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Shape representation and recognition through
morphological curvature scale spaces
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Abstract— A multi-scale, morphological method for the pur- The curvature of a curve has salient perceptual charac-
pose of shape-based object recognition is presented. A cauted teristics [6], [7] and has proven to be useful for shape
operator similar to the morpholqglcal hat-tr.ansfqrm is defined, recognition [8]-[12]. Asada and Brandy have developed the
and two scale-space representations are built, using the otature . -\ . .
function as the underlying 1-D signal. Each peak and valley fo curvature primal sketch Qescrlptor [13], a. multiscaleust
the curvature is extracted and described by its maximum and ture based on the extraction of changes in curvature. From
average heights and by its extent, and represents an entry ithe curvature features, a description of the contour in terms of
top or bottom hat-transform scale spaces. We demonstrate ¢g&ct — structural primitives (e.g. ends, cranks, etc.) is corcsénul

recognition based on hat-transform scale spaces for threaige Mokhtarian and Mackworth [9], [10] showed that curvature
data sets, a set of diatom contours, the set of silhouettesofin !

the MPEG-7 database and the set of 2-D views of 3-D objeCtsinflection points ex_tracted using_a Gaussian_ s_cale space can
from the COIL-20 database. Our approach outperforms other De used to recognize curved objects. One difficulty with this
methods for which comparative results exist. approach is that curves without inflection points fall inke t
Index Terms— Mathematical morphology, curvature, scale same_equivalence class. Dudek_and Tsotsos [1_;] presen_ted a
space, top and bottom hat transforms, connected operators, technique for shape representation and recognition ofctibje
pattern classification, shape retrieval. based on multi-scale curvature information. Their method
provides a single framework for both the decomposition and
recognition of both planar curves as well as surfaces in 3-D
space.
I N THIS paper, a general-purpose technique based on multi\yith the advent of wavelet transforms, several approaches
scale mathematical morphology for object recognition i§ the representation and analysis of planar curves usisg th
presented. The aim is to build multi-scale descriptions @jo| have been introduced. Chuang and Jay Kuo [14] have used
objects using shape information and to extract a concise gghogonal and biorthogonal wavelet expansions for multi-
of attributes that can be used for recognition. scale representation of curves and studied its propenties i
Shape representation is a well-researched domain whigla wavelet representation. Yuping and Toraichi [12] pése
plays an important role in many applications ranging from§ curvature-based multi-scale shape representation Bsing
image analysis and pattern recognition, to computer grapfpiine wavelets and investigated the properties and betavi
ics and Computer animation, and therefore many methO@ﬁevoNing curves in B_Sp"ne scale spaces.
for shape representation do exist in the literature. As ourThe basic idea of multi-scale representations is to embed th
proposed method is multiscale, we restrict our overview efiginal signal into a stack of gradually smoothed signis,
shape representation and analysis methods only to similgich the fine scale details are successively suppressex. Th
techniques. Multiscale techniques for signal and imagé- angssumption of this approach is titausality of the features
ysis are motivated by studies in psychophysics which showgfflection points or signal extrema), i.e. their reprodiei
that the human visual system processes and analyzes imag@ monotonic behaviour in scale space, which was found
information at different resolutions. Witkin [1] proposed to depend on the scale-space filter [15]. This elegant idéda an
scale-space filtering approach useful to determine thei@t the mandatory causality of scale-space features wasliitia
of the zero crossings or extrema of a signal. Fermuller aggveloped for 1-D signals, and it was proved that the Gauissia
Kropatsch [2] presented a multi-resolution descriptorlahpr - ensuring causality of inflection points, is the only lineartkel
curves using corners with a hierarchical structure. Saund pthat can be used [16]. However, for 2-D signals the inflection
posed a scale space of edge elements constructed direetly foints form closed contours that can split and evolve inde-
simple edge fragments [3]. A similar approach based on thendently as the scale increases [16]. In contrast to iidlect
aggregation of primitive elements (points and edge frags)enpoints, regional extrema have the advantage that theysepre
was presented by Lowe [4]. Bajcsy and Kovacic [5] proposefingle points or plateaux rather than contours, for 2-Daifgn
a multi-resolution elastic matching method that postslab@t  Since there exists no linear filter that guarantees caysaflit
one of the two ObjeCtS was made of elastic material and tbﬁtrema in images [17]' morpho|ogica| filters ensuringm
other served as reference. Under the influence of an extergalisality have been proposed [18].
force, the shape of the elastic object deforms to match theseveral techniques for morphological multi-scale shape
reference object over a range of scales. analysis exist, such as size distributions or granulometri

_ , _ _ _ which are used to quantify the amount of detail in an image
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University of Groningen, P.O. Box 800, 9700 AV GroningeneTetherlands. at diﬁerent scales _[191' [20]' A similar method, based on
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and coworkers [21], [22]. Their method is used on 1-D signalshape descriptors do not explicitly use any information re-
though they do discuss extensions to higher dimensiomggrding positions along the contours, finding correspooegn
Kimia [23] developed a method for curvature decompositidmetween two shapes is simply equivalent to computing some
based on erosion-diffusion scale spaces. Jang and Chin [@#ftance measure between the two shape vectors. Also, for
described a multiple-scale boundary representation basedclassification techniques which require definition of a gratt
morphological openings and closings using a structurieg ekpace, the pattern vectors are simply given by the shape
ment of increasing size. Smooth boundary segments acrosgescriptors.
continuum of scales are extracted and linked togetheriogeat We demonstrate shape-based object recognition, based on
a pattern called the morphological scale space, whose progeD hat-transform scale spaces, in a wide variety of setting
ties are investigated and contrasted with those of Gausstaaognition of diatoms, recognition using silhouettesifrihe
scale spaces. Chen and Yan [25] have used a scaled d##REG-7 database and 3-D object recognition based on 2-D
for the morphological opening of objects in binary imagegiews. Our approach turns out to outperform other methods
resulting in a theorem for zero-crossings of object boupdafor which comparative data exist.
curvature. Park and Lee [26] have generalized the concepfThe organization of the paper is as follows. In Section I
of zero-crossing for 1-D gray-scale signals. Meyer and Marwe present the morphological curvature scale spaces, Wwigst
gos [27] developed a morphological scale-space repragamtadiscuss some problems inherent to curvature-based reaoygni
based on a morphological strong filter, the so-called lagsli and present approaches to circumvent them. Then, we present
Jackway and Deriche [18] proposed a multi-scale morphtire morphological hat-transform scale spaces on which the
logical dilation-erosion smoothing operation and analyite curvature scale spaces rely. Also, we demonstrate causalit
associated scale-space expansion for multidimensiagizhls. and monotonicity of the extrema in the scale spaces, whieh ar
They showed that scale-space fingerprints from their ajgbroamportant characteristics for any scale-space formutatio
have advantages over Gaussian scale-space fingerprihigtin $ection 11l we present the descriptors extracted from tladéesc
they are defined for negative values of the scale paramesgpaces, and in Section IV we report identification and shape
have monotonic properties in two and higher dimensions, detrieval results obtained for all three databases meation
not cause features to be shifted by the smoothing, and allalwove. We draw conclusions in Section V.
efficient computation. As an application, they demonstrate
that reduced multi-scale dilation-erosion fingerprints dse II. MORPHOLOGICAL CURVATURE SCALE SPACES
used for surface matching. _ . A. Curvature definition

At the heart of our scale-space method is a different multi- )
scale approach to the analysis of 1-D signals, motivated by-€t I' be @& smooth planar cunB(#) = (x(#),y(#)) with
the work of Leymarie and Levine [28]. They developed Baramete0 < ¢ <b. It can be shown [31] that the curvature
morphological curvature scale space for shape analysi;edbaOf curve 1‘(_t), _not restricted to the normalized arc-length
on sequences of morphological top-hat or bottom-hat filtdp@ameter, is given by
with increasing size of the structuring element used. Themma 2(t)y(t) — £(t)y(t)
difference between our approach and the initial technique K(t) = (@(t)? +_.('5)2)3/2 :
of Leymarie and Levine [28] is that our method allows for ) Y
nested structures (i.e. peaks and valleys of the curvatufe iS the normalized arc-length parameterthen (1) can be
whereas their method does not. Allowing for nested stresturVrtten as o o
is important because small structures nested within a darge r(s) = @(s)j(s) — (s)y(s). )

one can be extracted and represented at some levels in fRegiven in (1), the curvature function is computed only
scale space. In addition, in the 1-D case we do not split then parametric derivatives and therefore it is invarianter
curvature in convex and concave parts, but we construct {f}ations and translations. However, the curvature meaisur
and bottom hat scale spaces, based on grey-scale inversigje dependent, i.e., inversely proportional to the soale

A problem not addressed by Leymarie and Levine is that ghssible way to achieve scale independence is to normalize

extracting the most important features from the scale spaggs measure by the mean absolute curvature, i.e.,
Our primary contribution in this work is a reformulation difet

scale spaces in terms of connected operators [29], leading t K'(t) A (3)
a very useful technique fog-dimensional shape recognition. fob |k(t)| dt

Shap‘?s are represented by_ closed cc_)ntours from Wh'Ch en the size of the curve is an important discriminative
of points are sampled. Using a spline representation,

: ; . Sature, the curvature should be used without the norntadiza
curvature is computed at each interpolated point, and two 1

. ) . in (3); otherwise, for the purpose of scale-invariant shape
morphologlcahat-tr_ansform scale spa_lc¢30] are built, using analysis, the normalization should be performed.
the curvature function as the underlying 1-D signal. Forgve
scale, each peak and valley of the curvature signal is drtitac ) )
and described by its maximum and average heights and byfs Computation of the curvature function
extent, and represents an entry in the top or bottom hat scal®espite its simple definition, computing curvature measure
spaces. The shape descriptor is a vector of numbers computseful for recognition is not straightforward. The first plem
using the information stored in the scale spaces. Since feehat curvature is a purely local attribute, the estimatid

(1)
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which is prone to noise. Secondly, spatially sampled curves C¢
are represented by a set of isolated points which are in fact :
a set of singularities. Thus, some regularizing pre-prsiogs
such as smoothed interpolation, is needed before curvature
can be estimated. In order to circumvent these problems some \
techniques have been proposed based on: alternative rasasur \ P8
(F:-curvature) [32], numencal. dlﬁe.rentlatlon a.nd Imem. Fig. 1. The max-tree structurkeft a 1-D signal,center peak components
tion [12], [33], and convolution with differential Gausgia P}? of the signalight: its corresponding max-tree.
kernels [10]. In this paper we use a different approach to
estimating curvature, based on bi-cubic spline interpambat
Among many interpolation techniques, cubic splines previdkernel) and fitted using bi-cubic splines. We use relatiahs (
C? regularity in each point of the curve. Moreover, splinet® generate the knot sequeng®,ts,...,¢,), and compute
have been shown to be efficient approaches to interpolée curvature functiom;(t) at each interpolated point, using
curves [34], and appear to represent the best trade-offdeetwspline derivatives. Finally, a curvature functief(t) invariant
accuracy and computational cost. with respect to rotations, translations and scaling ti@ms$
LetT be a smooth planar curve @i 5], with sample points is computed using relation (3).
{p, =T(t;) | i =1,2,...,n} obtained by sampling the curve
atti.ts,...,t,, With &4 = 0 andt, = b. The interpolation C. From curvature to scale-space features
problem is to fit cubic polynomialsS;(t) on each interval |n this section we present the morphological curvatureescal
[ti;tit1], ¢ = 1,2,...,n — 1. Using continuity requirements spaces, and demonstrate causality of the extrema in the scal
of the first derivatives of the splines and two further conitin  spaces. We also briefly describe the features extracted from
conditions at the endpoints, one obtains a tridiagonakesystthe scale spaces, and study the behaviour of the scale-space
of linear equations, which can be solved in linear time. Thepresentations under noise conditions.
process of computing the spline coefficients is applied&mhe 1) Morphological curvature scale spacesVe begin with
component of the vector. the definition of the hat-transform scale spaces [30], blikein
The choice of the knot sequende.t.,...,t,) greatly in [30], here we shall formulate the hat scale spaces in terms
influences the shape of each spline segment. Close-distanstthe max-tree data structure [37]. The curvature scaleespa
interpolating knots not only reduce the energy of the rare particular 1-D versions of the hat-transform scale epac
sulting curve, but also avoid the occurrence of oscillaiorwhen the underlying 1-D signal is the curvature function.
and loops [34]. Among many parameterization methods in-Let E be an arbitrary nonempty set of vertices, and denote
vestigated in [31], the arc-length parameterization se&nsby P(E) the collection of subsets df. Also, letG = (E,T")
achieve the best equal space effect, because the use ofbaran undirected graph, whedrds a mapping fronE to P(E)
length as parameter attains constant speed of motion alamgich associates to each pointe E the setl'(z) of points
the curve [31], [35]. The simplest approximation to the arcadjacent ta:. It is common in signal processing to assume that
length parameterization is the so-called chord lengthmara E is a regular grid, i.eE C Z" (n = 1,2), andT" corresponds
terization, in which the domain is subdivided accordinghe t to 2-adjacency when = 1, or to 4-adjacency or 8-adjacency
distribution of the chord lengths. However, according uttss  whenn = 2. In what follows we assum& C Z", n =1,2.
obtained by Lee in [36], a more appropriate way to define the A pathx in a graphG = (E,T') from pointz, to pointz,, is
parametric knots for the curve would be to use the centiipetasequencérg, z1, ..., z,,) of points of E such that{z;, z;11)
parameterization. This parameterization reduces theggradr are adjacent for ali € [0,n). Let X C E be a subset oF.
the resulting curve and avoids (to some extent) the occoererA set X is connectedvhen for each paira(, 2,,) of points in
of oscillations and loops. Although in the centripetal neeth X there exists a path of points i that joinszq andz,,. A
the knots will in general be non-uniformly spaced with regpeconnected componenf X is a connected subsét(X) of X
to arc length, it is possible to derive an approximation ® thwhich is maximal. Aflat zoneL, at level h of a grey-scale
arc-length parameterization as follows. signal f is a connected componedt(X,(f)) of the level
Let P = Y_" , d; be the perimeter of the curve add= setX,(f) = {p € E|f(p) = h}. A regional maximum\/, at
Sor , Vd;, whered; is the length of the chord between pointsevel & is a flat zone which has only strictly lower neighbours.
p; andp,,,, 7 =1,2,....n — 1. An approximate arc-length A peak componenp;, at levelh is a connected component of
parameterization based on the centripetal method is giyenthe threshold sef,(f) = {p € E|f(p) > h}. A connected
the following relations openingI';(X) extracts the connected component %f to
which z belongs, ifz € X, and equalg) otherwise. Given
a setA (the mask), thegeodesic distancd 4(p, q) between
Py/di— E=923 . n. (4) two pixelsp andgq is the length of the shortest path joinipg
L Y andg which is included inA. The geodesic distance between
To summarize, the curvature function given in (2) ia pointp € A and a setD C A is defined asd4(p,D) =
computed as follows. A number ot points are sampled mingep da(p,d).
equidistantly from the initial curve, resulting in a new sded A max-tree is a rooted tree, in which each of the no@és
curve. This curve is regularized (i.e. smoothed with a Ganss at grey-level corresponds to a peak componétjt However,

81:0

Sk = Sk—1 +



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

0cy
2 0cy
2 2 OT?
c? cg

1cy 1 1 1cg

o

Fig. 2. Pruning a max-tree with the criteri(m(P,f) using themaxfiltering rule. First row: Max-trees at iterations = 0,1, 2, 3; attributesA(P,f) are
shown in the left-hand side of each nod% (the nodes for which the criteriof’ holds are marked; in every root pat), holds for all nodes below a node
for which T holds); second row reconstructed signals, .

1c? ocd

C¥ contains only those pixels iR which have grey levek. the max-rule into account
it i i k

In other words, it is the union of all flat zonds, C Py. An Q(PF) =(A(PF) > \) v

example of a 1-D signal, its peak components and its max-tree b )

are shown in Fig. 1. (Fz € Py, 30" > h: ATo(Tw (£))) > A).

Inspired by the work of Leymarie and Levine [28], we wist\ote thatT, (T}, (f)) extracts a peak componef, C PE.
to split the curvature profile at points where the width of & other words, peak componef* is preserved if it meets
feature suddenly changes. This can be formalized in terms@ferion T or if any peak componen®;, C Pk with b’ > h
maximal distances of pixels of a max-tree node from its r#argneets7. An example of filtering a max tree, using criterion
child pixel. If this distance is larger than some threshblde ) according to themaxrule is given in Fig. 2.
consider this an abrupt change. Lgtbe a grey-scale image  attribute thinning+? can now be defined as
with an associated max-tree as in Fig. 1. It be a peak
component at levek which hasN. peak component®;, C vg(f)(x) =max{h: Q(T.(Tn(f)))} (8)
Pk at levelh, which is the smallest grey level larger than ) _ o Q. )
with i from some index sef¥. The associated max-tree nodes Unlike most attribute thinnings;y” is not idempotent. It can

are of course”’f andC! ,, respectively. Consider the attribute?® seen from (5) that all regional maxima will be removed for
A(PF) defined as any positive\, becaused is zero for these peak components.

However, any component for whiaf) is true in imagef will
have at least one nested peak componehtat.et P} be such
a component. There are two situations:@i)P; ) is false for
all i € If, or (ii) Q(P;,) is true for at least oné € IF. In
the first case, nodé} in the filtered imagey2(f) will be
: i . aregional maximum, and therefore be removed by a second
whered(z, P, ;) denotes a distance measure from a pixel o 5jication ofy2. In the second case, it can easily be verified
to setP; . This distance might be the Euclidean or geodes j

. {fat there must exist ', C P*, b’ > h, for which Q is true
distance withinP} from z to the nearest member & , . The A helr : Q

filter criterion T which preserves nodes in the path from IeeﬁnOl for which the first case holds, because all regional maxim
, ave A(P!) = 0. Therefore, unless there are no nodes in the
to root where abrupt changes take place is (7))

max-tree off for which Q is true,y2(v2(f)) #~2(f).
Then, lettingd in (5) be the geodesic distance withfyf
(i.e.d(x,P;,) = dpx(x,P;,)), and settingh = 1 in (7), the

. : o . _ top-hat scale spacg30] of a grey-scale imagé¢ is given b
It is easy to see that this criterion is not increasing, so aﬂf P ] arey g¢ Is g y

max-tree filtery{ using it is an attribute thinning rather than & sequencero, 71, s) defined by the iteration

an opening. Thenaxfilter rule for attribute thinnings proposed for1 = 'YS(fs)

by Breen and Jones [19] will now allow us to remove branches 7o = fo — fort, 9)

of the max-tree at those points where the width suddenly

changes. Thenaxrule works by descending from each leafwith fo = f ands > 0.

of the max-tree, removing nodes until a node is found for Eq. (9) is iterated untifs = f:, for all pixels, wheref, ;.
which the criterionT is true. Any node between this nodds the minimum value off. Using the grey-scale inversion
and the root is unaffected. A problem with the formulation of < —f, a bottom-hat scale space can be formulated. Note
this filtering rule is that it is cast in terms of an algorithmthat this formulation differs from that in [30]; however,dan
More formally, we can define a new criteri@p which takes be shown to be equivalent.

()

A(PY) = ?é??(?é%ié(d(‘”’ Piu)) N>

0 otherwise

®)

T(Py) = (A(Py) > A). (6)
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correspond to the distances between major peaks, so it is
possible to discriminate between these.

2) Causality and monotonicity of the extrema in the hat-
transform scale spacesAn important characteristic of scale-
space theory, in contrast to other multi-scale approadBes,
the property that a signal feature present at some scale must
be present all the way through scale-space to zero-scale (i.
original signal) [18]. This is often called the causalitynmiple
and ensures that no new spurious features are created due to
the filter. The stronger property of monotonicity requireatt
SRS S S A the number of features must decrease with increasing scale.
2 ] There are several morphological scale-space represamgati
which have been shown to obey the causality principle.
Jackway and Deriche [18] proved that their dilation-ernsio
scale spaces have monotonic properties in two and higher
dimensions, and do not cause features to be shifted by the
smoothing. Extensive analysis of scale-space properigs s
fied by n-dimensional sieves is given in [38].

It can be shown that the top-hat scale spaces (9) constitute a
150 special case of levelings [27], [39], a general nonlineatesc
space representation which satisfies the causality ptecip
However, since no complete proof was given in [27], [39],
L we will briefly analyze the behaviour of the extrema in
T T T the hat-transform scale space and prove that our scale-spac
T T R——— representations fulfill these principles.

] Let P, be the set of all peak components, aht; the set
£ ] of all regional maxima off,, as defined in (9). Furthermore
the setR, is defined as

o ’ Ry = {Pf € Py |-Q(PF)}. (10)

ObviouslyM, C R, andP,41 = Ps\ Rs. Finally, we define
150 a setQ, as

={PF e P\ R,|Vie I} : P, eR,}. 11
Fig. 3. Building curvature spaceBop a binary image representing a complex Q. ={Py € P\ RV €T} Wt € R} (11)

object; center curvature functioni(e. fo), residualsrs (in bold) and signals ; ;
fs, s = 1,...,7 represented in the top-hat scale spawgttom curvature In other words, is the set of peak componerﬂ’%‘ for which

: - % -
function, residualss and signalsfs, s = 1, .. ., 7 represented in the bottom- & holds, but which have n&;, C Py for which @ holds. It
hat scale space. can be seen that

Iteration (s)
IS

&)

Iteration (s)

o

50 100
Position along contour

Qs =My, (12)

Each feature extracted frotfy by %Q consists of precisely
; s X , one member ofM,, and possibly a set of members of
lations (9) on the curvature function (i.¢. = ') and on R, \ M,. For example, in the leftmost max-tree in Fig. 2

: . e ) . .
its grey-scale inversion’ <> —x'. An example is Shown in e mayimum associated with? also contains non-maximum
Fig. 3. Then, each extracted residual (i.e. peak of the turea o C9. UnlessP, \ R, — 0, a feature associated with

represented in the top-hat scale space, and valley repeesepsyional maximumiz € M. is associated with exactly one
in the bottom-hat scale space) is described by its ex'fre"&%?nponentpf € P, \ R., which is the peak component at
curvature, mean curvature, extent and location. the highest grey level for which/ ¢ P¥ and Q(PF) holds.
The scale spaces can be visualized by “reconstructingyltiple maxima may be associated with affj, andP} need
the original signal in the following manner. We start with g ot be a member of,. In Fig. 2,C? is associated with two
constant signaf = 0. Then, we stack the boxes correspondinghaxima: C9 and C&. Furthermore, the peak componeRf
to the nested features (peaks) on top of one another, k&presented by’? in Fig. 2 is associated with maximuriy,
we accumulate their maximum (or average) valuesfimat put P? ¢ Q,. ShouldP} ¢ Q, then there exists a component
appropriate positions (given by the extents of the peaks)eal at a coarser scale thanwhich is nested within it. For these
the z axis; this has been done in Flg 4, reasons’#(Qs) — #(-Ms—l—l) < #(/\/{8)’ with # denoting
The current method is sensitive to differences in the nedaticardinality. Furthermore, i°; # () there must be at least one
locations of the curvature features. This means that, famex regional maximum, s@#(Pst+1) < #(Ps). If #(Ps) > 1 we
ple, an elongated rectangle and a square are distinguéshabhve#(M;) < #(P, —1). This means that because the total
because the widths of the major valleys in the curvatureimber of peak components decreases strictly, the number

The curvature scale spaceare obtained by iterating re-
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-3

- 0 100 1
5 1
Position along contour

Curvature

Curvature

50

5
Position along contour

| Jﬂﬂvﬂﬂv

50 100
Position along contour

50

Fig. 4. Left original contour and sample pointgght: curvature function
(solid) superimposed on the reconstructed signal (boldjgup-hat scale-
space information. Top and bottom scale spaces represergtedurves,
showing scale-space features as blocks of the correct veidthmaximum
height.

Curvature

P S

of maxima must decrease for sufficiently large proving
monotonicity. Furthermore any new maximubd € Mg,
of fs+1 is identical to a peak compone®® € Q, of f,.
Therefore, no new maxima are introduced, the number Bf. 5. Left contours affected by noiseight: reconstructed noisy curvature
maxima decreaseandthere is an explicit nesting re|ati0nshipsign_als (bold) superimposed on the reconstruction of thiginad curvature

between features at small and large scales in the scale.sp e

Thus, the localization of the contours is preserved, and the

causality principle is verified:.coarser scales can only Be exiraction of pattern vectors

caused by what happened at finer scales.

Hence, the reduction of connected components for desceﬂd:—nn?rtmcc'jplte ,rrI;?r:)WIedg:enofr thervcurvatltjre fl:imi:gotrr' Ins fSl:;
ing grey levels, by filtering the initial signal according to cient to dete € a planar curve, up 1o a rg ansform.

relations (9) ensures causality. This means that the Matgov;fivcigdlfba ;ﬂ;\/reeugge:\évs r;)tf ?%?S_ggli?stz:i?\?gct)trjrrnesfjrr:gt/igr
and shape of regional maxima and flat zones are preser\\g\(la(ﬁ‘“d be aﬁgcted a?ccordgi]n ly. Althou ,h the very purpose of
all the way through scale-space to zero-scale. By duality, a gy 9 y purp

similar result can be formulated, regarding local minima iﬁ scali-s}pa::er repres?nlt atlorn |§1to tggln trof ur?t?essdévrphmetsh
the bottom-hat scale space. 0 such factors, special care must be taken to address these

. . . . . roblems. Since for regularization purposes, the inpuvesir
3) Coping with noise:We carried out an experiment top g purp P

are smoothed with Gaussian kernels, selecting a suitalol wi

test Fhe Stab'.“ty of the curvatu_rg_scale spaces under NO3%or each curve is by no means trivial. To tackle this problem,
conditions. Fig. 4 shows the initial contour, its curvatur

. L i simple yet not very efficient solution is to smooth each
function, and the reconstructed curvature using inforomati

; . urve successively by Gaussian kernels of increasing width
extracted from the top scale space (maximum heights). T, y by g

ati q ind — 150 led point &. o1 < 09 < --+- < o), and to build hat scale spaces at
computations were made using = sampled pointS oqch jteration = 1,2,...,1. The final pattern vector is then

_(marl;ectihwnh X 'T t:e co?tour g_rt ?&phi a;g G;uss;an hsmomlabnstructed by concatenating the pattern vectors obtaihed
Ing of the sampled contour witly = 3.9. FIg. 5 SNOWS - o5, iteration, from top and bottom scale spaces. Since the

the same contour affected by significant amounts of unifo”@u;ivature function becomes smoother when the width of the

random noise, addeql to it. The noisy contours were optam& ussian kernel increases, decreasing lengths of therrpatte
by randomly translating the coordinates of each point in th

int | . d 1=20: 20 tvely. A ted Vectors extracted from the scale spaces are used.
intervals [-5; 5], and [-20;20], respectively. As expected, ) oy Ny(a;) be the length of the pattern vector extracted at
the scale-space signals show differences in detail, cf. %ig

H kable similariti f the struct o4 scales; from the top scale space, afd,(o;) be the length
owever, remarkable simriarities of Ihe SWUCUres presen ¢ y,q pattern vector extracted from the bottom scale space.

these graphs can be observed. The same behaviour is edh'bl'}leorder to further shorten the final pattern vector, we ckoos
by the features extracted from the bottom-hat scale spa Sand N, such thatVy(a,) > Ny(0), i = 1,2 7

. . t
(results not shown). This experiment shows that the curgatu fince curvature is a local attribute, additional globalpgha

scale. spaces are refiable and stable_ even when large amng Ameters are also computed at each iteration; we included
of noise corrupt the shape of the original curve. two globalcurvature-relateddescriptors and two globahape
descriptors. The first global curvature descriptor is thediey
energy, defined as the sum of the squared curvatures along the
contour. The second global curvature descriptor is defiked a
This section is devoted to the extraction of pattern vectothe number of scale space entries from both top and bottom
based on the information stored in the scale spaces, ané tosbale spaces having average curvatures above a thrashold
computation of a dissimilarity measure between two shapdsis descriptor is similar to the curvature scalar desorjpt
useful for shape matching. which is defined as the number of contour points where the

o

150

Ill. SCALE-SPACE DESCRIPTORS
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boundary changes significantly, divided by the total lengjth > ~
m \

the contour. The two global shape descriptors are eccéwtric O @J e
and elongation [40]. Note that similar global descriptoerev

also used in [9], [41] and in the MPEG-7 standard [42] to

supplement the Curvature Scale Space (CSS) descriptors. Q (K% Q
Finally, the pattern vector extracted at iteration: =

1,2,...,1 is given by Fig. 6. Examples of contours extracted from the diatoms enseg.

N

Vi=(he,i1-Peizs- s heiN (o)
hiiashias s Ry i No(as)s used as query and one counts the number of correct hits in
ecci, elgi, \/E, esds), (13) the top2 x K matches, wh_eréx is thg number_of prototypes
per class. In our shape identification experiments we have
whereece;, elg;, be;, csd;, are eccentricity, elongation, bend-used the C4.5 algorithm [43] for constructing decision gree
ing energy, and curvature scalar descriptor, respectividlg with bagging [44] as a method of improving the accuracy

valueshy; ;, j =1,..., Ny(o;), represent theV,(o,) features of the classifier. The performance was evaluated using the
with the largest maximum curvature extracted from the tdpldout [45] method. We compare the results obtained using
scale space, at iteratianSimilarly, ks ; ;, 7 = 1,..., Ny(o;), our method with those obtained using Fourier descriptors

represent theV,(o;) features with the largest maximum cur{FD) [46], wavelet descriptors (WD) [14], and the CSS de-
vature extracted from the bottom scale space, at iterdtion scriptors developed for the MPEG-7 standard (CSSD) [42]. In
cases for which there are published results, other tharethos

B. A measure of dissimilarity between shapes obtained with the above methods, we will also refer to them.

Let V' be the final pattern vector representing the reference
shapesS, and V"’ be the final pattern vector corresponding té\- Pre-processing and settings of parameters
a test shapes’, obtained by concatenating the corresponding For each technique, parameter values have to be determined
vectorsV; andV}, i,j = 1,2,..., 1, as defined in (13); here that would give the best results for each data set. This Veeol
s is the maximum scale index, as defined in subsection Ill-An iterative process of initially guessing suitable parame
As is common in content-based retrieval literature, we @efivalues, evaluating the results, and then refining the values
a measure of dissimilarityss: between shapeS and S’ as Since this is a time-consuming procedure, two points should

the following weightedZ,; distance be made: (i) the values used are not the result of an exhaustiv
N, Ny search of the parameter space, because such a search would be
dewr — w By — Bl 4 hee — B! impractical, requiring a very long time, and (|.|) the paraere
58 ! ]:Zl | Y ”| ; o b values were adjusted in an attempt to give best average

performance, across all data sets. Although the values may
not be optimal (as a consequence of the first observation),
they produced the best classification performances in our
s experiments.
+ w3 Z (|bem — bel, | + |esdm — esd,|), (14) The parameters of the morphological scale spaces were set
m=1 as follows. Each input curve is sampled at an equal number of
where N; = Y0 Ny(ai), Ny = Yo, No(oi), and wy, points, such that the resulting curve has- 150 points. This
wa, wy are weights. The “prime” symbol indicates feature§Urve is regularized by smoothing with Gaussian kernels of
corresponding to the test shagé increasing width. We selecteld= 4 values for the smoothing
parameters; : 3.0,6.0,10.0,16.0, in an attempt to cover a
IV. CASE STUDIES large interval of smoothing degrees. The numbers of feature
— extracted from both the top scale space and the bottom hat
To test_ the rellabl_ll_ty of the proposed method for Shapes'cale space were set f(s;) : 10,10,5,5, and Ny(o;) :
based object recognition, we used three data sets, anddor ea 5,5, respectively. Finally, the weights were setidq —

of them we performed two types of recognition experiment ?0, ws = 0.5 andws — 3.0, and the threshold parameter was
shape retrieval and shape identification. A content-baeed {k _
query by example) retrieval system contains a database Ofne narameters of the other methods were set according

objects (e.g. images, shapes), and responds to a queryt obggxf‘u], [42] for the CSS method, [14] for the WD, and [47]
presented by the user with ranked similar objects. Usualllgr the ED.

these systems do not use a training stage and compute similar

ity between objects based on some distance measure. Gontrar N _

to content-based retrieval, in supervised shape iderttfica B Recognition of diatoms

classification function is learned from, or fitted to, traigi  In the first experiment we measured identification and shape

data, and then the classifier is tested on unseen (test) dataetrieval results on a large set of diatom images, whichistgs
For shape retrieval, the performance was measured usofg7 different taxa, comprising a total af81 images. Each

the so-called “bulls-eye test”, in which each shape conisurclass (taxon) has at lea®b representatives.

+ wy Z (lecer — ece)| + |elgr — elgy|)
=1
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TABLE |
IDENTIFICATION PERFORMANCES FOR THE DIATOMS DATA SET
(DiaTOMS ), MPEG-7SILHOUETTE DATABASE (MPEG-7) AND COIL-20
(COIL ) DATABASE, USING THE C4.5DECISION TREE CLASSIFIER WITH

exhibit convex shapes and there are no inflection points on
the contour of a convex object. Since the MCSS method
extracts information about both convexities and conoasijti
our method is not upset by convex shapes.

BAGGING.
Data set  Descriptors & o min max performance (%) TABLE I
Diatoms MCSSD 17.9 1.3 11 26 91.3+5.0 SHAPE RETRIEVAL PERFORMANCES(%) FOR THE DIATOMS DATA SET
CSSD 458 24 30 58 75.4 + 9.3 (DiaATOMS ), MPEG-7SILHOUETTE DATABASE (MPEG-7) AND COIL-20
FD 376 1.8 31 43 79.6 £ 7.0 (COIL ) DATABASE.
WD 38.7 2.6 28 47 79.0 £10.1 Data set MCSSD CSSD FD WD
MPEG-7 MCSSD 315 1.6 22 41  91.9+11.2 Diatoms ~ 82.2 66.0 73.7 742
MPEG-7 78.8 734  55.2 585
CSSD 764 14 51 91 85.2+9.8 COIL 81.5 714 62.7 643
FD 114.9 1.6 108 122 67.2 £11.2
WD 98.6 1.8 83 115 71.8 £12.6
COIL MCSSD 34 05 1 8 98.0 £ 3.6
CSSD 109 04 8 15 89.1+2.8 C. Recognition using silhouettes. The MPEG-7 database
FD 166 08 10 22 83.4£5.7

Our next experiment was performed using the MPEG-7
WD 123 09 7 18 877464 shape silhouette data set, a database46f objects used in
the MPEG-7 Core Experiment CE-Shape-1 part B [48]. This
database consists @f shape categories, witt0 objects per

Diatoms are microscopic, single-celled algae, which sho%beg.ory'th ¢ in the first . ¢ identif
highly ornate silica shells or frustules. Some examples of sing the same Setup as in the Nirst expenment, identii-

diatom images are shown in Fig. 6. Each image represe @ion performances for this data set are shown in Table |,
a single shell of a diatom, and .ea.ch diatom image is a%[‘d retrieval performances are given in Table Il. For thimda

companied by the outline df its view (see Fig. 6). For adgpet Poth methods basgd on curvature information performed
tional details on diatoms, segmentation of diatom images, uch better than Fourier and wavelet descnptqrs. Hoyveyer,
other identification results than those presented heregfes r the MCSS method outperformed the CSS technique, yielding

to [47], which contains the results of the Automatic DiatorRerformances which are % larger than those of the latter.

Identification and Classification (ADIAC) project, aimed at Other published retrieval results for this data set, using

automating the process of diatom identification by digiteﬂ]e same methodology, do exist and range friin4 % to

image analysis. (8;\)’8 % [L.lgl]’ [48]_[51]f' hieving i q its is that
With the experimental setup given in section IV-A and the possible reason for achieving improved resuits 1s tha

identification technique briefly described at the beginniig our descriptor is invariant with respect to reflections, reas

section IV, the identification performances obtained by aﬂmpe_ cor_1text§ [51] and CSS descriptors [41]. are not. Th's
. . .~ “reflection invariance also holds for the method in [49], vishic
methods for each data set are given in Table |. Similarl

: . . Mas a performance 0f8.38 %, but this method requires
retrieval performances obtained using the so-called $bull : e
" . . . .. substantially more computation time than ours. Also, asvsho
eye test” are given in Table Il. Table | shows identification : . X
; g e In [48] there are cases in which shapes perceived as concep-
performances using the C4.5 decision tree classifier with

bagging. The columnz’ contains the average number OftuaIIy different have the same positions of the maxima of the

errors; the column 4’ contains the standard deviation ofCSS image, and hence the CSS method fails.

the number of errors; the columns ‘min’ and ‘max’ contain

the minimum and maximum number of errors, respectivelfp. 3-D object recognition based on 2-D views

the column ‘performance’ contains the percentage (averageThis experiment involved recognition of objects based on

with standard deviation) of samples identified correctly. Itheir 2-D appearances. We used the COIL-20 database [52].

both tables, MCSSD stands for the morphological curvatugach of the20 objects from this database is represented by

scale space descriptor from section IlI-A, CSSD represergD views, corresponding to successive rotations of theatbj

the curvature scale space descriptor, Fourier descri@i@®@s over an angle of°.

denoted by FD, and the wavelet descriptors are denoted byClosed, outside contours were extracted using the Canny

WD. edge detector, followed by a contour-tracing algorithm][40
The performances obtained using MCSSD were at &6t Otherwise, we have used the same experimental setup as with

larger than the others, while the identification perforneaftr the other experiments.

this data set is the best result obtained during the ADIAC For this data set, the number of prototypes can be reduced

project [47]. Fourier and wavelet descriptors performed,webecause some of the views of the objects have approximately

resulting in identification performances close 80 %, and the same appearance. Belongie et al. [51] repart% error

retrieval performances of almadst %. The poor performancesrate using only four 2-D views for each object (i8®. proto-

obtained using the CSSD (based on inflection points) céypes). They used a modified k-means clustering algorithm fo

be explained by the fact that most diatoms in this data ssdaptively selecting (and therefore reducing) prototypes!
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a nearest-neighbour classifier. Instead of using more agd¢an [3]
clustering algorithms in order to further reduce the number
of prototypes, we use the same experimental setup as
our previous experiments, and report the identification angh
retrieval performances shown in Tables | and Il, respelgtive
Once again the performances obtained using MCSSD weld
at least8 % larger then the others. For this data set, the CS§)

method outperformed the Fourier and wavelet methods.

V. CONCLUSIONS

(8]

We have proposed a multi-scale method for object recodg]
nition, based on contour information. The method is based
on two morphological scale-space representations, the H&gl
transform scale spaces, which showed successful appiigabi

for shape-based recognition. These representations of fhe
curvature signal result in a novel representation, the mrp

logical curvature scale spaces.

We demonstrated causality of the extrema in the sca{Ie

spaces, an essential characteristic to any scale-spaeri-for
lation. Besides this theoretical result, we have shown tHe!
relevance of these representations to object recognitich g;4

illustrated their usage for identification and shape re#lie
We evaluated the performance of the method in three rec
nition experiments: recognition of diatoms based on natu
images of diatom shells, recognition using silhouettemftioe
MPEG-7 database, and 3-D object recognition based on 2

i

[16]

views. Our method outperforms all shape comparison meth(%é

previously reported in the literature, in both identificatiand

retrieval performances.

(18]

The shape descriptor uses only maximum heights of the
extrema of the curvature function and some global shape)

descriptors, and no information regarding the positionthef
extrema along the contour. The advantage of this approach,
that matching two shapes means simply computing a distance

between the two descriptors, without any alignment (i.&1]
shifting) of the maxima as is required in the CSS method. Also

the method can be used for scale-invariant shape analygis,
e.g. when a non-uniformly scaled square and a rectangle are

assigned to the same class. However, if this is not desir %1
0

the descriptor can be augmented with the relative sizes
the extracted features to discriminate between such cakes.

shape descriptor incorporates both convexities and citiesyv [24]
of shapes, and hence it is possible to discriminate between
convex shapes. Furthermore, the method is robust to loga]
shape deformations and copes well with large amounts of

noise.

[26]

Finally, the method is fast, and the computational complex-
ity of constructing the scale spaces is linear in the numiber o

points of the input contour. For example, the CPU time spent
compute and collect the shape descriptors fot400 contours

of the MPEG-7 dataset is under two minutes on a Pentium EII h

machine at 670 MHz.
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