
An EÆient Algorithmto Calulate the Minkowski Sumof Convex 3D PolyhedraHenk Bekker, Jos B. T. M. RoerdinkInstitute for Mathematis and Computing Siene, University of Groningen,P.O.B. 800 9700 AV Groningen, The Netherlands,fbekker,roeg�s.rug.nlAbstrat. A new method is presented to alulate the Minkowski sumof two onvex polyhedra A and B in 3D. The method works as follows.The slope diagrams of A and B are onsidered as graphs. These graphsare given edge attributes. From these attributed graphs the attributedgraph of the Minkowski sum is onstruted. This graph is then trans-formed into the Minkowski sum of A and B. The running time of thealgorithm is linear in the number of edges of the Minkowski sum.1 Introdution: the Minkowski sum and the slopediagramThe Minkowski sum of two sets A;B � R3 is de�ned asA�B = fa+ bja 2 A; b 2 Bg: (1)In this artile A and B are onvex polyhedra in R3, and we represent theirMinkowski sum by C, so, C = A � B. It an be easily shown that C is also aonvex polyhedron, but in generalC is more omplex then A and B. E.g. the faesof C onsist of all the faes of A and B, and some additional faes. See �g. 1a, 1b,1f, 3b. The Minkowski sum an be de�ned in a spae of any dimension. Amongstothers, it is used in omputational geometry, omputer vision and imaging, robotmotion planning and in pattern reognition. Our motivation for designing aneÆient Minkowski sum algorithm omes from mathematial morphology. In this�eld we are experimenting with a method to ompare the shape of two onvexpolyhedra, based on Minkowski addition [1, 2℄. In this method, to alulate thesimilarity of two onvex polyhedra, their Minkowski sum has to be alulatedfor many relative orientations (hundreds) of the polyhedra.In 2D spae, algorithms are known [4℄ to ompute the Minkowski sum of twoonvex polygons A and B in linear time O(nvA+nvB), where nvA, nvB are thenumber of verties of A, B respetively. In R3 two lasses of algorithms exist toompute the Minkowski sum of two onvex polyhedra; the ones working in R3,and the ones working in slope diagram spae. We will denote these two lassesby MSR and MSD. In essene, MSD methods work in two dimensional spae.



2As we will see later, in MSD methods the polyhedra A and B are transformedto a 2D spae. There the transformed polyhedra A and B are added in someway, and the result is baktransformed, giving C. In general, MSR algorithmsare simpler to implement than MSD algorithms, but are less eÆient.In the literature muh is said aboutMSR algorithms but hardly any integraland onrete disussion ofMSD algorithms is available. In [3℄ it is shown that itis in priniple possible to alulate C in linear time (Later we explain the meaningof linear in more detail). However, no onrete method or algorithm is given. Inthis artile we disuss briey three known algorithms, alled method1..method3,and present our own algorithm, method4. Method1 is a simple and expensiveMSR method. Method2 is a mixed MSR-MSD method. It is omplex andnot eÆient. Method3 is a generi MSD method but we think it has a timeomplexity that is worse than the one derived in [3℄. Method4 is anMSDmethodwith a linear time omplexity, and is easy to implement. Before disussing thesemethods we introdue our representation of polyhedra, and introdue the slopediagram.We represent a onvex polyhedron, say A, by an attributed graph. Nodes,edges and faes of this graph represent verties, edges and faes resp. of A.Every node of the graph has an attribute representing the position of the or-responding vertex. In this paper, a polyhedron and its graph are equivalent, so,alulating the Minkowski sum of two onvex polyhedra A and B is equivalentto transforming the attributed graphs A and B into an attributed graph C.The graphs representing polyhedra are so-alled polygonal graphs. They havethe property that they are plane, and that every edge bounds two di�erent faes.(The outer region of the graph is also a fae.) A polygonal graph A may betransformed into another polygonal graph, its dual graph, denoted by dual(A)or DA. DA is alulated as follows:{ DA has one node for eah fae f of A, denoted by dual(f).{ DA has one edge for eah edge of A. Let e be a ommon edge of the faesfi and fj of A. Then in DA the nodes dual(fi) and dual(fj) are onnetedby an edge, alled the dual of e.It an be easily heked that in this way the nodes of A give faes of DA.Clearly, by omputing dual(A) only the graph struture of DA is de�ned, notits attributes. For a polygonal graph A it holds that dual(DA) = AA drawing of a graph on some surfae (e.g. the plane or a sphere) suhthat no two edges ross is alled an embedding of the graph. We now introduethe embedding on the unit sphere of the graphs DA and DB. We all theseembeddings SDA and SDB, or the slope diagrams of A and B. To omputeSDA, (and similarly SDB) we have to de�ne where every node and edge of DAis mapped on the sphere. First onsider the nodes. Every node n of DA is theimage of some fae f of A. To n is assigned as attribute the outward unit normalon the fae f . The node n is mapped on the sphere to the end point of this unitvetor. Seond onsider the edges. An edge e onneting in DA the nodes n1 andn2 is mapped to the ar of the unit irle on the sphere onneting the images



3of n1 and n2. For an example of two polyhedra and their slope diagrams, see �g.1a, 1b, 1, 1d.A few words about designating the elements of the slope diagram. A slopediagram onsists of spherial faes, spherial edges and points on a sphere. Inthe rest of this artile we omit the word "spherial", so we will speak aboutthe faes, edges and points of a slope diagram. So, a fae, edge or point of aslope diagram is the image of a vertex, edge or fae resp. of the orrespondingpolyhedron.From SDA and SDB a new slope diagram may be reated by overlayingSDA and SDB. Overlaying two embedded graphs amounts roughly speakingto superimposing the two graphs and merging them into one graph [6, 7℄. Animportant well known property of the Minkowski sum is that the slope diagramof C is idential to the overlay of the slope diagrams of A and B [2℄, so,SDC = overlay(SDA; SDB):The node positions of SDC onsist of (i) the node positions of SDA and SDB,and (ii) the node positions de�ned by interseting edges of SDA and SDB.The �rst ones may be opied from SDA and SDB to SDC, the latter onesare obtained during the overlay alulation. It is important to note that byalulating the dual of SDC the graph struture of C is obtained, but beausethis graph has no node attributes, no omplete desription of C is available yet.In a later setion we show how in method3 and method4 the attributes of SDCare alulated.2 Some ommon methods to alulate the MinkowskisumMethod1 is a pure MSR method; it is simple but time onsuming [5℄. It is atwo step proess. In the �rst step the position vetors of all the verties of A areadded to the position vetors of all the verties of B. This results in a total ofnvAnvB points where nvA and nvB are the number of verties of A and B resp. Inthe seond step the onvex hull of these points is omputed, giving C. Obviously,the �rst step has time omplexity O(nvAnvB). Using some standard onvex hullalgorithm [4℄ the seond step has time omplexity O(nvAnvB log(nvAnvB)). Thismethod of omputing C is expensive beause it works entirely in R3, whereasusing SDA and SDB implies working in R2. Another disadvantage is that theresult is not a graph but a set of points. Yet, this method is often used wheneÆieny is not ruial.Method2 is a mixed MSR-MSD method. The key idea of this method isto ompute all planes bounding C, i.e. all planes that ontain a fae of C. Byalulating the intersetions of these planes, the edges and verties of C areomputed. The method works as follows.1. For every fae f of A it is determined in whih fae of SDB the slope diagramimage of f is loated. This fae of SDB is the image of some vertex of B,



4 say v. Now the plane ontaining the fae f is translated over the positionvetor of v. The resulting plane is a bounding plane of C.2. The same as 1 with A and B interhanged.3. In the superimposed slope diagrams of A and B it is determined whihedges of SDA interset edges of SDB. Assume that the edges sei and sejinterset. Assume that the orresponding edges in A and B are ei and ej .Now we onstrut a plane ontaining ei that is parallel with ej . This planeis shifted over a vetor ending somewhere on ej (say one of its endpoints).The resulting plane is a bounding plane of C.The intersetion of the half spaes de�ned by the planes desribed above isC. The faes of C ontained in the planes as onstruted in step 1 and 2, havethe same shape and size as the faes of A resp. B, i.e. are shifted instanesof the faes of A resp. B. The faes of C ontained in the planes onstrutedin 3 are new faes, i.e. are not opies of the faes of A or B. These faes areparallelograms with edges ei and ej . See �gure 1f, 3b for examples. Method2is more eÆient than method1 beause it uses slope diagrams. Yet, it ontainsmuh redundant work: C ontains many faes idential with faes of A and B,but this fat is not used in this method. Most faes are ompletely reonstruted.Conluding: in both methods too muh geometrial omputations are done.The method we propose aims at minimizing these geometrial omputations.3 The Minkowski sum by merging attributed graphsMethod3 is a straightforward MSD method, but in the literature we ould not�nd an integral desription of it. It onsists of the following four steps.1. Calulate the slope diagram SDA. Besides the earlier mentioned node at-tributes (unit vetors), the slope diagram is given fae attributes. Every faef of SDA is given an attribute attr(f), namely the position vetor of theorresponding vertex in A. The attributed slope diagram SDB is alulatedsimilarly.2. Calulate the overlay of SDA and SDB, that is, alulate the graph of SDC.This graph has no attributes yet.3. Calulate the fae attributes of SDC. This is done as follows. When SDA,SDB and SDC are superimposed, every fae f of SDC is loated in preiselyone fae fi of SDA, and in preisely one fae fj of SDB. Fae f gets asattribute the sum of the attributes of fi and fj .4. Calulate the dual graph C of SDC as follows. Copy from SDC the faeattributes to the orresponding nodes of C. The graph C, with its nodeattributes, represents the Minkowski sum of A and B.In the following, the proess of determining for every fae of SDC in whihfae of SDA and SDB it is loated (see point 3), will be alled fae loation. It isinstrutive to ompare method3 with method1. In method1 all verties of A areombined with all verties of B. Afterwards, during the onvex hull omputation,
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(a) (b)
() (d)

(e)

(f)Fig. 1. Two polyhedra A and B (a) (b), their slope diagrams SDA and SDB (),(d), the overlay of these slope diagrams SDC (e), and the Minkowski sum C of thepolyhedra A and B, (f). It may take some time to see the relation between (b) and(d). It an be seen that the (f) onsists of the faes of (a) and (b), and additionalparallelepiped faes (See also �gure 3b). MSR methods alulate (f) diretly from (a)and (b). MSD methods use the slope diagrams in (), (d) and (e) to alulate (f).



6it is deided whih of these points are verties of C. In method3, by fae loation,it is deided whih verties of A and B have to be ombined to give a vertex ofC. Using a standard graph method [8℄, the time omplexity of alulating SDAand SDB is O(neA+neB) where neA and neB are the number of edges of A andB. In the next setion we show that alulating the overlay of SDA and SDBan be done in time O(neA + neB + k) where k is the number of intersetingedges of SDA and SDB. Method3 may be summarized as follows. Step 1 and 4are transformations to and from the slope diagram domain. In step 2 the overlayis onstruted, and in step 3 the fae attributes of SDC are alulated. In thefollowing setions we will take a loser look at alulating the overlay and faeloation.4 Overlaying and fae loationOverlaying two subdivisions of the plane is a standard problem of omputationalgeometry. Unfortunately, for our problem, i.e. alulating the overlay of twosubdivision of the sphere, no implementations are available, so we had to developour own implementation. For this we adapted an existing implementation inthe plane [6, 7℄ that runs in linear time O(neA + neB + k), where k is thenumber of interseting edges of SDA and SDB. An additional feature of ourimplementation is that the edges in the overlay SDC get an attribute indiatingfrom whih edge of SDA or SDB the edge stems. Let us explain. When SDA,SDB and SDC are superimposed, every edge e of SDC oinides with part ofor a whole edge of SDA or SDB (that is roughly speaking the de�nition of anoverlay). During fae loation, it is neessary to know whih set of edges of SDCbound a given fae of SDA or SDB. Therefore, during the overlay onstrution,every edge of SDC is given two attributes, one referring to an edge of SDAand one referring to an edge of SDB. In general, only one of these referenes isnon-nil. Only when an edge of SDA (partially) oinides with an edge of SDB,both referenes are non-nil. This situation ours for example in the extremease when the Minkowski sum of two idential polyhedra is alulated, i.e. whenC = A�A.Now onsider fae loation. The edge attributes of SDC as desribed abovemake it possible to �nd in SDC the edges that oinide with the edges of SDAor SDB, and that bound a given fae of SDA or SDB. We all suh a set ofedges an A-yle or a B-yle. Let us look at some A-yle a. See �g. 2(). Wewant to �nd all faes of SDC that are within a. First we ollet those nodesof SDC that are on or within a. Let us all the set of nodes on and inside a,a:nodes. Nodes on a are found by going through the edges of a. Nodes withina are found when, starting from every node on a, inward edges are followedreursively. Using the a:nodes, we ollet all faes of SDC that have one ormore nodes of a:nodes as vertex. The faes olleted in this way are within ordiretly adjaent to a. From these faes those ones are seleted that only haveverties from a:nodes. These faes are inside a, and get an attribute referring to



7the fae of SDA orresponding to a. This is done for all A-yles and B-yles. Inthis way every fae of SDC gets two attributes telling in whih fae of SDA andSDB it is loated. Using these attributes, every fae of SDC is given a vetorvalued attribute in the following way. If fae f of SDC is in fae fi of SDA and infae Fj of SDB then fae f gets a vetor attribute attr(f) = attr(fi)+attr(fj).In LEDA [8℄, the Computational Geometry platform we use, all operations inthe fae loation algorithm above are available as standard methods.We will not disuss the time omplexity of fae loation. In the �rst plaebeause it is not trivial, and seond beause in the in the next setion we presentour MSD method, i.e. method4, that works without fae loation. Beause thetime omplexity of method4 is dominated by alulating the overlay, method4 issuperior to method3, whatever the time omplexity of fae loation in method3may be.

(a) (b)
()Fig. 2. The slope diagrams SDA (a) and SDB (b) of two randomly generated polyhe-dra, and the overlay SDC () of these slope diagrams. In SDC an A-yle a is shown.The nodes on and inside a are marked.



85 A method without fae loationIn method3 fae loation was essential for alulating the fae attributes ofSDC, i.e. for alulating the vertex positions of C. We now present method4,whih works with edge attributes instead of fae attributes, and thus avoidsfae loation. As a side e�et, the absolute position of C is lost. However, ina �nal step this position is reovered. To desribe and implement method4 weuse bidireted graphs. This means that every edge e of A, B, C, SDA, SDBand SDC has a soure node and a target node, designated by soure(e) resp.target(e). Moreover, for every edge there is a reversal edge, i.e. when there existsan edge e starting at soure(e) and ending at target(e) then there is also an edgestarting at target(e) and ending at soure(e).Method4 is a six step proess and works as follows.1. Swith to relative oordinates of A and B. More preisely, instead of usingnode attributes representing absolute node positions, we swith to edge at-tributes. Eah edge of A and B is attributed with a 3D vetor. The vetor isthe relative position of the target of the edge w.r.t. the soure of the edge, so,for edge e the attribute attr(e) is given by attr(e) = position(target(e)) �position(soure(e)).2. Calulate SDA and SDB. Copy the edge attributes desribed in step 1 tothe orresponding edges of SDA and SDB.3. This is the ruial step. First ompute the overlay SDC. As desribed inmethod3, during the overlay onstrution, every edge e of SDC gets twoattributes indiating from whih edge of SDA or SDB e stems. Using theseattributes, alulate the attributes for every edge e of SDC in the followingway. When e stems from only one edge, so an edge of SDA (exlusive)-orSDB, e is given the vetor attribute of this edge. When e stems from anedge of SDA and an edge of SDB, e gets as attribute the vetor sum of theattributes of these edges.4. Calulate the dual of SDC, alled C. Of every edge of SDC the edge at-tribute is opied to the orresponding edge of C.5. Calulate node attributes of C, representing vertex positions of C as follows.Choose some node n0 of C and assign to it some freely hosen positionpos(n0), for example (0; 0; 0). Then for every edge e whih has n0 as soure,visit the node target(e), and assign to it the attribute pos(n0) + attr(e), i.e.to all nodes diretly onneted with n0 are assigned the position of n0 plusthe edge vetor of the onneting edge. This proess is ontinued until everynode has been visited.6. Shift C to the orret position. This is done with three similar operations,one for the x diretion, one for the y diretion and one for the z diretion.We explain the x diretion shift.Let A max x be the x position of the most extreme point(s) of A in thepositive x diretion, and similarly for B max x and C max x. It an beeasily heked that it should hold thatC max x = A max x+B max x: (2)



9In the previous step C was plaed at a provisional position in spae. Letprov C max x be the maximal x position of C at this provisional position.Then, by shifting C overA max x+B max x� prov C max x (3)C gets its orret position in the x diretion. By a similar shift in the y andz diretion C gets its orret position.6 DisussionMethod3 works beause a onvex polyhedron is de�ned by its verties. Method4works beause a polyhedron is de�ned, up to its absolute position, by its edgevetors. Method4 works without fae loation. Instead, edge loation is done.The advantage of method4 over method3 is that edge loation has already beendone during the overlay phase without overhead. In terms of the number ofomputations, the advantage of not having to do fae loation outweighs theneed to restore the absolute position of C.As mentioned before, the overlay may be omputed in time O(neA+neB+k).The time omplexity of omputing SDA and SDB, of attribute manipulation,and of shifting C to the orret position, is inferior to the time omplexity ofomputing the overlay, so, method4 has a time omplexity of O(neA+neB+ k).Obviously, this is better than method1 and method2. Probably it is also betterthan method3 beause we think that the time omplexity of fae loation isgreater than O(neA + neB + k).Why does method4 work?We an prove that it is orret by using the supportfuntion [9, 10℄, but beause of limited spae it an not be given here. We onlymake a few remarks whih may serve as a starting point of a proof.As remarked earlier, most faes of C are idential to the faes of A and B,plus additional paralellogram faes with one edge from A and one edge from B.So, the edges of C only onsist of edges of A and B, and oasionally an edgethat is the sum of an edge of A and an edge of B. The last type of edge ourswhen an edge in SDA (partially) oinides with an edge in SDB. In step 3 ofmethod4 these three kinds of edges of C are reated, that is, every edge of C isan edge of A or of B or the sum of an edge of A and of B.Another remark. The edges of SDC (partially) oinide with edges of SDAor SDB. To over ompletely an edge e of say SDB with edges of SDC mayrequire two or more edges of SDC. In step 3 of method4 eah of these edges ofSDC gets the same attribute, indiating that C gets some parallel edge vetors.More preisely: When an edge of SDB is subdivided in SDC in n edges thisindiates that C will have n parallel edges, parallel to the orresponding edge ofB. See �g. 3.7 ConlusionWe have shown that the Minkowski sum of two onvex polyhedra may be om-puted almost entirely in the slope diagram domain, and that the usual fae
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(a) (b)Fig. 3. The slope diagram SDC and C from �gure 1. In SDC an edge of SDB issubdivided in three edges of SDC (See three arrows E1::E3). This results in threeparallel edges in C (See three arrows E1::E3) between B1 and B2. In B (see �gure 1)there was only one edge between B1 and B2. In C the faes from A and B are markedwith A1::A3 and B1::B5.loation an be avoided, leading to a more eÆient algorithm. The ruial partof the method is the onstrution of the attributed overlay of the slope diagramsof A and B. Further, only simple attribute manipulations and simple geometrialomputations are used. The time omplexity of the method is linear in the sizeof the input plus output.Literature[1℄ H. Bekker, J. B. T. M. Roerdink: Calulating ritial orientations of polyhe-dra for similarity measure evaluation. Pro. of the IASTED Int. Conf. ComputerGraphis and Imaging, 1999, Palm Springs, USA. p. 106-111[2℄ A. V. Tuzikov, J. B. T. M. Roerdink, H. J. A. M. Heijmans: Similarity Mea-sures for Convex Polyhedra Based on Minkowski Addition. Pattern Reognition33 (2000) 979-995[3℄ L. J. Guibas, R. Seidel: Computing onvolutions by reiproal searh. Dis-rete and Computational Geometry. Vol. 2, p. 175-193, 1987.[4℄ M. de Berg, M. van Kreveld, M. Overmars, O. Shwarzkopf: ComputationalGeometry, Algorithms and Appliations. Springer Verlag, Berlin. (1997)[5℄ P. K. Ghosh: A uni�ed omputational framework for Minkowski operations.Comput. & Graphis, Vol. 17, No. 4, 1993.[6℄ U. Finke, K. H. Hinrihs: Overlaying simply onneted planar subdivisions inlinear time. Pro. of the 11th Int. symposium on omputational geometry, 1995.[7℄ A. M. Brinkmann: Entwiklung und robuste Implementierung eines laufzeitop-timalen Vershneidungsoperators f�ur Trapezoidzerlegungen von thematishen Karten.PhD. Thesis, University of M�unster, 1998.[8℄ K. Melhorn, S. N�aher: LEDA A Platform for Combinatorial and GeometriComputing. Cambridge University press,Cambridge. 1999[9℄ H. G. Eggleston: Convexity. Cambridge University Press, Cambridge. 1958[10℄ H. Busemann: Convex Surfaes. Intersiene, In., New York. 1958


