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Abstract— A multi-scale, morphological method for the pur-
pose of shape-based object recognition is presented. A connected
operator similar to the morphological hat-transform is defined,
and two scale-space representations are built, using the curvature
function as the underlying 1-D signal. Each peak and valley of
the curvature is extracted and described by its maximum and
average heights and by its extent, and represents an entry inthe
top or bottom hat-transform scale spaces. We demonstrate object
recognition based on hat-transform scale spaces for three large
data sets, a set of diatom contours, the set of silhouettes from
the MPEG-7 database and the set of 2-D views of 3-D objects
from the COIL-20 database. Our approach outperforms other
methods for which comparative results exist.

Index Terms— Mathematical morphology, curvature, scale
space, top and bottom hat transforms, connected operators,
pattern classification, shape retrieval.

I. I NTRODUCTION

I N THIS paper, a general-purpose technique based on multi-
scale mathematical morphology for object recognition is

presented. The aim is to build multi-scale descriptions of
objects using shape information and to extract a concise set
of attributes that can be used for recognition.

Shape representation is a well-researched domain which
plays an important role in many applications ranging from
image analysis and pattern recognition, to computer graph-
ics and computer animation, and therefore many methods
for shape representation do exist in the literature. As our
proposed method is multiscale, we restrict our overview of
shape representation and analysis methods only to similar
techniques. Multiscale techniques for signal and image anal-
ysis are motivated by studies in psychophysics which showed
that the human visual system processes and analyzes image
information at different resolutions. Witkin [1] proposeda
scale-space filtering approach useful to determine the locations
of the zero crossings or extrema of a signal. Fermuller and
Kropatsch [2] presented a multi-resolution descriptor of planar
curves using corners with a hierarchical structure. Saund pro-
posed a scale space of edge elements constructed directly from
simple edge fragments [3]. A similar approach based on the
aggregation of primitive elements (points and edge fragments)
was presented by Lowe [4]. Bajcsy and Kovacic [5] proposed
a multi-resolution elastic matching method that postulates that
one of the two objects was made of elastic material and the
other served as reference. Under the influence of an external
force, the shape of the elastic object deforms to match the
reference object over a range of scales.
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The curvature of a curve has salient perceptual charac-
teristics [6], [7] and has proven to be useful for shape
recognition [8]–[12]. Asada and Brandy have developed the
“curvature primal sketch” descriptor [13], a multiscale struc-
ture based on the extraction of changes in curvature. From
curvature features, a description of the contour in terms of
structural primitives (e.g. ends, cranks, etc.) is constructed.
Mokhtarian and Mackworth [9], [10] showed that curvature
inflection points extracted using a Gaussian scale space can
be used to recognize curved objects. One difficulty with this
approach is that curves without inflection points fall into the
same equivalence class. Dudek and Tsotsos [11] presented a
technique for shape representation and recognition of objects
based on multi-scale curvature information. Their method
provides a single framework for both the decomposition and
recognition of both planar curves as well as surfaces in 3-D
space.

With the advent of wavelet transforms, several approaches
to the representation and analysis of planar curves using this
tool have been introduced. Chuang and Jay Kuo [14] have used
orthogonal and biorthogonal wavelet expansions for multi-
scale representation of curves and studied its properties in
the wavelet representation. Yuping and Toraichi [12] presented
a curvature-based multi-scale shape representation usingB-
spline wavelets and investigated the properties and behaviour
of evolving curves in B-spline scale spaces.

The basic idea of multi-scale representations is to embed the
original signal into a stack of gradually smoothed signals,in
which the fine scale details are successively suppressed. The
assumption of this approach is thecausality of the features
(inflection points or signal extrema), i.e. their reproducible
and monotonic behaviour in scale space, which was found
to depend on the scale-space filter [15]. This elegant idea and
the mandatory causality of scale-space features was initially
developed for 1-D signals, and it was proved that the Gaussian,
ensuring causality of inflection points, is the only linear kernel
that can be used [16]. However, for 2-D signals the inflection
points form closed contours that can split and evolve inde-
pendently as the scale increases [16]. In contrast to inflection
points, regional extrema have the advantage that they represent
single points or plateaux rather than contours, for 2-D signals.
Since there exists no linear filter that guarantees causality of
extrema in images [17], morphological filters ensuring extrema
causality have been proposed [18].

Several techniques for morphological multi-scale shape
analysis exist, such as size distributions or granulometries,
which are used to quantify the amount of detail in an image
at different scales [19], [20]. A similar method, based on
alternating sequential filters, has been proposed by Bangham
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and coworkers [21], [22]. Their method is used on 1-D signals,
though they do discuss extensions to higher dimensions.
Kimia [23] developed a method for curvature decomposition
based on erosion-diffusion scale spaces. Jang and Chin [24]
described a multiple-scale boundary representation basedon
morphological openings and closings using a structuring ele-
ment of increasing size. Smooth boundary segments across a
continuum of scales are extracted and linked together creating
a pattern called the morphological scale space, whose proper-
ties are investigated and contrasted with those of Gaussian
scale spaces. Chen and Yan [25] have used a scaled disk
for the morphological opening of objects in binary images
resulting in a theorem for zero-crossings of object boundary
curvature. Park and Lee [26] have generalized the concept
of zero-crossing for 1-D gray-scale signals. Meyer and Mara-
gos [27] developed a morphological scale-space representation
based on a morphological strong filter, the so-called levelings.
Jackway and Deriche [18] proposed a multi-scale morpho-
logical dilation-erosion smoothing operation and analyzed its
associated scale-space expansion for multidimensional signals.
They showed that scale-space fingerprints from their approach
have advantages over Gaussian scale-space fingerprints in that
they are defined for negative values of the scale parameter,
have monotonic properties in two and higher dimensions, do
not cause features to be shifted by the smoothing, and allow
efficient computation. As an application, they demonstrated
that reduced multi-scale dilation-erosion fingerprints can be
used for surface matching.

At the heart of our scale-space method is a different multi-
scale approach to the analysis of 1-D signals, motivated by
the work of Leymarie and Levine [28]. They developed a
morphological curvature scale space for shape analysis, based
on sequences of morphological top-hat or bottom-hat filters
with increasing size of the structuring element used. The main
difference between our approach and the initial technique
of Leymarie and Levine [28] is that our method allows for
nested structures (i.e. peaks and valleys of the curvature)
whereas their method does not. Allowing for nested structures
is important because small structures nested within a larger
one can be extracted and represented at some levels in the
scale space. In addition, in the 1-D case we do not split the
curvature in convex and concave parts, but we construct top
and bottom hat scale spaces, based on grey-scale inversion.
A problem not addressed by Leymarie and Levine is that of
extracting the most important features from the scale space.
Our primary contribution in this work is a reformulation of the
scale spaces in terms of connected operators [29], leading to
a very useful technique for� -dimensional shape recognition.
Shapes are represented by closed contours from which sets
of points are sampled. Using a spline representation, the
curvature is computed at each interpolated point, and two 1-D
morphologicalhat-transform scale spaces[30] are built, using
the curvature function as the underlying 1-D signal. For every
scale, each peak and valley of the curvature signal is extracted
and described by its maximum and average heights and by its
extent, and represents an entry in the top or bottom hat scale
spaces. The shape descriptor is a vector of numbers computed
using the information stored in the scale spaces. Since the

shape descriptors do not explicitly use any information re-
garding positions along the contours, finding correspondences
between two shapes is simply equivalent to computing some
distance measure between the two shape vectors. Also, for
classification techniques which require definition of a pattern
space, the pattern vectors are simply given by the shape
descriptors.

We demonstrate shape-based object recognition, based on
1-D hat-transform scale spaces, in a wide variety of settings:
recognition of diatoms, recognition using silhouettes from the
MPEG-7 database and 3-D object recognition based on 2-D
views. Our approach turns out to outperform other methods
for which comparative data exist.

The organization of the paper is as follows. In Section II
we present the morphological curvature scale spaces. First, we
discuss some problems inherent to curvature-based recognition
and present approaches to circumvent them. Then, we present
the morphological hat-transform scale spaces on which the
curvature scale spaces rely. Also, we demonstrate causality
and monotonicity of the extrema in the scale spaces, which are
important characteristics for any scale-space formulation. In
Section III we present the descriptors extracted from the scale-
spaces, and in Section IV we report identification and shape
retrieval results obtained for all three databases mentioned
above. We draw conclusions in Section V.

II. M ORPHOLOGICAL CURVATURE SCALE SPACES

A. Curvature definition

Let
�

be a smooth planar curve
� � � � � � � � � � � � � � � �

with
parameter	 
 � 
 � . It can be shown [31] that the curvature
of curve

� � � �
, not restricted to the normalized arc-length

parameter, is given by

� � � � � 
� � � � �� � � � � �� � � � 
� � � �
� 
� � � � � � 
� � � � � � � � � � (1)

If
�

is the normalized arc-length parameter� , then (1) can be
written as � � � � � 
� � � � �� � � � � �� � � � 
� � � � � (2)

As given in (1), the curvature function is computed only
from parametric derivatives and therefore it is invariant under
rotations and translations. However, the curvature measure is
scale dependent, i.e., inversely proportional to the scale. A
possible way to achieve scale independence is to normalize
this measure by the mean absolute curvature, i.e.,

� � � � � � � � � �
� �� �� � � � � � � � (3)

When the size of the curve is an important discriminative
feature, the curvature should be used without the normalization
in (3); otherwise, for the purpose of scale-invariant shape
analysis, the normalization should be performed.

B. Computation of the curvature function

Despite its simple definition, computing curvature measures
useful for recognition is not straightforward. The first problem
is that curvature is a purely local attribute, the estimation of



IEEE TRANSACTIONS ON IMAGE PROCESSING 3

which is prone to noise. Secondly, spatially sampled curves
are represented by a set of isolated points which are in fact
a set of singularities. Thus, some regularizing pre-processing,
such as smoothed interpolation, is needed before curvature
can be estimated. In order to circumvent these problems some
techniques have been proposed based on: alternative measures
(c-curvature) [32], numerical differentiation and interpola-
tion [12], [33], and convolution with differential Gaussian
kernels [10]. In this paper we use a different approach to
estimating curvature, based on bi-cubic spline interpolation.
Among many interpolation techniques, cubic splines provide� �

regularity in each point of the curve. Moreover, splines
have been shown to be efficient approaches to interpolate
curves [34], and appear to represent the best trade-off between
accuracy and computational cost.

Let
�

be a smooth planar curve on�	 � � � , with sample points� � � � � � � � � � � � � � � � � � � � � 	 obtained by sampling the curve
at

� 
 � � � � � � � � � � , with
� 
 � 	 and

� � � � . The interpolation
problem is to fit cubic polynomials� � � � �

on each interval�� � � � � 
 
 � , � � � � � � � � � � � � �
. Using continuity requirements

of the first derivatives of the splines and two further continuity
conditions at the endpoints, one obtains a tridiagonal system
of linear equations, which can be solved in linear time. The
process of computing the spline coefficients is applied for each
component of the vector.

The choice of the knot sequence
� � 
 � � � � � � � � � � �

greatly
influences the shape of each spline segment. Close-distanced
interpolating knots not only reduce the energy of the re-
sulting curve, but also avoid the occurrence of oscillations
and loops [34]. Among many parameterization methods in-
vestigated in [31], the arc-length parameterization seemsto
achieve the best equal space effect, because the use of arc
length as parameter attains constant speed of motion along
the curve [31], [35]. The simplest approximation to the arc-
length parameterization is the so-called chord length parame-
terization, in which the domain is subdivided according to the
distribution of the chord lengths. However, according to results
obtained by Lee in [36], a more appropriate way to define the
parametric knots for the curve would be to use the centripetal
parameterization. This parameterization reduces the energy of
the resulting curve and avoids (to some extent) the occurrence
of oscillations and loops. Although in the centripetal method
the knots will in general be non-uniformly spaced with respect
to arc length, it is possible to derive an approximation to the
arc-length parameterization as follows.

Let � � � �� � 
 � � be the perimeter of the curve and� �� ��� 
 � � � , where� � is the length of the chord between points� �
and

� � 
 

, � � � � � � � � � � � � �

. An approximate arc-length
parameterization based on the centripetal method is given by
the following relations

� 
 � 	
� � � � � � 
 � � � � � � 


� � � � � � � � � � � � � � (4)

To summarize, the curvature function given in (2) is
computed as follows. A number of� points are sampled
equidistantly from the initial curve, resulting in a new sampled
curve. This curve is regularized (i.e. smoothed with a Gaussian
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Fig. 1. The max-tree structure.Left: a 1-D signal;center: peak components� �� of the signal;right: its corresponding max-tree.

kernel) and fitted using bi-cubic splines. We use relations (4)
to generate the knot sequence

� � 
 � � � � � � � � � � �
, and compute

the curvature function� � � � � at each interpolated point, using
spline derivatives. Finally, a curvature function� �� � � � invariant
with respect to rotations, translations and scaling transforms
is computed using relation (3).

C. From curvature to scale-space features

In this section we present the morphological curvature scale
spaces, and demonstrate causality of the extrema in the scale
spaces. We also briefly describe the features extracted from
the scale spaces, and study the behaviour of the scale-space
representations under noise conditions.

1) Morphological curvature scale spaces:We begin with
the definition of the hat-transform scale spaces [30], but unlike
in [30], here we shall formulate the hat scale spaces in terms
of the max-tree data structure [37]. The curvature scale spaces
are particular 1-D versions of the hat-transform scale spaces,
when the underlying 1-D signal is the curvature function.

Let � be an arbitrary nonempty set of vertices, and denote
by � �� �

the collection of subsets of� . Also, let � � �� � � �
be an undirected graph, where

�
is a mapping from� to � �� �

which associates to each point
� � � the set

� � � �
of points

adjacent to
�
. It is common in signal processing to assume that� is a regular grid, i.e.�  ! �

(� � � � �
), and

�
corresponds

to 2-adjacency when� � �
, or to 4-adjacency or 8-adjacency

when � � �
. In what follows we assume�  ! � � � � � � �

.
A path " in a graph� � �� � � �

from point
� � to point

� �
is

a sequence
� � � � � 
 � � � � � � � �

of points of� such that
� � � � � � 
 
 �

are adjacent for all� � �	 � � �
. Let #  � be a subset of� .

A set # is connectedwhen for each pair (
� � � � �

) of points in# there exists a path of points in# that joins
� � and

� �
. A

connected componentof # is a connected subset
� �# �

of #
which is maximal. Aflat zone� $ at level % of a grey-scale
signal & is a connected component

� �# $ � & � �
of the level

set# $ � & � � � ' � � �& �' � � % 	 . A regional maximum( $ at
level % is a flat zone which has only strictly lower neighbours.
A peak component� $ at level % is a connected component of
the threshold set) $ � & � � � ' � � �& �' � * % 	 . A connected
opening

� + �# �
extracts the connected component of# to

which
�

belongs, if
� � # , and equals, otherwise. Given

a set- (the mask), thegeodesic distance� . �' � / �
between

two pixels
'

and
/

is the length of the shortest path joining
'

and
/

which is included in- . The geodesic distance between
a point

' � - and a set0  - is defined as� . �' � 0 � �
1 2 3 4 5 6 � . �' � � �

.
A max-tree is a rooted tree, in which each of the nodes

� �$
at grey-level% corresponds to a peak component� �$ . However,
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Fig. 2. Pruning a max-tree with the criterion� �� �� � using themax filtering rule. First row: Max-trees at iterations� � � � � � � � 	 ; attributes
 �� �� � are
shown in the left-hand side of each node� �� (the nodes for which the criterion� holds are marked; in every root path,� holds for all nodes below a node
for which � holds);second row: reconstructed signals
 � .
� �$ contains only those pixels in� �$ which have grey level% .
In other words, it is the union of all flat zones� �$  � �$ . An
example of a 1-D signal, its peak components and its max-tree
are shown in Fig. 1.

Inspired by the work of Leymarie and Levine [28], we wish
to split the curvature profile at points where the width of a
feature suddenly changes. This can be formalized in terms of
maximal distances of pixels of a max-tree node from its nearest
child pixel. If this distance is larger than some threshold� we
consider this an abrupt change. Let& be a grey-scale image
with an associated max-tree as in Fig. 1. Let� �$ be a peak
component at level% which has� � peak components� �

$ �  � �$ at level % 
 , which is the smallest grey level larger than% ,
with � from some index set� �$ . The associated max-tree nodes
are of course

� �$ and
� �
$ � , respectively. Consider the attribute- � � �$ �

defined as

- � � �$ � �
���1 � �� 5 � �� � 1 � �+ 5 � �� � � � � � �

�
$ � � ��

if � �  	
	 otherwise

� (5)

where � � � � � �
$ � �

denotes a distance measure from a pixel
�

to set� �
$ � . This distance might be the Euclidean or geodesic

distance within� �$ from
�

to the nearest member of� �
$ � . The

filter criterion ) which preserves nodes in the path from leaf
to root where abrupt changes take place is

) � � �$ � � �- � � �$ �  � � � (6)

It is easy to see that this criterion is not increasing, so any
max-tree filter! "# using it is an attribute thinning rather than
an opening. Themaxfilter rule for attribute thinnings proposed
by Breen and Jones [19] will now allow us to remove branches
of the max-tree at those points where the width suddenly
changes. Themax rule works by descending from each leaf
of the max-tree, removing nodes until a node is found for
which the criterion) is true. Any node between this node
and the root is unaffected. A problem with the formulation of
this filtering rule is that it is cast in terms of an algorithm.
More formally, we can define a new criterion$ which takes

the max-rule into account$ � � �$ � � �- �� �$ �  � � %
� & � � � �$ � & % �  % ' - �� + � ) $ ( � & � � �  � � � (7)

Note that
� + � ) $ ( � & � �

extracts a peak component� �
$ (  � �$ .

In other words, peak component� �$ is preserved if it meets
criterion ) or if any peak component� �

$ (  � �$ with % �  %
meets) . An example of filtering a max tree, using criterion$ according to themax rule is given in Fig. 2.

Attribute thinning! )# can now be defined as! )# � & � � � � � 1 � � � % ' $ �� + � ) $ � & � � � 	 � (8)

Unlike most attribute thinnings,! )# is not idempotent. It can
be seen from (5) that all regional maxima will be removed for
any positive� , because- is zero for these peak components.
However, any component for which$ is true in image& will
have at least one nested peak component at% 
 . Let � �$ be such
a component. There are two situations: (i)$ �� �

$ � �
is false for

all � � � �$ , or (ii) $ � � �
$ � �

is true for at least one� � � �$ . In
the first case, node� �$ in the filtered image! )# � & �

will be
a regional maximum, and therefore be removed by a second
application of! )# . In the second case, it can easily be verified
that there must exist a� �$ (  � �$ , % �  % , for which $ is true
and for which the first case holds, because all regional maxima
have- � � �� � � 	 . Therefore, unless there are no nodes in the
max-tree of& for which $ is true, ! )# � ! )# � & � � *� ! )# � & �

.
Then, letting� in (5) be the geodesic distance within� �$

(i.e. � � � � � �
$ � � � � � �� � � � � �

$ � �
), and setting� � �

in (7), the
top-hat scale space[30] of a grey-scale image& is given by
the sequence

� + � � + 
 � � � � � + , �
defined by the iteration

& - 
 
 � ! )# � & - �+ - � & - � & - 
 
 � (9)

with & � � & and � * 	 .
Eq. (9) is iterated until& , � & . � � for all pixels, where& . � �

is the minimum value of& . Using the grey-scale inversion& / � & , a bottom-hat scale space can be formulated. Note
that this formulation differs from that in [30]; however, itcan
be shown to be equivalent.
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Fig. 3. Building curvature spaces.Top: a binary image representing a complex
object;center: curvature function (i.e. 
 � ), residuals� � (in bold) and signals
 � , � � � � � � � � � represented in the top-hat scale space;bottom: curvature
function, residuals� � and signals
 � , � � � � � � � � � represented in the bottom-
hat scale space.

The curvature scale spacesare obtained by iterating re-
lations (9) on the curvature function (i.e.& � � � ) and on
its grey-scale inversion� � / � � � . An example is shown in
Fig. 3. Then, each extracted residual (i.e. peak of the curvature,
represented in the top-hat scale space, and valley represented
in the bottom-hat scale space) is described by its extremal
curvature, mean curvature, extent and location.

The scale spaces can be visualized by “reconstructing”
the original signal in the following manner. We start with a
constant signal& � 	 . Then, we stack the boxes corresponding
to the nested features (peaks) on top of one another, i.e.
we accumulate their maximum (or average) values in& , at
appropriate positions (given by the extents of the peaks) along
the

�
axis; this has been done in Fig. 4.

The current method is sensitive to differences in the relative
locations of the curvature features. This means that, for exam-
ple, an elongated rectangle and a square are distinguishable,
because the widths of the major valleys in the curvature

correspond to the distances between major peaks, so it is
possible to discriminate between these.

2) Causality and monotonicity of the extrema in the hat-
transform scale spaces:An important characteristic of scale-
space theory, in contrast to other multi-scale approaches,is
the property that a signal feature present at some scale must
be present all the way through scale-space to zero-scale (i.e.
original signal) [18]. This is often called the causality principle
and ensures that no new spurious features are created due to
the filter. The stronger property of monotonicity requires that
the number of features must decrease with increasing scale.

There are several morphological scale-space representations
which have been shown to obey the causality principle.
Jackway and Deriche [18] proved that their dilation-erosion
scale spaces have monotonic properties in two and higher
dimensions, and do not cause features to be shifted by the
smoothing. Extensive analysis of scale-space properties satis-
fied by n-dimensional sieves is given in [38].

It can be shown that the top-hat scale spaces (9) constitute a
special case of levelings [27], [39], a general nonlinear scale-
space representation which satisfies the causality principle.
However, since no complete proof was given in [27], [39],
we will briefly analyze the behaviour of the extrema in
the hat-transform scale space and prove that our scale-space
representations fulfill these principles.

Let � - be the set of all peak components, and
� - the set

of all regional maxima of& - , as defined in (9). Furthermore
the set� - is defined as

� - � � � �$ � � - � � $ �� �$ � 	 � (10)

Obviously
� -  � - , and� - 
 
 � � - � � - . Finally, we define

a set� - as

� - � � � �$ � � - � � - �	 � � � �$ ' �
�
$ � � � - 	 � (11)

In other words,� - is the set of peak components� �$ for which$ holds, but which have no� �
$ �  � �$ for which $ holds. It

can be seen that
� - � � - 
 
 � (12)

Each feature extracted from& - by ! )
 consists of precisely
one member of

� - , and possibly a set of members of
� - � � - . For example, in the leftmost max-tree in Fig. 2
the maximum associated with

� �
 also contains non-maximum
node

� �� . Unless � - � � - � , , a feature associated with
regional maximum( � � - is associated with exactly one
component� �$ � � - � � - , which is the peak component at
the highest grey level for which( � � �$ and $ � � �$ �

holds.
Multiple maxima may be associated with any� �$ , and� �$ need
not be a member of� - . In Fig. 2,

� �
 is associated with two
maxima:

� �
 and
� 


 . Furthermore, the peak component� �


represented by
� �


in Fig. 2 is associated with maximum
� �� ,

but � �
 *� � � . Should� �$ *� � - then there exists a component
at a coarser scale than� which is nested within it. For these
reasons,� � � - � � � �� - 
 
 � 
 � �� - � , with # denoting
cardinality. Furthermore, if� - *� , there must be at least one
regional maximum, so� �� - 
 
 � � � �� - � . If � �� - �  �

we
have� �� - � 
 � �� - � � �

. This means that because the total
number of peak components decreases strictly, the number
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Fig. 4. Left: original contour and sample points;right: curvature function
(solid) superimposed on the reconstructed signal (bold) using top-hat scale-
space information. Top and bottom scale spaces representedas curves,
showing scale-space features as blocks of the correct widthand maximum
height.

of maxima must decrease for sufficiently large� , proving
monotonicity. Furthermore any new maximum( � � - 
 

of & - 
 
 is identical to a peak component� � � - of & - .
Therefore, no new maxima are introduced, the number of
maxima decreases,and there is an explicit nesting relationship
between features at small and large scales in the scale space.
Thus, the localization of the contours is preserved, and the
causality principle is verified: coarser scales can only be
caused by what happened at finer scales.

Hence, the reduction of connected components for descend-
ing grey levels, by filtering the initial signal according to
relations (9) ensures causality. This means that the location
and shape of regional maxima and flat zones are preserved
all the way through scale-space to zero-scale. By duality, a
similar result can be formulated, regarding local minima in
the bottom-hat scale space.

3) Coping with noise:We carried out an experiment to
test the stability of the curvature scale spaces under noise
conditions. Fig. 4 shows the initial contour, its curvature
function, and the reconstructed curvature using information
extracted from the top scale space (maximum heights). The
computations were made using� � � � 	 sampled points
(marked with ’x’ in the contour graph), and Gaussian smooth-
ing of the sampled contour with� � � � 	 . Fig. 5 shows
the same contour affected by significant amounts of uniform,
random noise, added to it. The noisy contours were obtained
by randomly translating the coordinates of each point in the
intervals �� � � � � , and �� � 	 � � 	 � , respectively. As expected,
the scale-space signals show differences in detail, cf. Fig. 5.
However, remarkable similarities of the structures present in
these graphs can be observed. The same behaviour is exhibited
by the features extracted from the bottom-hat scale spaces
(results not shown). This experiment shows that the curvature
scale spaces are reliable and stable even when large amounts
of noise corrupt the shape of the original curve.

III. SCALE-SPACE DESCRIPTORS

This section is devoted to the extraction of pattern vectors,
based on the information stored in the scale spaces, and to the
computation of a dissimilarity measure between two shapes,
useful for shape matching.

Fig. 5. Left: contours affected by noise;right: reconstructed noisy curvature
signals (bold) superimposed on the reconstruction of the original curvature
(solid).

A. Extraction of pattern vectors

In principle, knowledge of the curvature function is suf-
ficient to determine a planar curve, up to a rigid transform.
However, if a curve underwent non-rigid transforms and/or
is affected by a large degree of noise, its curvature function
would be affected accordingly. Although the very purpose of
a scale-space representation is to gain robustness with respect
to such factors, special care must be taken to address these
problems. Since for regularization purposes, the input curves
are smoothed with Gaussian kernels, selecting a suitable width� for each curve is by no means trivial. To tackle this problem,
a simple yet not very efficient solution is to smooth each
curve successively by Gaussian kernels of increasing widths
(i.e. � � � � � � � � � � � � ), and to build hat scale spaces at
each iteration	 
 � � 
 � � � � � � . The final pattern vector is then
constructed by concatenating the pattern vectors obtainedat
each iteration, from top and bottom scale spaces. Since the
curvature function becomes smoother when the width of the
Gaussian kernel increases, decreasing lengths of the pattern
vectors extracted from the scale spaces are used.

Let � � � � � � be the length of the pattern vector extracted at
scale� � from the top scale space, and� � � � � � be the length
of the pattern vector extracted from the bottom scale space.
In order to further shorten the final pattern vector, we choose
� � and � � such that� � � � � � � � � � � � � , 	 
 � � 
 � � � � � � .

Since curvature is a local attribute, additional global shape
parameters are also computed at each iteration; we included
two globalcurvature-relateddescriptors and two globalshape
descriptors. The first global curvature descriptor is the bending
energy, defined as the sum of the squared curvatures along the
contour. The second global curvature descriptor is defined as
the number of scale space entries from both top and bottom
scale spaces having average curvatures above a threshold� � .
This descriptor is similar to the curvature scalar descriptor,
which is defined as the number of contour points where the
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boundary changes significantly, divided by the total lengthof
the contour. The two global shape descriptors are eccentricity
and elongation [40]. Note that similar global descriptors were
also used in [9], [41] and in the MPEG-7 standard [42] to
supplement the Curvature Scale Space (CSS) descriptors.

Finally, the pattern vector extracted at iteration� , � �� � � � � � � � � is given by� � � � % � � � �
 � % � � � �� � � � � � % � � � �� � � � � � �
% � � � �
 � % � � � �� � � � � � % � � � �� 	 � � � � �
 � � � � 
 � 
 � � � � 
 � � � � � � � � (13)

where
 � � � , 
 � 
 � , � 
 � , � � � � , are eccentricity, elongation, bend-
ing energy, and curvature scalar descriptor, respectively. The
values% � � � �� , � � � � � � � � � � � � � � , represent the� � � � � � features
with the largest maximum curvature extracted from the top
scale space, at iteration� . Similarly, % � � � �� , � � � � � � � � � � � � � � ,
represent the� � � � � � features with the largest maximum cur-
vature extracted from the bottom scale space, at iteration� .
B. A measure of dissimilarity between shapes

Let
�

be the final pattern vector representing the reference
shape� , and

� � be the final pattern vector corresponding to
a test shape� � , obtained by concatenating the corresponding
vectors

� �
and

� �� , � � � � � � � � � � � � � , as defined in (13); here
� is the maximum scale index, as defined in subsection III-A.
As is common in content-based retrieval literature, we define
a measure of dissimilarity� , , ( between shapes� and � � as
the following weighted� 
 distance

� , , ( � � 
 �� � ��
� � 
 ��% � � � % �� � �� � � 	�

� � 
 �% � � � % �� � ���
� � �

-��� 
 � �
 � � � � 
 � � �� � � �
 � 
 � � 
 � 
 �� ��
� � �

-�. � 
 � �� 
 . � � 
 �. � � �� � � . � � � � �. �� �
(14)

where � � � � -� � 
 � � � � � � , � � � � -� � 
 � � � � � � , and
� 


,� � , � � are weights. The “prime” symbol indicates features
corresponding to the test shape� � .

IV. CASE STUDIES

To test the reliability of the proposed method for shape-
based object recognition, we used three data sets, and for each
of them we performed two types of recognition experiments:
shape retrieval and shape identification. A content-based (or
query by example) retrieval system contains a database of
objects (e.g. images, shapes), and responds to a query object
presented by the user with ranked similar objects. Usually
these systems do not use a training stage and compute similar-
ity between objects based on some distance measure. Contrary
to content-based retrieval, in supervised shape identification a
classification function is learned from, or fitted to, training
data, and then the classifier is tested on unseen (test) data.

For shape retrieval, the performance was measured using
the so-called “bulls-eye test”, in which each shape contouris

Fig. 6. Examples of contours extracted from the diatoms image set.

used as query and one counts the number of correct hits in
the top

� � �
matches, where

�
is the number of prototypes

per class. In our shape identification experiments we have
used the C4.5 algorithm [43] for constructing decision trees,
with bagging [44] as a method of improving the accuracy
of the classifier. The performance was evaluated using the
holdout [45] method. We compare the results obtained using
our method with those obtained using Fourier descriptors
(FD) [46], wavelet descriptors (WD) [14], and the CSS de-
scriptors developed for the MPEG-7 standard (CSSD) [42]. In
cases for which there are published results, other than those
obtained with the above methods, we will also refer to them.

A. Pre-processing and settings of parameters

For each technique, parameter values have to be determined
that would give the best results for each data set. This involves
an iterative process of initially guessing suitable parameter
values, evaluating the results, and then refining the values.
Since this is a time-consuming procedure, two points should
be made: (i) the values used are not the result of an exhaustive
search of the parameter space, because such a search would be
impractical, requiring a very long time, and (ii) the parameter
values were adjusted in an attempt to give best average
performance, across all data sets. Although the values may
not be optimal (as a consequence of the first observation),
they produced the best classification performances in our
experiments.

The parameters of the morphological scale spaces were set
as follows. Each input curve is sampled at an equal number of
points, such that the resulting curve has� � � � 	 points. This
curve is regularized by smoothing with Gaussian kernels of
increasing width. We selected� � �

values for the smoothing
parameter� � ' � � 	 � � � 	 � � 	 � 	 � � � � 	 , in an attempt to cover a
large interval of smoothing degrees. The numbers of features
extracted from both the top scale space and the bottom hat
scale space were set to� � � � � � ' � 	 � � 	 � � � �

, and � � � � � � '� � � � � � �
, respectively. Finally, the weights were set to

� 
 �� � 	 ,
� � � 	 �� and

� � � � � 	 , and the threshold parameter was� � � 	 � � .
The parameters of the other methods were set according

to [41], [42] for the CSS method, [14] for the WD, and [47]
for the FD.

B. Recognition of diatoms

In the first experiment we measured identification and shape
retrieval results on a large set of diatom images, which consists
of

� �
different taxa, comprising a total of

� � �
images. Each

class (taxon) has at least
� 	 representatives.
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TABLE I

IDENTIFICATION PERFORMANCES FOR THE DIATOMS DATA SET

(DIATOMS ), MPEG-7SILHOUETTE DATABASE (MPEG-7) AND COIL-20

(COIL ) DATABASE, USING THE C4.5DECISION TREE CLASSIFIER WITH

BAGGING.

Diatoms are microscopic, single-celled algae, which show
highly ornate silica shells or frustules. Some examples of
diatom images are shown in Fig. 6. Each image represents
a single shell of a diatom, and each diatom image is ac-
companied by the outline of its view (see Fig. 6). For addi-
tional details on diatoms, segmentation of diatom images, or
other identification results than those presented here, we refer
to [47], which contains the results of the Automatic Diatom
Identification and Classification (ADIAC) project, aimed at
automating the process of diatom identification by digital
image analysis.

With the experimental setup given in section IV-A and the
identification technique briefly described at the beginningof
section IV, the identification performances obtained by all
methods for each data set are given in Table I. Similarly,
retrieval performances obtained using the so-called “bulls-
eye test” are given in Table II. Table I shows identification
performances using the C4.5 decision tree classifier with
bagging. The column ‘�

�
’ contains the average number of

errors; the column ‘� ’ contains the standard deviation of
the number of errors; the columns ‘min’ and ‘max’ contain
the minimum and maximum number of errors, respectively;
the column ‘performance’ contains the percentage (average
with standard deviation) of samples identified correctly. In
both tables, MCSSD stands for the morphological curvature
scale space descriptor from section III-A, CSSD represents
the curvature scale space descriptor, Fourier descriptorsare
denoted by FD, and the wavelet descriptors are denoted by
WD.

The performances obtained using MCSSD were at least
� �

larger than the others, while the identification performance for
this data set is the best result obtained during the ADIAC
project [47]. Fourier and wavelet descriptors performed well,
resulting in identification performances close to

� 	 �
, and

retrieval performances of almost
� � �

. The poor performances
obtained using the CSSD (based on inflection points) can
be explained by the fact that most diatoms in this data set

exhibit convex shapes and there are no inflection points on
the contour of a convex object. Since the MCSS method
extracts information about both convexities and concavities,
our method is not upset by convex shapes.

TABLE II

SHAPE RETRIEVAL PERFORMANCES(%) FOR THE DIATOMS DATA SET

(DIATOMS ), MPEG-7SILHOUETTE DATABASE (MPEG-7) AND COIL-20

(COIL ) DATABASE.

C. Recognition using silhouettes. The MPEG-7 database

Our next experiment was performed using the MPEG-7
shape silhouette data set, a database of

� � 	 	 objects used in
the MPEG-7 Core Experiment CE-Shape-1 part B [48]. This
database consists of

� 	 shape categories, with
� 	 objects per

category.
Using the same setup as in the first experiment, identifi-

cation performances for this data set are shown in Table I,
and retrieval performances are given in Table II. For this data
set both methods based on curvature information performed
much better than Fourier and wavelet descriptors. However,
the MCSS method outperformed the CSS technique, yielding
performances which are

� �
larger than those of the latter.

Other published retrieval results for this data set, using
the same methodology, do exist and range from

� � �� � �
to� � �� � �

[41], [48]–[51].
A possible reason for achieving improved results is that

our descriptor is invariant with respect to reflections, whereas
shape contexts [51] and CSS descriptors [41] are not. This
reflection invariance also holds for the method in [49], which
has a performance of

� � �� � �
, but this method requires

substantially more computation time than ours. Also, as shown
in [48] there are cases in which shapes perceived as concep-
tually different have the same positions of the maxima of the
CSS image, and hence the CSS method fails.

D. 3-D object recognition based on 2-D views

This experiment involved recognition of objects based on
their 2-D appearances. We used the COIL-20 database [52].
Each of the

� 	 objects from this database is represented by
� �

2-D views, corresponding to successive rotations of the object
over an angle of

� �
.

Closed, outside contours were extracted using the Canny
edge detector, followed by a contour-tracing algorithm [40].
Otherwise, we have used the same experimental setup as with
the other experiments.

For this data set, the number of prototypes can be reduced
because some of the views of the objects have approximately
the same appearance. Belongie et al. [51] report

� �� �
error

rate using only four 2-D views for each object (i.e.
� 	 proto-

types). They used a modified k-means clustering algorithm for
adaptively selecting (and therefore reducing) prototypes, and
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a nearest-neighbour classifier. Instead of using more advanced
clustering algorithms in order to further reduce the number
of prototypes, we use the same experimental setup as in
our previous experiments, and report the identification and
retrieval performances shown in Tables I and II, respectively.

Once again the performances obtained using MCSSD were
at least

� �
larger then the others. For this data set, the CSS

method outperformed the Fourier and wavelet methods.

V. CONCLUSIONS

We have proposed a multi-scale method for object recog-
nition, based on contour information. The method is based
on two morphological scale-space representations, the hat-
transform scale spaces, which showed successful applicability
for shape-based recognition. These representations of the
curvature signal result in a novel representation, the morpho-
logical curvature scale spaces.

We demonstrated causality of the extrema in the scale
spaces, an essential characteristic to any scale-space formu-
lation. Besides this theoretical result, we have shown the
relevance of these representations to object recognition and
illustrated their usage for identification and shape retrieval.
We evaluated the performance of the method in three recog-
nition experiments: recognition of diatoms based on natural
images of diatom shells, recognition using silhouettes from the
MPEG-7 database, and 3-D object recognition based on 2-D
views. Our method outperforms all shape comparison methods
previously reported in the literature, in both identification and
retrieval performances.

The shape descriptor uses only maximum heights of the
extrema of the curvature function and some global shape
descriptors, and no information regarding the positions ofthe
extrema along the contour. The advantage of this approach is
that matching two shapes means simply computing a distance
between the two descriptors, without any alignment (i.e.
shifting) of the maxima as is required in the CSS method. Also,
the method can be used for scale-invariant shape analysis,
e.g. when a non-uniformly scaled square and a rectangle are
assigned to the same class. However, if this is not desired,
the descriptor can be augmented with the relative sizes of
the extracted features to discriminate between such cases.The
shape descriptor incorporates both convexities and concavities
of shapes, and hence it is possible to discriminate between
convex shapes. Furthermore, the method is robust to local
shape deformations and copes well with large amounts of
noise.

Finally, the method is fast, and the computational complex-
ity of constructing the scale spaces is linear in the number of
points of the input contour. For example, the CPU time spent to
compute and collect the shape descriptors for all

� � 	 	 contours
of the MPEG-7 dataset is under two minutes on a Pentium III
machine at 670 MHz.
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