(cf. [1], p. 77). We also note that Rayleigh's Monotonicity Law has an equivalent
formulation in terms of escape probabilities for reversible random walks: see [1].
Both (1/5) and Rayleigh's Monotonicity Law establish a monotone dependence of
macroscopic or 'effective' parameters (effective resistance, escape probability,
diffusion constant) on the microscopic parameters of the model.

The purpose of this paper is to show that the Monotonicity Law (l-5) is a
consequence of a Markov chain identity (Theorem 3*2 below), which in turn is based
on a certain determinantal identity (Theorem 3-l below) underlying all the results of
this paper. This theorem holds for a general class of matrices including those of the
form 8 = I—T, with / the identity matrix and T a stochastic matrix satisfying
certain conditions. We will show in Section 3 that for the anisotropic scatterer
problem with both types of boundary conditions used above, Theorem 3*2 is
applicable and therefore (1*5) holds. Also certain types of waiting probabilities are
allowed: one easily shows that the result (l-5) still holds if the transition probabilities
are a + bpa to jump horizontally from site a, c + dpa to jump vertically, and
1 — 2(a + c) — 2(b + d) pa to stay at site a, for oteU. Notice that all transitions from site
a are described by a single parameter px (for an example with non-zero waiting
probabilities where this condition is violated and (1*5) no longer holds, see [9]). I t is
straightforward to extend these results to higher dimensional lattices.

The monotonicity law (1-5) can be used to derive non-negativity of all derivatives
of odd order of Dx with respect to pa: see [9]. It can also be applied to the case of
random arrangements of the anisotropic scatterers inside the unit cell, where this
random arrangement is then periodically translated as before. When ha = a with
probability p and ha = a' with probability 1 —p, independently for all sites in the unit
cell, it can be deduced from (1"5) that the average horizontal diffusion constant is an
increasing function of the density p when a > a'. This result can be extended to the
completely random lattice (i.e. infinite unit cell): see [9]. The existence of the
diffusion constants for this case was proved by Lawler[3], who also obtained a
rigorous low-density expansion [4].

The organization of the paper is as follows. Section 2 contains our notation and a
summary of some prerequisites from the theory of determinants. In Section 3 we
present a proof of the Markov chain identity mentioned above and we show that the
result (1'5) is a special case of this. The basic determinantal identity (Theorem 3-l)
is proved in Section 4.

2. Notation and elementary facts about determinants

In this section we establish our notation, mostly following Muir's treatise [5], and
list some results about determinants. Matrices are denoted by capitals, A, B, C, etc.;
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K••+- -*> fl,

Fig. 3. Transition probabilities of the anisotropic scatterer model; v( = \—ht.

matrix entries by lower case letters, e.g. ay is the (i,^')-entry of the matrix A. The
letter / is reserved for the identity matrix. The columns of an N~x.N matrix A are
written in bold face: ax,a2, ...,aN. The transpose of a matrix A is denoted by AT,
with a similar notation in the case of row or column vectors. The determinant of A
is denoted by \A\, so we will write

\A\ =

a.

a Nl '" a

* J V l (2-1)

The determinant obtained from \A\ by deleting row k and column I is called a first
minor, and denoted by Akl. If k = I we speak of a principal first minor. Minors in
which the indices of the rows and columns taken to form the one are the same as the
indices of the columns and rows taken to form the other are called conjugate minors.
Multiplying the minor Akl by the sign factor ( —1)*+' one obtains a first order
{primary) cofactor of the element akl in \A\, which is denoted byf

lkl-

The following identity holds:

(2-2)

(2-3)

If we regard the determinant as a function of N2 independent variables {ati}, we can
express the cofactors as derivatives:

(2-4)

Remark 2-1. In the sequel it will be tacitly understood that whenever derivatives
of a determinant with respect to one or more of its entries occur, these entries are
considered to be arbitrary (independent). Subsequently one may evaluate these
derivatives for special values of the matrix entries, which then need no longer be
independent.

t In [10] the cofactor sda is called a minor and denoted by Alk.
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In the following we denote by e4 the ith basis (column) vector of the standard basis

in IR ,̂ defined by (e^ = Si}. Also we write

e = ( l , l , . . . , l ) T , (2-5)

where the dimension of e will be clear from the context. Then we have the following
alternative notation for the cofactor $4^:

s/(j = | a i , . . . , a,_,, e,, a,+1,..., a j . (2-6)

It will be tacitly understood that for j — 1 the first column vector in expressions like
(2-6) is e4. Both notations (2-4) and (2-6) will be used in the sequel. For example, the
second order cofactor of the pair of elements al}, akl in \A\, which is up to a sign factor
equal to the determinant obtained from \A\ by deleting rows i, k and columns j , I, can
be written (assuming j < I) as

d2\A\
| a j , . . . , â _1, e4, a^+1,..., a,_!, efc, ai+1,..., &N\.Say Sakl

Notice that this second derivative vanishes when i = k or j = I.
Next we list a number of results which are needed below,
(i) Let each column-sum of A be zero, i.e. 2 t a y = 0 for j = 1,2 N. Then

\A\ = 0, (2-7o)

and s£in = stnn for all j=l,...,N, (2-76)

i.e. the cofactors do not depend on the first index.

Proof. Adding rows 2 IV of \A\ to the first one, a row of zeros is obtained, hence
\A\ = 0. To prove (2-76) differentiate (2-3) with respect to amn:

(2-8)°u x = sim -Win + ZJ aik •
uamn k

Now sum (2-8) over i and use that A has zero column-sums. Taking into account (2-4)
one finds j / m n = s#jn, which proves (276). I

(ii) If the matrix A is symmetric, i.e. atj = a]t, conjugate minors are equal (see [5],
p. 368), therefore

(iii) If A both is symmetric and has zero column-sums then from (27) and (29),

s/tj = s/tl, for all i,j,k,l, (210)

i.e. all primary cofactors are equal.
(iv) The following identity between the determinant of A and its first and second

order cofactors holds (see [5], p. 135):

M | a y | _d\A\d\A\ d\A\8\A\ ( 2 U )

day dakt datj daki da(l dakj
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(v) Differentiation of the relation (2-11) with respect to amn gives

32A 53A
— z — + A-uumnvuijuukl damndaijdakl

d2A dA dA d2A d2A dA dA
— _l (y< I V )

8amndaudaki Sai}damndakl damndaadakj daa damn dak}'

where we have put A = \A\. If A has zero column-sums then from (2-7) this relation
can be simplified to

dA d2A d2A dAL_dA_ d2A 82A dA dA d2A

da^da^da^ damndatjdau daj}damndakl damndaadan daudamndakj

3. The main result

The transition matrices (13), (14) of the (embedded) Markov chain associated to
the anisotropic scatterer model have the form T = A' +B'P. Here A' and B' are
symmetric, (block) cyclic matrices and the column-sums of A' and B' are unity and
zero, respectively, whereas P is a diagonal matrix having the variables {px} appearing
in Theorem 11 on its diagonal. Motivated by this, we prove in Section 4 the following
theorem, from which all the results of this paper are immediate consequences. Notice
that the theorem does not require the matrices involved to be cyclic.

THEOREM Sl.LetSbeanNxN matrix of the form S = A(I+CP), where I is theNxN
identity matrix, A and C are symmetric N x N matrices with column-sums equal to zero,
and P is a diagonal matrix, say (P)tj = Si}pp where plt... ,pN are indeterminates. Let
Skk, k = 1,2,..., N, be the principal first minors of \S\, and define

Q= SS* R= Z P A . (3-1)

Then — \Q-R-^ = NSl (i = 1,2, ...,N). (3-2)
V d*D 1 \ da )

Remark 3-1. The quantities Skk, Q, R occurring in this theorem are multilinear
functions in the unspecified or formal variables {pt}. The expression (3-2) therefore
may be regarded as a succinct way of summarizing the set of identities between
certain subdeterminants of |<S| which arise after expansion of (32) with respect to the
variables {pi).

As an immediate corollary of Theorem 3-l we have the following Markov chain
identity.

T H E O R E M 3-2. Let T be the (column-stochastic) transition matrix of a Markov chain
with N states, and let S: = I—T, where I is the NxN identity matrix. Assume that

(i) S lias the form S = A(I + CP), where A and C are symmetric N x N matrices with
column-sums equal to zero, and P is a diagonal matrix, say (P)l} = StjPj, where px,...,
pN are real variables defined on a domain SC in W*;

(ii) Ao = 1 is a simple root of T for all values of plt...,pN in 9£.
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Let n be the stationary probability vector of the Markov chain, i.e. the right eigenvector
of T corresponding to the maximal root Ao = 1, and define Q): = ^%-xPkirk- Then for all
values of plt...,pN in 9C',

— = #77? (i=l,2,...,N). (3-3)

Remark 32. Suppose that S is as in Theorems 3-1 and 3-2, with the exception that
the column-sums of C are equal to some constant K, not necessarily zero. Then define
a modified matrix C* by cj = ctj—K/N. Clearly C* is symmetric, has zero column-
sums and satisfies AC* = AC, since

(AC*)t) = llalkckj- — ̂ atk = (AC)tj,
k ly k

where we have used the fact that the matrix A has zero row-sums. So if S has the form
as in Theorems 3-1 and 32 where the matrix C has constant column-sums, then the
results still hold.

Remark 33. Condition (ii) is satisfied for ergodic chains, where the states form a
single ergodic set (i.e. every state can be reached from every other state of the set:
see [2], p. 37). In this case all components of n are strictly positive. It is also satisfied
when in addition to a single ergodic set there are transient states. Then the
components 7ra are positive for the ergodic and zero for the transient states.

Proof of Theorem 32. If Ao = 1 is a simple root of T, the components {nk} of the
stationary vector n can be expressed as,

where S = I—T. Here Skk for k = 1,... ,N are the principal first minors of \S\, which
are non-negative and not all zero ([10], p. 21), and Q is their sum. Therefore Q) can
be written as Q) = R/Q, where R and Q are defined in (3*1). Since

m _ (dR/dPi)Q-R(dQ/dPi)
dp-<- V ' ( 3 ' 5 )

and S satisfies the conditions of Theorem 31 , we find from (3-2),

Proof of Theorem 11. In the remainder of this section we will show that the
anisotropic scatterer problem satisfies the conditions of Theorem 32 so that (36) and
therefore (1*5) holds. Since the random walk is ergodic, condition (ii) of Theorem 32
is satisfied (see Remark 3-3) and we only have to demonstrate that the matrix S =
/ — T with T defined by (13) or (1-4) can be written in the form required by condition
(i) in Theorem 32.

First consider (14). We have S = A +BP, where the matrices A and B are given by

<iHM'> = <JM-K*i- .< +i+^,<-1}-K^,i+ m i+^.i-m i}. (3-7)

+m1 + *r.i-mI>- (3*)
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It is clear that the matrices A and B are symmetric with zero column-sums. So we
only have to show that B = AC for some symmetric matrix C with constant column-
sums (see Remark 32).

Since the first minors of A are non-zero (when all pk are zero, the walk is still
ergodic), any set of N— 1 columns of A forms a basis for the space of iV-dimensional
vectors with zero column-sums. So in particular, any column bt of B can be uniquely
written as a linear combination of the columns {afc; k =f= i} of A ; say

— V r a d-<)\
i — ik fc' \ I

We will show that the matrix C occurring in (3*9) is symmetric with constant column-
sums (the diagonal elements of C are undetermined; for definiteness we set cu = 0).
First we observe that the matrices A and B are cyclic. Hence, if we denote by W the
permutation matrix which cyclically shifts every entry of a vector one position down,
we can write

Wfc-lo h — Wk~xY\ (k — \ V AA f^-IO^
k — vv d j , U t — vv Ui Â* — i , v, ..., xvf, yo i-\ff

w i t h WN = / . F r o m (3-9) t h e r e ex is t coefficients ock, for k = 2,3, ...,N, such t h a t

N

b,= ^ t a t , (3-11)
fc-2

hence by using (3-10) we find

N N

b = 2 a (W*"1* ) = S a a <- = 2 « - a*;> (3'12)

*-2 fc-2 * # i

where here and below indices are to be counted mod N. So the matrix C has elements

r —a, (3-13^
where we put a2: = 0. Clearly C is a cyclic matrix, hence has constant column-sums.
To show that C is symmetric we invoke the site-symmetry of the anisotropic
scatterer model in the horizontal and vertical directions, to which is associated the
following symmetry operation. Let U denote the matrix corresponding to the
permutation l->-l, 2-*-N, 3->N—l,...,N^>-2. Under this permutation a^bj are
invariant, while afc->&2-k>bk~

>b2_k (indices modulo N). Application of U to (311)
yields

N N N

fc-2 fc-2 fc-2

Since Ubx = bj and the vectors a2,..., &N are independent, a comparison of (3*11) and
(3-14) gives <xk — oc2_k, so that

i.e. C is symmetric. By Remark 32, Theorem 3-2 is applicable, so that from (12a),

where Q) is as in Theorem 32.
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In the case of torus-geometry, Equation 1*3, one shows in the same way that the
matrix C is a symmetric cyclic block matrix, where the blocks are themselves
symmetric and cyclic. Hence C is again symmetric with constant column-sums.
This completes the proof of the monotonicity law for the anisotropic scatterer
problem. I

4. Proof of Theorem 3-1

The proof of Theorem 31 is broken down into several steps, where the class of
matrices involved is successively narrowed down. We start with the following lemma.

LEMMA 4-1. Let S be an NxN matrix of the form S = A +BP, where the matrices A
and B have zero column-sums, and P is a diagonal matrix, say (P)tj = S^Pjfor i,j = 1,
...,N. Let S(a) be defined as

where Q and R are given by (3-1) and a e { l , 2 , ...,N). Then

Remark 4-1. The quantity H(a) is independent of pa. To see this notice that any first
minor Skk is obviously independent of pk and (multi)linear in the other variables pp
with /? 4= k. So

R'= S ^ Z PkSkk, R" = 0,

Q' = S S'kk, Q" = 0,
k+a.

where (double) primes denote (double) differentiation with respect to pa. Therefore
3(a) ' = R"Q—RQ" = 0. Since Sm is itself independent of pa, the same is true for the
quantity between braces in (4-2).

Proof of Lemma 4 1 . From the definition of Q and R we have

(4-3)
I k,l

= SkkStl-SkkS'u. (4-4)

i K.0Sia 0Skk CSU °Sia 0Sll 0Skk)

Applying relation (2-13) to the matrix S, with m = n->l, j^-oc., l-+k, we find

^ O8nO8klc 08u0S(k O8uOS) O8O8
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where the second equality follows from the fact that B has zero column-sums. A
combination of (4-3) with (4-6) completes the proof. I

To prove Theorem 31 we have to show that the quantity 5<a> as defined by (41)
is equal to NS^. By applying the above lemma, which is clearly applicable in the
setting of Theorem 31 , it remains to be shown that 5jo) = NS^, where

k k,l,t ubUlJsik

is the quantity in braces in (4-2).
Our next step is to show that the dependence of Sj,a) on the matrix A can be

completely factored out. We first prove a simple lemma.

LEMMA 4-2. Let SbeanNxN matrix of the form S = AF, where A and F are both NxN
matrices and each row-sum of A is zero. Then the following relation between the first order
cofactors of the matrices S, A and F exists:

§P (4-8)P
Jmk

Proof. In the notation introduced in (26) the right-hand side of (4-8) can be written
as the product

l a i > • • • ' a f c - i ' e f c ' a i t + i ' • • • > a j v l |fi> • • • > * * - ! > e > f * + i > •••^NI' ( 4 ' 9 )

where e is defined in (2-5). First we notice that, without affecting its value, we can
replace the first factor in (4-9), which is the determinant of A with the ifcth column
replaced by efc, by the determinant which arises by replacing the kth row of \A\ by
the transposed basis vector ejjT. Next we use the multiplication property of
determinants to write (4-9) as a single determinant, say \M\, where M is the product
of the matrices involved in each of the factors. We find, using that S = AF and A has
zero row-sums, that

™« = X ««/« = stj (i 4= k,j 4= k); (4-10a)

i

"*w=/w (j**); (4-106)

w<* = Z a « = 0 (i±k); (4-10c)

i

mkk = 1. (4-lOd)

We thus see that |M| has the form
lM| = |s*,...,s*_1,efc,s*+1,...,s*|,

where s* equals ŝ  except for the &th entry. Since the kth column of M equals efc, \M\
is clearly independent of the non-diagonal entries in the kth row and therefore equals
the minor Skk of S, which proves (4-8). I

We now apply this lemma to the terms of E^a) in Equation 47, under additional
conditions on the matrices A and B which are in accordance with the assumptions of
Theorem 3 1 .
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LEMMA 4-3. Let S be an N x N matrix satisfying the conditions of Lemma 4-l, with the
additional assumptions that A is symmetric and B = AC for some NxN matrix C. Define
the matrix D by D: = I + CP. Then the quantity Eja) in Equation 4-7 satisfies the identity

Z<? = pZ<*\ (4-11)

where fi is the k-independent value of the first order cofactors Akk of A, and

H<"> = E£t- S A C h A , (4-12)
* k.l.i.m ddmlddik

with 0 t = 2 j r - = |d1,...,dt_1Ie>d/k+I dN\. (4-13)
mddmk

Proof. First, under the stated conditions, the matrix S has the form S = AD, where
A is symmetric and has zero column-sums, therefore also zero row-sums. Applying
Lemma 4-2 one finds

Skk = pDk, (4-14)

where Dk is given by (4-13) and we have put Akk = p, since the first order cofactors
of A do not depend on k; see (2-10). Next consider the second term in (4-7):

p 3 = IS1> • • • >S*-1> •*„, Sfc+1, •• •>SJ-l>ej>S(+l> •• • >SJVl-
i 0Sll 0Sik

Since *S = AD and B = AC, this expression equals the minor S*t of the matrix S* =
AD*, where D* is obtained from D by replacing the kth column by ca. So we can again
apply Lemma 42 to find

d2\S\ . . . . . .
= y f f l d A k _ x , c a ) dfc+1 d , . ! , e ,< osuosik < m vamloaik

(4-15)

Substitution of (4-14) and (415) in (4-7) completes the proof. I

As our final step in the proof of Theorem 3-1 we have to show that H^a) equals NDa.
This leads us to our last lemma.

LEMMA 4-4. Let C be a symmetric NxN matrix with zero column-sums, and let D
be the matrix D = I+CP, where I is the unit matrix and P is a diagonal matrix, say
(P)y = SyPj fori,j=l,...,N. Define

(4-16)
* k,l,i,m oamlvaik

with Dk given by (4-13). Then

H<a)=M)a. (4-17)

Remark 42. By Remark 41 the quantity E^' in (4-7) or (4-11) is independent of pa.
Since p is a constant, (411) shows that the quantity H£a) in (4-16) is independent of
pa as well.

Remark 43 . Without loss of generality we can take a = 1, for we can always
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perform a permutation such that the ath row and column of all the matrices involved
become the first row and column. Under such a permutation the right-hand side of
(416) transforms to an expression of exactly the same form with a replaced by 1 and
C, P and D replaced by matrices C*, P* and D*, having the same properties
(symmetry etc.) as C, P and D.

Proof of Lemma 4*4. We first show that

I,Dk=N\D\. (4-18)
k

To see this, first notice that the sum in the left-hand side of (4-18) can be written as
a single (iV+l)-dimensional determinant

2-D* = 2ldi,---,d*-i,e,dfc+1, ...,dN\ = \D\, (4-19)
k k

l / 0 \ / 1 \ / 1 M
w h e r e \D\ = - , ( , , - . , , • (4-20)

IW \d i / \<WI
This is easily checked by expanding \D\ by its first row. Now subtract from the first
row of \D\ the sum of all the remaining rows, taking into account that under the
assumptions of Lemma 44 the column-sum of any d, equals unity. The result is

d2,...,dN\, (4-21)

as was to be shown.
Applying the same reasoning to the second term in (4-16), using in addition that

the column-sum of ca is zero, one obtains

mlddik

= N\dlt...,<!*_„c8,dt+1, ...,dN\. (4-22)

So we arrive at the result

E^=NE(
3

a), (4-23)

where S « = | d l f d 2 , . . . , d N \ - £ Pk\dY,...,dk_vca,dk+l, ...,dN\. (4-24)

The final step in the proof of Lemma 4-4 is to show that Ĥ a> equals Da. By Remark
4-2, E^a) is independent of pa, so we are allowed to put pa = 0 in (424), and by Remark
4-3 it is sufficient to give the proof for a = 1. Therefore consider

s»> = |e1Id2 dj + sr, (4-25)

N

where y = - 2 p*|e1,dr . . . ,d,_1,c1,d t + 1 , ...,dN\. (4-26)
k-2
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Now introduce the following notation for the column vector consisting of all except
the first entry of (L:

y d* = (d2i,d3i,...,dm)T,
and similarly for c,, etc. Also write C* for the matrix obtained from C by deleting the
first row and column, and similarly /* for the corresponding truncation of the
identity matrix /. Then one easily obtains

(4-27)

where Ilt C1 and Pl are the partitioned matrices

Now multiply in the last expression of (427) on the left by the determinant |PJ and
on the right by \P^l\ (since the variables Pt,-..,pN have only a formal meaning, we
can assume without loss of generality that P"1 exists). Then we obtain

1\. (4-29)

Next we use the invariance of a determinant under transposition to obtain

)(y
Finally we invoke the symmetry of the matrix C:

(C*f = C*, (ct)T = (c21,...,cNl) = (cl2 elN). (4-31)

Substitution in (4-30) yields

- l — • • " • "» |-

To end the proof, insert (432) in (4-25) to find

-e1 ,d2 , . . . ,d J V | = |e,d2)...,diV| = Z)1. (4-33)

So we conclude that E ^ = Da for all a and therefore, by (4-23), H2
a> = NDa, as was to

be shown. I

Summarizing, by successive application of (42), (411) and (4-17) we find that

since S^ = fiDa by (414). This proves the theorem.
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