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t. A new method is presented to 
al
ulate the Minkowski sumof two 
onvex polyhedra A and B in 3D. The method works as follows.The slope diagrams of A and B are 
onsidered as graphs. These graphsare given edge attributes. From these attributed graphs the attributedgraph of the Minkowski sum is 
onstru
ted. This graph is then trans-formed into the Minkowski sum of A and B. The running time of thealgorithm is linear in the number of edges of the Minkowski sum.1 Introdu
tion: the Minkowski sum and the slopediagramThe Minkowski sum of two sets A;B � R3 is de�ned asA�B = fa+ bja 2 A; b 2 Bg: (1)In this arti
le A and B are 
onvex polyhedra in R3, and we represent theirMinkowski sum by C, so, C = A � B. It 
an be easily shown that C is also a
onvex polyhedron, but in generalC is more 
omplex then A and B. E.g. the fa
esof C 
onsist of all the fa
es of A and B, and some additional fa
es. See �g. 1a, 1b,1f, 3b. The Minkowski sum 
an be de�ned in a spa
e of any dimension. Amongstothers, it is used in 
omputational geometry, 
omputer vision and imaging, robotmotion planning and in pattern re
ognition. Our motivation for designing aneÆ
ient Minkowski sum algorithm 
omes from mathemati
al morphology. In this�eld we are experimenting with a method to 
ompare the shape of two 
onvexpolyhedra, based on Minkowski addition [1, 2℄. In this method, to 
al
ulate thesimilarity of two 
onvex polyhedra, their Minkowski sum has to be 
al
ulatedfor many relative orientations (hundreds) of the polyhedra.In 2D spa
e, algorithms are known [4℄ to 
ompute the Minkowski sum of two
onvex polygons A and B in linear time O(nvA+nvB), where nvA, nvB are thenumber of verti
es of A, B respe
tively. In R3 two 
lasses of algorithms exist to
ompute the Minkowski sum of two 
onvex polyhedra; the ones working in R3,and the ones working in slope diagram spa
e. We will denote these two 
lassesby MSR and MSD. In essen
e, MSD methods work in two dimensional spa
e.



2As we will see later, in MSD methods the polyhedra A and B are transformedto a 2D spa
e. There the transformed polyhedra A and B are added in someway, and the result is ba
ktransformed, giving C. In general, MSR algorithmsare simpler to implement than MSD algorithms, but are less eÆ
ient.In the literature mu
h is said aboutMSR algorithms but hardly any integraland 
on
rete dis
ussion ofMSD algorithms is available. In [3℄ it is shown that itis in prin
iple possible to 
al
ulate C in linear time (Later we explain the meaningof linear in more detail). However, no 
on
rete method or algorithm is given. Inthis arti
le we dis
uss brie
y three known algorithms, 
alled method1..method3,and present our own algorithm, method4. Method1 is a simple and expensiveMSR method. Method2 is a mixed MSR-MSD method. It is 
omplex andnot eÆ
ient. Method3 is a generi
 MSD method but we think it has a time
omplexity that is worse than the one derived in [3℄. Method4 is anMSDmethodwith a linear time 
omplexity, and is easy to implement. Before dis
ussing thesemethods we introdu
e our representation of polyhedra, and introdu
e the slopediagram.We represent a 
onvex polyhedron, say A, by an attributed graph. Nodes,edges and fa
es of this graph represent verti
es, edges and fa
es resp. of A.Every node of the graph has an attribute representing the position of the 
or-responding vertex. In this paper, a polyhedron and its graph are equivalent, so,
al
ulating the Minkowski sum of two 
onvex polyhedra A and B is equivalentto transforming the attributed graphs A and B into an attributed graph C.The graphs representing polyhedra are so-
alled polygonal graphs. They havethe property that they are plane, and that every edge bounds two di�erent fa
es.(The outer region of the graph is also a fa
e.) A polygonal graph A may betransformed into another polygonal graph, its dual graph, denoted by dual(A)or DA. DA is 
al
ulated as follows:{ DA has one node for ea
h fa
e f of A, denoted by dual(f).{ DA has one edge for ea
h edge of A. Let e be a 
ommon edge of the fa
esfi and fj of A. Then in DA the nodes dual(fi) and dual(fj) are 
onne
tedby an edge, 
alled the dual of e.It 
an be easily 
he
ked that in this way the nodes of A give fa
es of DA.Clearly, by 
omputing dual(A) only the graph stru
ture of DA is de�ned, notits attributes. For a polygonal graph A it holds that dual(DA) = AA drawing of a graph on some surfa
e (e.g. the plane or a sphere) su
hthat no two edges 
ross is 
alled an embedding of the graph. We now introdu
ethe embedding on the unit sphere of the graphs DA and DB. We 
all theseembeddings SDA and SDB, or the slope diagrams of A and B. To 
omputeSDA, (and similarly SDB) we have to de�ne where every node and edge of DAis mapped on the sphere. First 
onsider the nodes. Every node n of DA is theimage of some fa
e f of A. To n is assigned as attribute the outward unit normalon the fa
e f . The node n is mapped on the sphere to the end point of this unitve
tor. Se
ond 
onsider the edges. An edge e 
onne
ting in DA the nodes n1 andn2 is mapped to the ar
 of the unit 
ir
le on the sphere 
onne
ting the images



3of n1 and n2. For an example of two polyhedra and their slope diagrams, see �g.1a, 1b, 1
, 1d.A few words about designating the elements of the slope diagram. A slopediagram 
onsists of spheri
al fa
es, spheri
al edges and points on a sphere. Inthe rest of this arti
le we omit the word "spheri
al", so we will speak aboutthe fa
es, edges and points of a slope diagram. So, a fa
e, edge or point of aslope diagram is the image of a vertex, edge or fa
e resp. of the 
orrespondingpolyhedron.From SDA and SDB a new slope diagram may be 
reated by overlayingSDA and SDB. Overlaying two embedded graphs amounts roughly speakingto superimposing the two graphs and merging them into one graph [6, 7℄. Animportant well known property of the Minkowski sum is that the slope diagramof C is identi
al to the overlay of the slope diagrams of A and B [2℄, so,SDC = overlay(SDA; SDB):The node positions of SDC 
onsist of (i) the node positions of SDA and SDB,and (ii) the node positions de�ned by interse
ting edges of SDA and SDB.The �rst ones may be 
opied from SDA and SDB to SDC, the latter onesare obtained during the overlay 
al
ulation. It is important to note that by
al
ulating the dual of SDC the graph stru
ture of C is obtained, but be
ausethis graph has no node attributes, no 
omplete des
ription of C is available yet.In a later se
tion we show how in method3 and method4 the attributes of SDCare 
al
ulated.2 Some 
ommon methods to 
al
ulate the MinkowskisumMethod1 is a pure MSR method; it is simple but time 
onsuming [5℄. It is atwo step pro
ess. In the �rst step the position ve
tors of all the verti
es of A areadded to the position ve
tors of all the verti
es of B. This results in a total ofnvAnvB points where nvA and nvB are the number of verti
es of A and B resp. Inthe se
ond step the 
onvex hull of these points is 
omputed, giving C. Obviously,the �rst step has time 
omplexity O(nvAnvB). Using some standard 
onvex hullalgorithm [4℄ the se
ond step has time 
omplexity O(nvAnvB log(nvAnvB)). Thismethod of 
omputing C is expensive be
ause it works entirely in R3, whereasusing SDA and SDB implies working in R2. Another disadvantage is that theresult is not a graph but a set of points. Yet, this method is often used wheneÆ
ien
y is not 
ru
ial.Method2 is a mixed MSR-MSD method. The key idea of this method isto 
ompute all planes bounding C, i.e. all planes that 
ontain a fa
e of C. By
al
ulating the interse
tions of these planes, the edges and verti
es of C are
omputed. The method works as follows.1. For every fa
e f of A it is determined in whi
h fa
e of SDB the slope diagramimage of f is lo
ated. This fa
e of SDB is the image of some vertex of B,



4 say v. Now the plane 
ontaining the fa
e f is translated over the positionve
tor of v. The resulting plane is a bounding plane of C.2. The same as 1 with A and B inter
hanged.3. In the superimposed slope diagrams of A and B it is determined whi
hedges of SDA interse
t edges of SDB. Assume that the edges sei and sejinterse
t. Assume that the 
orresponding edges in A and B are ei and ej .Now we 
onstru
t a plane 
ontaining ei that is parallel with ej . This planeis shifted over a ve
tor ending somewhere on ej (say one of its endpoints).The resulting plane is a bounding plane of C.The interse
tion of the half spa
es de�ned by the planes des
ribed above isC. The fa
es of C 
ontained in the planes as 
onstru
ted in step 1 and 2, havethe same shape and size as the fa
es of A resp. B, i.e. are shifted instan
esof the fa
es of A resp. B. The fa
es of C 
ontained in the planes 
onstru
tedin 3 are new fa
es, i.e. are not 
opies of the fa
es of A or B. These fa
es areparallelograms with edges ei and ej . See �gure 1f, 3b for examples. Method2is more eÆ
ient than method1 be
ause it uses slope diagrams. Yet, it 
ontainsmu
h redundant work: C 
ontains many fa
es identi
al with fa
es of A and B,but this fa
t is not used in this method. Most fa
es are 
ompletely re
onstru
ted.Con
luding: in both methods too mu
h geometri
al 
omputations are done.The method we propose aims at minimizing these geometri
al 
omputations.3 The Minkowski sum by merging attributed graphsMethod3 is a straightforward MSD method, but in the literature we 
ould not�nd an integral des
ription of it. It 
onsists of the following four steps.1. Cal
ulate the slope diagram SDA. Besides the earlier mentioned node at-tributes (unit ve
tors), the slope diagram is given fa
e attributes. Every fa
ef of SDA is given an attribute attr(f), namely the position ve
tor of the
orresponding vertex in A. The attributed slope diagram SDB is 
al
ulatedsimilarly.2. Cal
ulate the overlay of SDA and SDB, that is, 
al
ulate the graph of SDC.This graph has no attributes yet.3. Cal
ulate the fa
e attributes of SDC. This is done as follows. When SDA,SDB and SDC are superimposed, every fa
e f of SDC is lo
ated in pre
iselyone fa
e fi of SDA, and in pre
isely one fa
e fj of SDB. Fa
e f gets asattribute the sum of the attributes of fi and fj .4. Cal
ulate the dual graph C of SDC as follows. Copy from SDC the fa
eattributes to the 
orresponding nodes of C. The graph C, with its nodeattributes, represents the Minkowski sum of A and B.In the following, the pro
ess of determining for every fa
e of SDC in whi
hfa
e of SDA and SDB it is lo
ated (see point 3), will be 
alled fa
e lo
ation. It isinstru
tive to 
ompare method3 with method1. In method1 all verti
es of A are
ombined with all verti
es of B. Afterwards, during the 
onvex hull 
omputation,
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(a) (b)
(
) (d)

(e)

(f)Fig. 1. Two polyhedra A and B (a) (b), their slope diagrams SDA and SDB (
),(d), the overlay of these slope diagrams SDC (e), and the Minkowski sum C of thepolyhedra A and B, (f). It may take some time to see the relation between (b) and(d). It 
an be seen that the (f) 
onsists of the fa
es of (a) and (b), and additionalparallelepiped fa
es (See also �gure 3b). MSR methods 
al
ulate (f) dire
tly from (a)and (b). MSD methods use the slope diagrams in (
), (d) and (e) to 
al
ulate (f).



6it is de
ided whi
h of these points are verti
es of C. In method3, by fa
e lo
ation,it is de
ided whi
h verti
es of A and B have to be 
ombined to give a vertex ofC. Using a standard graph method [8℄, the time 
omplexity of 
al
ulating SDAand SDB is O(neA+neB) where neA and neB are the number of edges of A andB. In the next se
tion we show that 
al
ulating the overlay of SDA and SDB
an be done in time O(neA + neB + k) where k is the number of interse
tingedges of SDA and SDB. Method3 may be summarized as follows. Step 1 and 4are transformations to and from the slope diagram domain. In step 2 the overlayis 
onstru
ted, and in step 3 the fa
e attributes of SDC are 
al
ulated. In thefollowing se
tions we will take a 
loser look at 
al
ulating the overlay and fa
elo
ation.4 Overlaying and fa
e lo
ationOverlaying two subdivisions of the plane is a standard problem of 
omputationalgeometry. Unfortunately, for our problem, i.e. 
al
ulating the overlay of twosubdivision of the sphere, no implementations are available, so we had to developour own implementation. For this we adapted an existing implementation inthe plane [6, 7℄ that runs in linear time O(neA + neB + k), where k is thenumber of interse
ting edges of SDA and SDB. An additional feature of ourimplementation is that the edges in the overlay SDC get an attribute indi
atingfrom whi
h edge of SDA or SDB the edge stems. Let us explain. When SDA,SDB and SDC are superimposed, every edge e of SDC 
oin
ides with part ofor a whole edge of SDA or SDB (that is roughly speaking the de�nition of anoverlay). During fa
e lo
ation, it is ne
essary to know whi
h set of edges of SDCbound a given fa
e of SDA or SDB. Therefore, during the overlay 
onstru
tion,every edge of SDC is given two attributes, one referring to an edge of SDAand one referring to an edge of SDB. In general, only one of these referen
es isnon-nil. Only when an edge of SDA (partially) 
oin
ides with an edge of SDB,both referen
es are non-nil. This situation o

urs for example in the extreme
ase when the Minkowski sum of two identi
al polyhedra is 
al
ulated, i.e. whenC = A�A.Now 
onsider fa
e lo
ation. The edge attributes of SDC as des
ribed abovemake it possible to �nd in SDC the edges that 
oin
ide with the edges of SDAor SDB, and that bound a given fa
e of SDA or SDB. We 
all su
h a set ofedges an A-
y
le or a B-
y
le. Let us look at some A-
y
le a. See �g. 2(
). Wewant to �nd all fa
es of SDC that are within a. First we 
olle
t those nodesof SDC that are on or within a. Let us 
all the set of nodes on and inside a,a:nodes. Nodes on a are found by going through the edges of a. Nodes withina are found when, starting from every node on a, inward edges are followedre
ursively. Using the a:nodes, we 
olle
t all fa
es of SDC that have one ormore nodes of a:nodes as vertex. The fa
es 
olle
ted in this way are within ordire
tly adja
ent to a. From these fa
es those ones are sele
ted that only haveverti
es from a:nodes. These fa
es are inside a, and get an attribute referring to



7the fa
e of SDA 
orresponding to a. This is done for all A-
y
les and B-
y
les. Inthis way every fa
e of SDC gets two attributes telling in whi
h fa
e of SDA andSDB it is lo
ated. Using these attributes, every fa
e of SDC is given a ve
torvalued attribute in the following way. If fa
e f of SDC is in fa
e fi of SDA and infa
e Fj of SDB then fa
e f gets a ve
tor attribute attr(f) = attr(fi)+attr(fj).In LEDA [8℄, the Computational Geometry platform we use, all operations inthe fa
e lo
ation algorithm above are available as standard methods.We will not dis
uss the time 
omplexity of fa
e lo
ation. In the �rst pla
ebe
ause it is not trivial, and se
ond be
ause in the in the next se
tion we presentour MSD method, i.e. method4, that works without fa
e lo
ation. Be
ause thetime 
omplexity of method4 is dominated by 
al
ulating the overlay, method4 issuperior to method3, whatever the time 
omplexity of fa
e lo
ation in method3may be.

(a) (b)
(
)Fig. 2. The slope diagrams SDA (a) and SDB (b) of two randomly generated polyhe-dra, and the overlay SDC (
) of these slope diagrams. In SDC an A-
y
le a is shown.The nodes on and inside a are marked.



85 A method without fa
e lo
ationIn method3 fa
e lo
ation was essential for 
al
ulating the fa
e attributes ofSDC, i.e. for 
al
ulating the vertex positions of C. We now present method4,whi
h works with edge attributes instead of fa
e attributes, and thus avoidsfa
e lo
ation. As a side e�e
t, the absolute position of C is lost. However, ina �nal step this position is re
overed. To des
ribe and implement method4 weuse bidire
ted graphs. This means that every edge e of A, B, C, SDA, SDBand SDC has a sour
e node and a target node, designated by sour
e(e) resp.target(e). Moreover, for every edge there is a reversal edge, i.e. when there existsan edge e starting at sour
e(e) and ending at target(e) then there is also an edgestarting at target(e) and ending at sour
e(e).Method4 is a six step pro
ess and works as follows.1. Swit
h to relative 
oordinates of A and B. More pre
isely, instead of usingnode attributes representing absolute node positions, we swit
h to edge at-tributes. Ea
h edge of A and B is attributed with a 3D ve
tor. The ve
tor isthe relative position of the target of the edge w.r.t. the sour
e of the edge, so,for edge e the attribute attr(e) is given by attr(e) = position(target(e)) �position(sour
e(e)).2. Cal
ulate SDA and SDB. Copy the edge attributes des
ribed in step 1 tothe 
orresponding edges of SDA and SDB.3. This is the 
ru
ial step. First 
ompute the overlay SDC. As des
ribed inmethod3, during the overlay 
onstru
tion, every edge e of SDC gets twoattributes indi
ating from whi
h edge of SDA or SDB e stems. Using theseattributes, 
al
ulate the attributes for every edge e of SDC in the followingway. When e stems from only one edge, so an edge of SDA (ex
lusive)-orSDB, e is given the ve
tor attribute of this edge. When e stems from anedge of SDA and an edge of SDB, e gets as attribute the ve
tor sum of theattributes of these edges.4. Cal
ulate the dual of SDC, 
alled C. Of every edge of SDC the edge at-tribute is 
opied to the 
orresponding edge of C.5. Cal
ulate node attributes of C, representing vertex positions of C as follows.Choose some node n0 of C and assign to it some freely 
hosen positionpos(n0), for example (0; 0; 0). Then for every edge e whi
h has n0 as sour
e,visit the node target(e), and assign to it the attribute pos(n0) + attr(e), i.e.to all nodes dire
tly 
onne
ted with n0 are assigned the position of n0 plusthe edge ve
tor of the 
onne
ting edge. This pro
ess is 
ontinued until everynode has been visited.6. Shift C to the 
orre
t position. This is done with three similar operations,one for the x dire
tion, one for the y dire
tion and one for the z dire
tion.We explain the x dire
tion shift.Let A max x be the x position of the most extreme point(s) of A in thepositive x dire
tion, and similarly for B max x and C max x. It 
an beeasily 
he
ked that it should hold thatC max x = A max x+B max x: (2)



9In the previous step C was pla
ed at a provisional position in spa
e. Letprov C max x be the maximal x position of C at this provisional position.Then, by shifting C overA max x+B max x� prov C max x (3)C gets its 
orre
t position in the x dire
tion. By a similar shift in the y andz dire
tion C gets its 
orre
t position.6 Dis
ussionMethod3 works be
ause a 
onvex polyhedron is de�ned by its verti
es. Method4works be
ause a polyhedron is de�ned, up to its absolute position, by its edgeve
tors. Method4 works without fa
e lo
ation. Instead, edge lo
ation is done.The advantage of method4 over method3 is that edge lo
ation has already beendone during the overlay phase without overhead. In terms of the number of
omputations, the advantage of not having to do fa
e lo
ation outweighs theneed to restore the absolute position of C.As mentioned before, the overlay may be 
omputed in time O(neA+neB+k).The time 
omplexity of 
omputing SDA and SDB, of attribute manipulation,and of shifting C to the 
orre
t position, is inferior to the time 
omplexity of
omputing the overlay, so, method4 has a time 
omplexity of O(neA+neB+ k).Obviously, this is better than method1 and method2. Probably it is also betterthan method3 be
ause we think that the time 
omplexity of fa
e lo
ation isgreater than O(neA + neB + k).Why does method4 work?We 
an prove that it is 
orre
t by using the supportfun
tion [9, 10℄, but be
ause of limited spa
e it 
an not be given here. We onlymake a few remarks whi
h may serve as a starting point of a proof.As remarked earlier, most fa
es of C are identi
al to the fa
es of A and B,plus additional paralellogram fa
es with one edge from A and one edge from B.So, the edges of C only 
onsist of edges of A and B, and o

asionally an edgethat is the sum of an edge of A and an edge of B. The last type of edge o

urswhen an edge in SDA (partially) 
oin
ides with an edge in SDB. In step 3 ofmethod4 these three kinds of edges of C are 
reated, that is, every edge of C isan edge of A or of B or the sum of an edge of A and of B.Another remark. The edges of SDC (partially) 
oin
ide with edges of SDAor SDB. To 
over 
ompletely an edge e of say SDB with edges of SDC mayrequire two or more edges of SDC. In step 3 of method4 ea
h of these edges ofSDC gets the same attribute, indi
ating that C gets some parallel edge ve
tors.More pre
isely: When an edge of SDB is subdivided in SDC in n edges thisindi
ates that C will have n parallel edges, parallel to the 
orresponding edge ofB. See �g. 3.7 Con
lusionWe have shown that the Minkowski sum of two 
onvex polyhedra may be 
om-puted almost entirely in the slope diagram domain, and that the usual fa
e
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(a) (b)Fig. 3. The slope diagram SDC and C from �gure 1. In SDC an edge of SDB issubdivided in three edges of SDC (See three arrows E1::E3). This results in threeparallel edges in C (See three arrows E1::E3) between B1 and B2. In B (see �gure 1)there was only one edge between B1 and B2. In C the fa
es from A and B are markedwith A1::A3 and B1::B5.lo
ation 
an be avoided, leading to a more eÆ
ient algorithm. The 
ru
ial partof the method is the 
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tion of the attributed overlay of the slope diagramsof A and B. Further, only simple attribute manipulations and simple geometri
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