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Abstract

In this paper we present a multi-scale method based on mathematical morphology which can successfully be used in
pattern classi%cation tasks. A connected operator similar to the morphological hat-transform is de%ned, and two scale-space
representations are built. The most important features are extracted from the scale spaces by unsupervised cluster analysis,
and the resulting pattern vectors provide the input of a decision tree classi%er. We report classi%cation results obtained using
contour features, texture features, and a combination of these. The method has been tested on two large sets, a database of
diatom images and a set of images from the Brodatz texture database. For the diatom images, the method is applied twice,
once on the curvature of the outline (contour), and once on the grey-scale image itself.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Multi-scale representation is a very useful tool for han-
dling image structures at di:erent scales in a consistent man-
ner. It was introduced in image analysis and computer vision
by Marr, Witkin and others who appreciated that multi-scale
analysis o:ers many bene%ts [1–4]. The basic idea is to em-
bed the original signal f : Rn → R into a stack of signals
%ltered at increasing scales, in which the %ne details are suc-
cessively suppressed. The signal %ltered at scale �∈R is a
function F : Rn ×R→ R de%ned by F(x; �)= (O�(f))(x).
Here O� is a %lter operator depending on �, F is a function
in an (n+1)-dimensional space, called scale space, and the
collection of %ltered signals is referred to as the multi-scale
representation of f. The %lter operation O� can be a lin-
ear operation (e.g. Gaussian smoothing) or a nonlinear op-
eration (e.g. morphological %lter). Since the scale-space
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concept was introduced into image analysis and computer
vision, its use has been %rmly established, and there has
been an emerging interest in incorporating scale-space op-
erators as part of high-level computer vision tasks [5]. The
output of the scale-space representation can be used for a
variety of early visual tasks, from feature detection and fea-
ture classi%cation to shape computation [4].

Several techniques for multi-scale morphological analy-
sis exist, such as pyramids [6], size distributions, or gran-
ulometries [7,8], which are used to quantify the amount of
detail in an image at di:erent scales. A similar method,
based on sequential alternating %lters, has been proposed by
Bangham and coworkers [9]. Their method is used on 1-D
signals, though they discuss extensions to higher dimen-
sions [10]. A di:erent multi-scale approach to the analysis
of 1-D signals was presented by Leymarie and Levine [11].
They constructed a morphological curvature scale space for
shape analysis, based on sequences of morphological top-hat
or bottom-hat %lters with increasing size of the structuring
element.

In Ref. [12] we considered classi%cation of diatoms,
which are microscopic, single-celled algae, which build
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highly ornate silica shells or frustules. Some examples are
shown in Fig. 7. For many purposes, automation of the
identi%cation of diatoms by image analysis is highly desir-
able. The Automatic Diatom Identi%cation and Classi%ca-
tion (ADIAC) project [13], of which this research is a part,
aimed at automating the process of diatom identi%cation by
digital image analysis. We modi%ed the initial technique
of Leymarie and Levine to allow for nested structures, and
included a method by which features in the scale space may
be clustered in an unsupervised way, resulting in a small set
of rotation, translation and scale-invariant shape parameters
[12]. Allowing for nested structures is of paramount im-
portance especially for 2-D signals, when small structures
nested within a larger one can be extracted and represented
at some levels in the scale space. Other advantages of using
these scale-space representations, henceforth referred to as
‘hat scale spaces’, are discussed gradually over the next
sections.

In this paper we generalize the hat scale spaces to
n-dimensional signals, give a fast algorithm for computing
these scale spaces, and apply them to pattern classi%cation.
We report classi%cation results for (i) diatom identi%ca-
tion, using both shape and interior structure information,
and (ii) texture classi%cation, using the Brodatz texture
database. We also brieJy discuss further applications in
texture segmentation.

The remainder of this paper is organized as follows.
Section 2 brieJy describes the construction of 1-D hat scale
spaces and the features extracted from these. Section 3
presents the extension to higher dimensions by means of
connected operators. Section 4 provides a fast implemen-
tation of the algorithm for computing 2-D hat scale spaces.
In Section 5 we report classi%cation results, using a super-
vised classi%cation technique based on decision trees, on
two large sets, a database of diatom images and a set of
images from the Brodatz texture database. Conclusions are
drawn in Section 6.

2. One-dimensional hat-transform scale spaces

Morphological operators [14,15] can remove structure
from a signal and therefore they were found suitable for
constructing scale spaces [16–18]. The hat-transforms rep-
resent an important class of morphological transforms used
for detail extraction from signals or images. Assume a signal
f and a 1-D structuring element K . The dilation computes
the maximum signal value over a circular neighborhood of
a given radius. Contrary, the erosion computes the mini-
mum signal value over the neighborhood. Erosion followed
by dilation represents an important morphological transform
called opening, denoted by f ◦K . Its dual, closing, denoted
by f • K , is a dilation followed by an erosion.
The residual of the opening compared to the original sig-

nal, i.e., f− (f◦K) represents the top-hat transform. Thus,
when the opened signal is subtracted from the original, the

desired detail is obtained. Its dual, the bottom-hat trans-
form, is de%ned as the residual of a closing compared to
the original signal f, i.e., f − (f • K). Therefore, one can
use hat-transforms with increasing size of the structuring el-
ement to extract details of increasing size. By performing
repeated hat-transforms with increasing size of the structur-
ing element on the signal, we can build the morphological
hat scale spaces.

A hat scale space consists of a number of levels ‘ =
1; 2; : : : ; L, where a level with index ‘ corresponds to a
top-hat transform with size �‘ of the structuring element,
where �‘ increases with ‘. Let the signal be stored in an ar-
ray C, K‘ denote the structuring element used at level ‘, and
T‘ denote the top-hat C − (C ◦ K‘). All nonzero elements
of T‘ are parts of features at scales �‘ or smaller. Starting at
level 1, we apply top-hat transforms to extract peaks of the
signal. At each level ‘, T‘ is compared to T‘−1. If a peak
which is present at level ‘−1 stops increasing at level ‘, i.e.
T‘ =T‘−1 for all points belonging to the peak, it is removed
from the original signal C, and its mean value, extent and
location are stored. This process ends when either all ele-
ments of array C are zero, or the largest scale L is reached.
This yields the top scale space in which every peak is pre-
cisely localized. Similarly, bottom-hat transforms are used
to obtain the bottom scale space, in which all valleys of the
signal are described. At the end of this we have obtained
two scale spaces, a top scale space of peaks and a bottom
scale space of valleys (Fig. 1).
The description just given is only an intuitive interpre-

tation of the construction process of hat scale spaces, and
is not used in a real implementation, because such a naive
approach results in a time complexity of order O(L · N ),
where N is the number of values of the signal f. This result
is obtained when the opening transform is computed by a
linear-time algorithm, insensitive to the size of the structur-
ing element, similar to that of Gil and Werman [19]. Still,
when L approaches N , the CPU time taken to construct
the hat scale spaces is proportional with N 2. The 1-D hat
scale spaces can eLciently be implemented using Tarjan’s
Union-Find approach for maintaining disjoint sets. For more
details, we refer to Refs. [12,20].

The scale spaces can be visualized by plotting each fea-
ture as a box of the average height at the appropriate loca-
tion of the signal. If nested features are present, we can sim-
ply stack the features in the plot. An example is shown in
Fig. 1, where the 1-D function is given by the curvature of
the binary images of diatoms [12] in the left-side of the
%gure.

3. Two-dimensional hat-transform scale spaces

In this section,we showhow to extend the one-dimensional
hat scale spaces described in Section 2 to 2-D signals (im-
ages), and more generally to n dimensions, by means of
connected operators. First, some preliminary de%nitions are
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Fig. 1. Building 1-D hat-transform scale spaces. Left: binary diatom outline images; center: curvature plots; right: top and bottom scale
spaces represented as curves, showing scale-space features as blocks of the correct width and average height.

presented which introduce the main concepts. Subsequently,
the hat-transform scale spaces are formalized.

3.1. Preliminaries

Connected operators [21] are characterized by the pow-
erful property of preserving contours, and they only trans-
form an image by selectively altering the grey values of
connected sets of pixels. There are several ways of de%ning
the notions of connectivity and connected operators. Here
we shall follow the de%nitions of Refs. [21,22].

Let E be an arbitrary nonempty set of vertices, and denote
by P(E) the collection of subsets of E. Also, let G=(E; �)
be an undirected graph, where � is a mapping from E to
P(E) which associates to each point x∈E the set �(x)
of points adjacent to x. It is common in image processing
to assume that E is a regular grid, i.e. E ⊆ Zn (n = 2),
and � corresponds to either 4-adjacency or 8-adjacency
in the square grid of pixels. In what follows we assume
E ⊆ Z2.

A path � in a graph G=(E; �) from point x0 to point xn is
a sequence (x0; x1; : : : ; xn) of points of E such that (xi; xi+1)
are adjacent for all i∈ [0; n). Let X ⊆ E be a subset of E. A
set X is connected when for each pair (x0; xn) of points in
X there exists a path of points in X that joins x0 and xn. A
connected component of X is a connected set C(X ) which
is maximal. A ;at zone Lh at level h of a grey-scale image f
is a connected component C(Xh(f)) of the level set Xh(f)=
{p∈E |f(p)=h}. A regional maximum Mh at level h is a

Jat zone which has only strictly lower neighbours. A peak
component Ph at level h is a connected component of the
threshold set Th(f) = {p∈E |f(p)¿ h}.
At each level h there may exist several such components

(Jat zones, peak components, regional maxima), indexed as
Li
h, P

j
h, M

k
h , respectively, with i; j; k from three index sets.

It should be noted that any regional maximum Mk
h is also a

peak component, but the reverse is not true.
A Jexible way of de%ning connected operators for func-

tions is via partitions [22]. A function P : E → P(E)
is called a partition of E if (i) x∈P(x), x∈E, and (ii)
P(x) = P(y) or P(x) ∩ P(y) = ∅, for x; y∈E. In words, a
partition is a subdivision of the underlying space into dis-
joint zones. Let P and P′ be two partitions of E. Partition
P is said to be coarser than P′ (or P′ is =ner than P) if
P′(x) ⊆ P(x) for every x∈E.
Grey-level connected operators can be introduced if we

de%ne a partition associated to a grey-level function f. It
can be shown [21] that the set of Jat zones of a function
constitutes a partition of the domain of f. In the following,
this partition will be called the partition of ;at zones of f,
and will be denoted by C(f).

De�nition 1. An operator � acting on a grey-level function
f is said to be connected if C(�(f)), the partition of Jat
zones of �(f), is coarser than C(f).

Thus, the only operations a connected operator can do are
merging Jat zones, and modifying their grey levels.
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De�nition 2. The connected opening �x(X ) of a set X at
a point x is the connected component of X containing x if
x∈X , and ∅ otherwise.

Given a set A (the mask), the geodesic distance dA(p; q)
between two pixels p and q is the length of the shortest
path joining p and q which is included in A. This distance
is highly dependent on the type of connectivity used. The
geodesic distance between a point p∈A and a set D ⊆ A
is de%ned as dA(p;D) = mind∈D dA(p; d). One important
morphological operator based on the geodesic distance is
the geodesic dilation which is de%ned as follows.

De�nition 3. Let X ⊆ E be a subset of E and Y ⊆ X . The
geodesic dilation of integer size n¿ 0 of Y within X is the
set of pixels of X whose geodesic distance to Y is smaller
or equal to n:

�(n)X (Y ) = {p∈X |dX (p; Y )6 n}:

In the binary case, the reconstruction #X (Y ) of a set X
from a set Y ⊆ X is obtained by iterating geodesic dilations
of Y inside X until stability is obtained, i.e.

#X (Y ) =
⋃

n¿1

�(n)X (Y ): (1)

Similarly, using the threshold superposition principle
[23], the grey-scale reconstruction can be de%ned. Let f and
g be two grey-scale images de%ned on the same domain,
such that g6f for each pixel.

De�nition 4. The grey-scale reconstruction #f(g) of f
from g at a point x is given by

(#f(g))(x) = max{h | x∈ #Th(f)(Th(g))}:

3.2. De=nition of the hat-transform scale spaces

We start by de%ning a connected operator % acting on
grey-scale functions, which will be used to de%ne the hat

Fig. 2. Left: original signal f and g = %(f); center: f and r = #f(g); right: f and the detail signal '0.

scale spaces. Given a grey-scale function f, the value of %
applied to f at a point x is given by

(%(f))(x) = max{h′ ¡f(x) |Qx;h′(f)}; (2)

where Qx;h′(f) is the following criterion:

Qx;h′(f) ≡ �(1)Th′ (f)
(�x(Tf(x)(f))) ⊂ �x(Th′(f)): (3)

In words, the value of %(f) at a point x is given by the
maximum grey level h′ smaller than f(x) for which the
criterion in Eq. (3) holds. The criterionQx;h′ is ful%lled when
the geodesic dilation of size one of the connected opening
at point x of the threshold set Tf(x)(f) is strictly included in
the connected opening of Th′(f). Note that this is the n-D
analogy to the case when Tl=Tl−1 for 1-D signals, presented
in Section 2. When the input function f is constant we use
the convention %(f) := f. An example of application of
this operator on a 1-D signal is shown in Fig. 2. Notice that
this formulation is applicable without any modi%cation to
n-D functions.

The operator de%ned in Eq. (2) is neither idempotent nor
increasing. The fact that this operator is not idempotent al-
lows it to be iteratively applied on the input signal in or-
der to construct the scale space. Also, it is easy to see that
the criterion in Eq. (3) is not increasing, and therefore the
operator % is not increasing either. As shown in Ref. [7],
when a criterion Q in not increasing, the output (%ltered)
image may have arti%cial edges. This is exactly the case for
the operator %, as can be seen in Fig. 2. This is due to the
fact that, although a threshold set may satisfy the criterion
Q, sets at lower grey scales may not, and this gives rise to
the arti%cial edges at these grey scales. A possible way to
tackle this problem is to process only regional maxima of
the image, by descending from high to low grey levels until
a threshold set that satis%es criterion Q is found. Then, all
threshold sets with grey levels smaller than the grey level of
this set are considered to pass the criterion. This is equiva-
lent to imposing an increasing property on Q once the =rst
threshold set that satis%es Q is found [7]. This process can
be formalized using the notion of grey-scale reconstruction
[23], as will be shown next.



A. C. Jalba et al. / Pattern Recognition 37 (2004) 901–915 905

Fig. 3. Example of iterative %ltering according to Eq. (5): (a) f0, (b) f1, (c) '0, (d) f2, (e) '1, (f) f3, (g) '2.

The result of reconstructing f from g = %(f) is shown
in the middle picture in Fig. 2, and is denoted by r. Notice
that now the desired detail can be extracted (by keeping the
residual f − r) without introducing any arti%cial edges.

Finally, a version of the top-hat transform as a connected
operator is obtained by retaining the residual of the recon-
structed image r, compared to the original image f.

De�nition 5. The connected top-hat transform of a
grey-scale image f at a point x is given by

('(f))(x) = (f − r)(x) = (f − #f(g))(x)

= (f − #f(%(f)))(x): (4)

The top hat scale space can be obtained by iterating
Eq. (4). This makes sense because of the non-idempotent
property of the operator de%ned in Eq. (2).

De�nition 6. The top-hat scale space of a grey-scale image
f is given by the sequence ('0; '1; : : : ; 'K) de%ned by the
iteration

fk+1 = #fk (%(fk));

'k = fk − fk+1; (5)

where f0 := f and k¿ 0.

Eq. (5) is iterated untilfK=fmin for all pixels, wherefmin

is the minimum value of f. Using the grey-scale inversion
f ↔ −f, dual operators of those in Eq. (2), (4) can be
obtained and a bottom-hat scale space can be formulated.

It is also possible to formulate a =ltering process by keep-
ing the result fk instead of the residual 'k at each iteration
k. An example for a 2-D signal is shown in Fig. 3. Notice
that in the %rst step the central staircase peak of the signal
is removed (see (a)–(c)). In what follows, we will denote
by lowering, the removal of the detail 'k from the function
fk , at iteration k.

Additional 2-D %ltering examples are shown in Figs. 4
and 5. The %ltering results obtained using the hat scale spaces
are compared to those produced by Gaussian (linear) scale
spaces; for display purposes, all images were enhanced by
linear contrast stretching. The results shown in the %rst %g-
ure were obtained using only the top-hat scale space repre-
sentation (according to Eq. (5)). At each iteration, the image
is %ltered by removing light-grey peaks. Therefore, when

Fig. 4. Top-hat scale space %ltering example. First row: f0, f10,
f20, f30; second row: Gaussian di:usion %ltering at time t = 4:5,
12.5, 50.0 and 112.5.

Fig. 5. Alternating top-hat and bottom-hat scale spaces %ltering
example. First row: f0, f12, f20, f25; second row: Gaussian
di:usion %ltering at time t = 4:5, 12.5, 50.0 and 112.5.

the object(s) of interest in the input image are dark, it is
appropriate to use the connected top-hat operator.

The %ltering results shown in Fig. 5 were obtained by al-
ternating connected top-hat and bottom-hat operators. That
is, at each iteration k, the imagefk is %rst %ltered by a top-hat
operator and then the result is %ltered by a bottom-hat op-
erator. The central objects shown in the input image were
preserved and can easily be segmented. Alternating top-hat
and bottom-hat %lters should be performed when no infor-
mation about the distribution of grey levels in the input
image is available a priori.

An important advantage of the hat-transform scale spaces
over linear di:usion, as %ltering tools, is that they constitute
connected operators, hence they do not introduce new con-
tours. Although nonlinear anisotropic di:usion [24] over-
comes this problem, the choice of the di:usivity function
is not always obvious. Contrary to anisotropic di:usion,
the hat-transform scale spaces are parameter-free. Other ad-
vantages of using this representation for pattern recognition
tasks are discussed in the next sections.
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4. Constructing n-dimensional hat scale spaces

It is common to represent a grey-scale image by its level
components (connected components, in the binary case).
One particular class of methods associates to an image its
tree representation, where each node in the tree corresponds
to a connected component in the binary case, and to a peak or
level component in the grey-scale case. Two methods of rep-
resenting images as trees are widely found in the literature.
The %rst one, called the max-tree representation, was intro-
duced by Salembier et al. [25] as a versatile data structure
for anti-extensive connected operators. A similar method of
representing a grey-scale image is by its component tree,
introduced by Jones in Ref. [26]. The component tree con-
tains information about each level component and the links
that exist between components at sequential grey-levels in
the image. A shortcoming of component trees is that the
algorithm used to construct them has a worst case running
time of O(N 2 logN ), where N is the number of pixels. In
Ref. [20], the authors proposed an eLcient method for im-
plementing connected set openings (see De%nition 2) that
can be extended to attribute operators [7], based on Tarjan’s
Union-Find algorithm. Although their method seems to be
more eLcient than Salembier’s, it does not construct a tree
representation of the image, which makes it less versatile
for %ltering tasks.

The construction of the hat scale spaces in two or more
dimensions relies on a modi%ed version of Salembier’s
max-tree data structure, which can be constructed in linear
time. The max-tree is a rooted tree, i.e., each node has a
pointer towards its parent node. In our implementation,
we have modi%ed this representation such that it permits
bidirectional traversal. Each max-tree node contains two
pointers, a Parent pointer which allows traversal of the
tree from a leaf towards the root, and a pointer to pointer
Children which allows traversal from the root towards
leaves. The node structure also contains: (i) Level—the
grey level of the peak component represented by the node;
(ii) Features—a pointer to a feature structure; (iii) no-
HighNbr (no high neighbour)—a boolean value; its use
will be explained later in this section. The Features struc-
ture contains variables needed to compute the extracted
features.

Once the max-tree is built, it can be used for process-
ing of the input image, since the tree is its representa-
tion. For tasks of %ltering, this is a three-step process:
construction of the max-tree, criterion assessment and de-
cision, and image restitution. In other words, after the
max-tree is created, the %ltering step analyzes each node
by evaluating a speci%c criterion and takes a decision on
the elimination or preservation of the node. The last step,
called here restitution, transforms the %ltered max-tree into
an output image. For image analysis purposes, this step is
not necessary. In this case the max-tree is used only to pro-
vide input for a higher abstraction level process, i.e. for a
classi%er.

De�nition 7. A node at level h of the max-tree may have
zero, one, or more than one child. Each child represents a
peak component with level greater than h. We call:

• a leaf, a component that does not have any child at levels
greater than h (i.e. it is a regional maximum Mk

h at level
h);

• a simple node, a component that has exactly one child at
a level greater than h;

• a compound node, a component that has more than one
child at levels greater than h;

One can construct the top-hat scale space (see Eq. (5)) from
simple and compound nodes of the max-tree in the following
recursive manner. All child components of a compound node
represent entries in the scale space at the grey level of the
compound node. It is easy to see that in this case the criterion
in Eq. (3) holds. The child of a simple node represents an
entry in the scale space at the grey level h of the component
if the component has at least one pixel with no neighbour
at a grey level strictly higher than h. This is because the
geodesic dilation of size one of the child component within
the component is strictly included in the component, and the
criterion in Eq. (3) holds. The variable noHighNbr indicates
whether the last case holds for a given node. It is initialized
with false, but it becomes true (and it remains true) if the
condition is satis%ed for any pixel of the component.

The scale space is built in a second step, after the con-
struction of the tree. Because it is a recursive procedure,
which resembles breadth =rst search, every node in the tree
is processed at most two times, which is linear in the num-
ber of nodes. Some advantages emerge from such represen-
tation: (i) a small number of scale space entries, compared
with the number of peak components; (ii) all these scales are
important because some major changes in the topology of
the signal occur at these scales; there should be some edges
separating the nested regions within the parent compound
component; (iii) once some entries in the scale space are
obtained, they can be characterized by computing not only
some shape and/or size features, but also some features re-
lated to the ‘height’ of an entire branch. In our opinion, this
is one of the main advantages of this representation, when
compared to ;at =lters. In this representation, one can ac-
cess and utilize linking between components at sequential
grey levels in the signal (image).

By duality, one can construct a min-tree, as explained in
[25], and use it in the same manner to construct a bottom-hat
scale space. Notice that these representations can be ex-
tended to n dimensions by de%ning the associated connectiv-
ity and building the max/min-trees. An advantage of using
max/min-trees is that they can handle non-increasing crite-
ria [25], such as that in Eq. (3).

4.1. Scale space features

The selection of scale-space features was guided by the
following criteria.
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Computational eAciency. The extracted features should
be eLcient to compute and store. This is especially important
for real-time recognition.

Classi=cation performance. The feature set which
achieves a higher classi%cation performance is preferred.

Along with size and shape region descriptors, also de-
scriptors related to the grey-level distribution of the extracted
peaks should be included. Some of these descriptors are:
area, compactness (perimeter squared divided by 4� times
the area), complexity (ratio of perimeter and area), I=A2

(moment of inertia divided by the square of the area, a strict
shape criterion), as region descriptors [27]; average height
and entropy, as descriptors of the distribution of grey levels.
Also, as alternatives to the region descriptors given above,
moment invariants [28], aLne moment invariants [29] and
the shape descriptors in Ref. [30] were considered. Although
these region descriptors satisfy the %rst criterion (i.e. they
can be computed eLciently), the classi%cation results (not
shown here) were worse than those obtained with the se-
lected region descriptors, therefore they were not included
in the %nal set of descriptors.

The computation of all features is based on auxiliary data
sets maintained for each peak component in the nodes of
the tree. The auxiliary data sets can be updated when a new
pixel, which belongs to a peak component, is found. They
can be merged with other auxiliary data sets of child com-
ponents, and permit eLcient computation of the desired fea-
tures. Most features can be computed incrementally (‘on
the Jy’). For the perimeter computation a remark is in or-
der. For each pixel p of a node Ck

h , we compute the num-
ber of edge-pixels (pixels that have at least one neighbour
that does not belong to Pk

h) lower and higher than h, using
4-adjacency. If we denote by #L(p) and #H (p) the number
of edge-pixels lower, resp. higher, than h, the perimeter of
Pk
h is given by

PerimeterPk
h
=

∑

p∈Ck
h

(#L(p)− #H (p))

+
∑

i

PerimeterPk
li
; (6)

where PerimeterPk
li
is the perimeter of child component Pk

li .

Unlike the area of a set, some features (average height and
entropy) cannot be computed ‘on the Jy’ when the max-tree
is built. Nevertheless, they can be eLciently computed
in a second step after the tree is built, as shown in the
next section. In this step also the entries in the scale space
are populated, according to the criteria discussed in the
beginning of Section 4.

4.2. 2-D hat scale-space implementation

In this subsection, we present the pseudo-code of the
recursive procedure based on Salembier’s max-tree which
builds the scale space in the 2-D case (see Algorithm 1).
Unlike the features mentioned in Section 4.1, the average

height and entropy features cannot be computed incremen-
tally during the construction of the max-tree. However, dur-
ing tree construction some necessary values needed for com-
puting them are stored in the member variables Average
and Pixels of structure Features, for each node of the tree.
The variable Average holds for each node n the di:erence
in grey level between the node and its parent, multiplied
by the area of the node. The variable Pixels is set to the
number of pixels of the component represented by the node
n. The di:erence between Pixels and the area of a node is
that the area is incremented by areas of its children, while
Pixels is not. A computation example is shown in Fig. 6.
Without loss of generality, let us consider a 1-D signal
obtained by thresholding the signal f shown in Fig. 2 at
grey-level 4. In this case, the max-tree contains only three
nodes, those from grey-level 6 to 8. The values of both vari-
ables Average and Pixels are shown at the left of each node
in the tree. Notice that only one entry in the scale space
(for the branch which starts with the node C0

7 ) should be
generated.

The function HatScaleSpace, shown in Algorithm 1,
must be called for the root node of the tree. The variable
edata, used to compute the entropy, is an array of integers
of size Levels, where Levels represents the number of grey
levels present in the image (usually 256). The variable
pixels is an integer which must be initialized to 0 when
the procedure is called for the root node. At the end of this
call, all entries in the scale space are kept in the sspace list.
Notice that all these variables must in fact be references or
pointers to the speci%ed types.

Algorithm 1 2-D hat scale-space computation

Function HatScaleSpace(n, edata, pixels, sspace)
1: for each child c of node n do
2: HatScaleSpace(c, edata, pixels, sspace)
3: n:Features:Average := n:Features:Average

+c:Features:Average
4: if n:noHighNbr or n has more than one child then
5: cavg := c:Features:Average
6: carea := c:Features:Area
7: n:Features:Average := n:Features:Average
7: −cavg, entropy := 0
8: for k := 0 to Levels do {Computer entropy}
9: p := edata[k]=pixels

10: entropy := entropy + p ∗ log(p)
11: Clear(edata; 0), pixels := 0
12: AddEntry(sspace, Entry(cavg=carea; entropy; : : :))
13: if n:noHighNbr or n has more than one child then
14: edata[n:Level] := n:Features:Area
15: pixels := n:Features:Area
16: else
17: edata[n:Level]:=edata[n:Level]+n:Features:Pixels
18: pixels := pixels + n:Features:Pixels
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Fig. 6. Computation example. Left: a 1-D signal and its max-tree representation; the values of the variables Average and Pixels are shown
at the left of each node; center: stages of recursion: current node n is marked; right: the values of the (global) variables edata and pixels
at the end of processing node n.

The function proceeds by calling itself for each child
node c of the parent node n. After the function returns from
recursion at some node n (see Fig. 6), the variable Average
is updated such that it contains the sum of all Average values
of an entire branch of the tree starting with the child c (line
3). The test in line 4 is true when one of the cases speci%ed in
De%nition 7 holds for the node n. If the test is true, a new en-
try in the scale space should be added (line 12). In this case,
the Average value of the child c is subtracted from the value
of its parent (line 7); this implements the lowering of the
branch starting at c, and is shown as a dashed-line in
the left-side of Fig. 6. Referring to Fig. 6, notice that when the
current node n is C0

6 a new entry which corresponds to
the branch starting with C0

7 is to be added, and although
the Average value of node C0

6 was 13, this value is updated
to 10. After computing the entropy of the grey-level distri-
bution of the entry (lines 8–10), and resetting the variables
edata and pixels (see right side of Fig. 6), the entry is added
to the scale space (line 12). If the test in line 13 is true, i.e.
new entries in the scale space were added, both the level of
the array edata (which corresponds to the grey-level of the
node n) and the variable pixels are set to the area of the
node (lines 14–15). This is because all children of n were
lowered to the grey-level of the node n, and now at this
grey-level there is a Jat zone with the same area as n (see
Fig. 6). When the test in line 13 evaluates to false (when
n is C0

8 in our example), the function simply updates the
edata and pixels variables by adding the number of pixels
of the component represented by the node n (lines 17–18).

A similar approach can be followed to compute the bottom
hat scale space by constructing a min-tree (see Ref. [25]) and
using the same procedure as in Algorithm 1. Because each
node in the tree is visited at most two times this procedure
is linear in the number of nodes. The computation can be
extended to arbitrary dimension by de%ning the associated
adjacency and building the max/min-trees.

4.3. Feature normalization

All the extracted features should be normalized before
cluster analysis is performed. The area, perimeter and aver-
age height of each entry in the scale space are normalized
by dividing them by the corresponding maximal values of

the components found in the scale space. The compactness
and I=A2 features are inverted. In this way all features are
brought in the range [0 : : : 1]. All shape and size features are
therefore translation, rotation and scale invariant. Moreover,
the entropy and average height are invariant under linear
contrast changes.

Direct use of scale-space features as pattern vectors for
classi%cation purposes poses several problems. The %rst is
that the scale space may contain spurious detail caused by
noise. To solve this problem, an area opening %lter is used
to remove all features with areas smaller than a threshold (9
pixels). Furthermore, the pattern vectors of di:erent images
would di:er in length, which is a problem for many statisti-
cal methods. One way to solve this is to set the boundaries
between classes of scale-space features from the data them-
selves. This is done by cluster analysis. Because no assump-
tions about the number of clusters or the shape of the distri-
bution should be made a priori, an unsupervised clustering
method will be used.

5. Experimental results

In this section we describe the data sets used for ex-
periments, the preprocessing steps of the input signals, the
construction of the pattern vectors, and report classi%cation
results.

In our classi%cation experiments we have used the C4.5
algorithm [31] for constructing decision trees, with bagging
[32] as a method of improving the accuracy of the classi-
%er. The performance was evaluated using the holdout [33]
method.

5.1. Data sets

In the experiments, we have used two sets of data, one
of them with prominent texture features, and the other with
salient shape features. The %rst set consists of 781 natural
images of diatoms. Diatoms are microscopic, single-celled
algae, which build highly ornate silica shells or frustules.
Each image represents a single shell of a diatom (see Fig.
7), and each diatom image is accompanied by the out-
line of its view. For more details, we refer to [13], which
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Fig. 7. Examples of diatoms shells [12].

Fig. 8. The 32 Brodatz textures used in the experiments. (Source: http://www.ee.oulu.fi/research/imag/texture/image data.)

contains the results of the Automatic Diatom Identi%ca-
tion and Classi%cation (ADIAC) project, aimed at automat-
ing the process of diatom identi%cation by digital image
analysis.

Thus, both 1-D and 2-D methods described can be used
for feature extraction. In the %rst case, the curvature of the
outline (contour) represents the 1-D input signal, and in the
last case, the image of the shell itself with its ornamentation
is used as input. This set, which we refer to as the diatom
data set, consists of 37 di:erent taxa of diatoms, and each
taxon (class in the pattern recognition sense) has at least 20
representatives.

The second set is obtained from 32 Brodatz textures as
shown in Fig. 8. Each image, which is 256× 256 pixels in
size, and has 256 grey levels, has been divided in 16 dis-
joint squares of size 64×64. Each texture sample was trans-
formed, resulting in three additional samples: (i) a sample
rotated by 90◦, (ii) a 64× 64 scaled sample obtained from
45×45 pixels in the middle of the original sample, and (iii)
a sample which is both rotated and scaled. The entire data
set, which we refer to as Brodatz data set, comprises 2048
samples, with 64 representatives for each of the 32 texture
categories [34]. For this set we have applied only the 2-D
feature extraction method.

5.2. Preprocessing

Although the curvature of a curve is invariant under pla-
nar rotation and translation [35], it is not invariant under
a change in scale. Therefore, various methods to achieve
scale invariance of the curvature have been proposed in
the literature. These include equal-arclength sampling [36],

equal-angle sampling [37] and equal-points sampling [37].
Among these sampling methods, the equal-arclength sam-
pling method apparently achieves the best equal space e:ect
[35]. However, since the diatom database contains objects
(diatoms) of di:erent sizes, we %rst rescale every input con-
tour to the contour with the minimum bounding box among
the contours of the diatoms within the same class as the
diatom whose contour is given as input; the same scaling
factors are also used to scale the diatom image itself. Sec-
ondly, 100 points are selected using the equal-points sam-
pling method. If no a priori knowledge about the appropriate
scale to be used is available, a multi-scale approach similar
to that in Ref. [38] may be used.

In the 2-D case, before constructing the scale space(s), an
area open-close %lter with size 7=49 is applied. The purpose
of this %ltering is twofold: noise reduction, and merging of
small peak components a:ected by noise.

5.3. Extraction of the pattern vectors

In the 1-D case, the curvature of each input contour is
computed at two di:erent scales (the contour is smoothed
with Gaussian kernels of widths � = 3:0 and 10.0). The
smaller scale parameter was determined empirically such
that the loss of information is small, while unimportant de-
tails due to noise are removed. The larger scale was selected
such that only salient information about the contour is re-
tained. After both top and bottom hat scale spaces are built at
the %rst scale, each extracted peak is described by its maxi-
mum height, average height and extent. Then, the largest 15
maximum heights are selected, and the process is repeated
for the second scale.

http://www.ee.oulu.fi/research/imag/texture/image_data
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Since curvature is a purely local attribute, we supple-
mented the pattern vector by three global shape descriptors
for each scale: circularity, eccentricity and bending energy.
Note that similar global shape descriptors were used in con-
junction with the Curvature Scale Space (CSS) descriptors
in Refs. [39–41]. Therefore, the pattern vector in the 1-D
case is given by 36 (2·(15+3)) numbers. In this case no data
reduction (i.e. clustering) is necessary, since in most cases,
even at the smaller scale, the peaks which remain after the
largest 15 heights are selected have very small maximum
heights and can be neglected.

One can choose either to use only one (top or bottom) hat
scale space, or to use both of them, depending on the image
content. In our experiments we use two data sets. The %rst
set contains natural images of diatom shells in prominent
light-grey (see Section 5.1). When we use both scale-space
representations for the diatom data set, no increase in the
classi%cation performance is obtained (results not shown).
This is because most diatom images show symmetrical light
and dark grey stria patterns of their silica shells, and hence
the information extracted from both scale spaces is highly
redundant. Hence only one representation is used for this
data set. For the Brodatz texture data both scale spaces are
used. In general, without any prior knowledge about the im-
age content, both scale-space representations should be used
for feature extraction. In the 2-D case, %rst a cluster analy-
sis is performed on the features by Fukunaga’s mean-shift
algorithm [42]. The %nal pattern vector is constructed as fol-
lows: (i) for the top scale space we select the %rst six clusters
containing the scale-space features with the largest areas;
(ii) for top and bottom scale spaces we select the %rst three
clusters for the top scale space and the %rst three clusters
for the bottom scale space with the largest areas. All these
clusters are represented by their centroids. Hence, the size
of the pattern vectors is 36 (6 · 6 or 2 · 3 · 6) in both cases.
The number of clusters whose centroids are selected as pat-
tern vectors was determined empirically, and represents the
optimal choice of the total number of features with respect
to identi%cation performance (see Section 5.5).

5.4. Classi=cation technique

A decision tree is an example of a multistage decision
process. Instead of using the complete set of features jointly
to make a decision (as performed by neural networks or sta-
tistical classi%ers), features are considered one by one, re-
sulting in a sequence of binary decisions. The tree is usually
constructed top-down, beginning at the root node, and suc-
cessively partitioning the feature space. The C4.5 algorithm
we have used splits the training set into subsets by choosing
the feature that maximizes the information gain [31].

The procedure employed for constructing the bagging pre-
dictors resembles that in Ref. [32], and is as follows:

• The data set is split into a training set and a test set, such
that the test set contains exactly %ve samples of each class.

Then, the size of the test set becomes 25% of the original
set;

• 25 new training sets are constructed using bootstrapping
from the initial training set, and a decision tree is built
for each of them;

• All 25 decision tree classi%ers are evaluated on the test
set, and a majority vote is taken on the outcome of each
tree;

• All the above steps are repeated 10 times, and the results
are averaged.

In the third step of the bagging procedure, all 25 decision
tree classi%ers are evaluated on the test set, using the hold-
out method of accuracy estimation. This method is brieJy
described next.

Let X = V × Y be the space of labelled instances and
D= {x1; x2; : : : ; xn} be a dataset consisting of n labelled in-
stances, where xi = 〈vi ∈V; yi ∈ Y 〉; V denotes the space of
unlabeled instances and Y the set of possible labels. A classi-
=er C maps an unlabeled instance v∈V to a label y∈ Y and
an inducer I maps a given data set D into a classi%er C. This
is called training of the classi%er. Then, I(D; v)=(I(D))(v)
denotes the label assigned to an unlabeled instance v by the
classi%er built by inducer I on a data set D. Let Dh, the
holdout (test) set, be a subset of size h of D, and let Dt , the
training set, be D \ Dh. The holdout estimated accuracy is
de%ned as

accH =
1
h

∑

〈vi ;yi〉∈Dh

Match(I(Dt; vi); yi); (7)

where the binary function Match(i; j) = 1 if i = j and 0
otherwise. The identi=cation performance is de%ned as the
average of the holdout accuracies over all runs.

5.5. Identi=cation performance

Tables 1 and 2 show the identi%cation performances for
both data sets using the C4.5 decision tree classi%er, with
bagging. The identi%cation performance for the diatom data
set (Table 1) is computed using (i) contour features only
(curvature scale space, 36 features), (ii) texture features
only (hat scale spaces, 36 features), and (iii) a combina-
tion of these. The column ‘ Qx’ contains the average number
of errors; the column ‘�’ contains the standard deviation of
the number of errors; the columns ‘min’ and ‘max’ contain
the minimum and maximum number of errors, respectively;
the column ‘performance’ contains the percentage (average
with standard deviation about the mean) of samples identi-
%ed correctly.

It can be seen that for this data set, by combining
contour-based features and texture features, the performance
reaches almost 100%. Notice that the standard deviation for
the combined feature set decreases to 1.5.

We also carried out a comparison of the morphological
hat-transform scale spaces with respect to other scale-space
methods, in terms of identi%cation performance. We se-
lected for comparison the curvature scale space (CSS)
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Table 1
Identi%cation performance for the diatom data set

Feature set Qx � min max Performance (%)

Contour features (36) 3.2 2.7 0 8 98:3± 0:8
Texture features (36) 23.5 4.3 15 32 88:1± 1:3
Combined features (72) 2.2 1.5 0 6 99:6± 0:7

MPEG7 descriptor (136) 18.1 3.8 11 26 89:2± 1:2
Structure tensor (120) 59.2 6.7 35 63 60:4± 2:1
Combined features (256) 16.5 3.5 10 27 90:5± 1:1

Table 2
Identi%cation performance for the Brodatz data set

Feature set Qx � min max Performance (%)

Texture features (36) 10.3 3.5 7 17 93:5± 1:5
Structure tensor (120) 49.5 4.9 32 55 70:1± 1:5

representation [39,40,43], as a contour descriptor, and a tex-
ture descriptor [44,45] based on the structure (or windowed
second moment) tensor [46,47]. The CSS descriptor is the
standard MPEG7 contour-based shape descriptor [41], on
which our implementation is based. The classi%cation results
using the MPEG7 descriptors, as shown in Table 1, were
obtained using the same preprocessed contours (see Section
5.2) as used for the hat scale spaces; we also tested the pre-
processing used in [39,40], but the results were worse. It can
be seen that the result obtained using the hat scale spaces
is 9% higher than that obtained by the CSS descriptor in
MPEG7.

The second descriptor, the structure tensor texture de-
scriptor [44], consists of three numbers (polarity, texture
anisotropy and contrast), computed for each pixel of the in-
put image. The result is a large set of feature vectors on
which data reduction must be applied. Using Fukunaga’s
mean-shift clustering, the pattern vectors were obtained as
the 40 centroids of the most populated (representative) clus-
ters. The result, as shown in Table 1, is worse than that
obtained by the hat scale space method. Note also that the
sizes of the pattern vectors computed by both the MPEG7
and structure tensor descriptors are much larger than those
corresponding to the hat scale space descriptors.

The results for the Brodatz data set, using only the texture
features extracted from top and bottom hat scale spaces, and
those based on the structure tensor, are shown in Table 2. As
it can be seen, although for this set the result obtained using
the structure tensor descriptor is better than that obtained for
the diatom set, it is still with 23% smaller than its counterpart
yielded by the hat scale spaces.

5.6. Feature correlation by PCA

Next, we used Principal Component Analysis (PCA) to
study how correlated the extracted features are. PCA can be

used to remove redundant data, at the expense of some loss
of information [48]. In our experiments, PCA was applied:
(i) on the features extracted from each image, (ii) on each
pattern vector, representing a given image, and (iii) on the
whole set of pattern vectors; we refer to Section 5.3 for com-
putation of the pattern vectors. In each of the cases enumer-
ated above, we selected a number of (principal) components
ranging from two up to the total number of components
(in the latter case all information is preserved), and pro-
jected the initial vectors on the selected components. In each
case, the classi%cation performance after applying PCA was
worse than the initial result. This can be explained by the
fact that decision tree classi%ers intrinsically select features,
and this selection may contradict that performed by PCA.

In a further experiment, PCA was applied again on the
features extracted from each diatom image, but the initial
features were projected on the space spanned by the %rst two
principal components; in most cases these %rst two com-
ponents explained more than 72% of variance within the
data. Next, we computed two sets of (Pearson’s) correlation
coeLcients between the features projected on each com-
ponent. Tests of signi%cance of the correlation coeLcients
revealed that there is a signi%cant correlation (signi%cance
level 9 = 0:01) between the projections on the %rst com-
ponent of the complexity and entropy features. Similarly,
a signi%cant correlation exists between the projections on
the second component of the complexity and compactness
features. Therefore, we repeated the classi%cation experi-
ment after eliminating the complexity feature. In this case,
the classi%cation performance was 2% smaller than that ob-
tained with the initial feature set; hence, using the initial
pattern vector is in our opinion justi%ed.

5.7. Coping with noise

A further experiment was carried out to test the behavior
of the feature extraction method in the presence of noise.
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Fig. 9. Identi%cation performance for the diatom data set in the presence of: Left: impulsive noise; right: Gaussian noise.

The two types of noise used to corrupt the images of the
diatom data set were additive Gaussian noise and impul-
sive, or “salt and pepper” noise. The additive noise had
a zero-mean Gaussian distribution, with standard deviation
(kernel width) �. That is, each pixel in the corrupted images
was the sum of the original pixel value and a random, Gaus-
sian distributed noise value. The “salt and pepper” noise
was generated by choosing a probability p to perturb each
pixel, and then setting the pixels to be perturbed to random
brightnesses of either 0 or 255.

The experiment was carried out for the diatom data set
using only the texture features extracted from the top-hat
scale space. The results are shown in Fig. 9. In both graphs,
the points represent (averaged) identi%cation performances,
as obtained using the bagging procedure, and the error lines
represent the standard deviation of the identi%cation per-
formances (in 10 runs) around the mean (see Section 5.5).
In the presence of impulsive noise, the identi%cation per-
formance did not drop more than 8%, even when as much
as 60% of the pixels of the input images were corrupted
by noise. When Gaussian noise with standard deviation as
large as 50.0 was added, the performance remained almost
constant around its maximum value. In both cases, only for
very large amounts of noise (i.e. more than 60% of pix-
els corrupted by impulsive noise, and standard deviations
of the Gaussian distribution greater than 50.0), the identi-
%cation performance dropped dramatically. Therefore, we
conclude that the method performs quite well, although just
a very simple noise-reduction %lter has been used (i.e. area
open-close %lter). It is likely that more complex noise re-
duction schemes would further improve the identi%cation
performances.

Table 3
Average classi%cation results for the Brodatz data set in 10 ex-
periments. Here DCT, TSOM and QVQ denote the discrete cosine
transform, the tree-structured self-organizing map and the quad-tree
vector quantizer, respectively

Method Performance
(%)

Reduced multidimensional histograms
Of DCT coeLcients with TSOM 93.9
Of DCT coeLcients with QVQ 93.4
Of mean-removed grey levels with TSOM 92.8

Multidimensional channel histograms 90.4
Wavelet packets 85.1
One-dimensional channel histograms 78.2

5.8. Comparison to other methods

In [34], the authors proposed a method for texture clas-
si%cation using reduced co-occurrence histograms. Their
method uses linear compression, dimension optimization,
and vector quantization. A genetic algorithm is used to min-
imize the computationally expensive leave-one-out classi-
%cation error. The experiments showed that multidimen-
sional histograms reduced with their method provided higher
classi%cation accuracies than those produced using channel
histograms and wavelet packet signatures. For detailed ex-
planations of the methods and an ample discussion of the
results we refer to Ref. [34]. The classi%cation results, taken
from [34], are shown in Table 3.

Although a direct comparison cannot be performed, due
to the di:erent classi%ers involved, the results shown in
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Table 2 are similar to those produced by reduced multidi-
mensional histograms, shown in Table 3. We have used bag-
ging in order to improve the holdout estimate of accuracy,
while in Ref. [34] a selection of features was used which
minimized the leave-one-out classi%cation error. Next, they
used a genetic algorithm which further improved the classi-
%cation performance by minimizing the error rate produced
by the selected features. Note however, that the methods in
Ref. [34] were tailored towards texture classi%cation, while
we have shown that our method can also handle other types
of classi%cation problems, e.g. automatic identi%cation of
diatoms [12].

6. Conclusions

We have proposed a method for classi%cation tasks based
on morphological hat scale spaces, combined with unsuper-
vised cluster analysis, which can be used for both contour
and ornamentation (texture) feature extraction. The sets of
feature vectors were used in two classi%cation experiments,
using decision trees with bagging. The classi%cation perfor-
mance for the diatom data set was almost 100%, and 93.5%
for the Brodatz data set. The %rst result is among the best
obtained in the ADIAC project [13], while the second is
comparable with the result of one of the best methods for
texture classi%cation, reduced channel histograms.

The advantages of using the proposed hat scale-space rep-
resentations are: (i) a small number of scale space entries,
compared with the number of peak components; (ii) all the
extracted scales are important because major changes in the
topology of the signal occur at these scales; (iii) once some
entries in the scale space are obtained, they can be charac-
terized by computing not only shape and size features, but
also features related to the ‘height’ of each peak component.
In this representation, one can access and utilize linking be-
tween components at sequential grey levels in the signal.
Based on this reasoning, we conclude that these represen-
tations can be successfully used for image %ltering, and we
suspect that these representations can readily be adapted for
image segmentation.

An important advantage of the 1-D hat scale spaces (used
on the curvature signal) as compared to the CSS [39–41]
method, is that the extracted features (maximum heights of
the peaks of the signal) are not localized along the contour.
The descriptors extracted from the CSS representation ex-
plicitly use positions along the contour, which means that
they are not readily invariant under planar rotation and mir-
roring, and this results in additional computational overhead
needed to match two shapes by the corresponding sets of
descriptors (see [40]). Also, all convex objects are identical
for the CSS set of descriptors, since it is based on inJection
points, and there are none on the contour of a convex object.
This implies that a triangle, square, or circle cannot be dis-
tinguished using these descriptors [49]. This is not the case
for our descriptor, since we extract information about both

convexities and concavities. Finally, the MPEG7 descriptor
(based on CSS) yielded a worse classi%cation performance
than that obtained using the 1-D hat scale spaces. Also,
the hat scale space representations can be extended to arbi-
trary dimensions, while the CSS is de%ned for 1-D signals
only.

Another advantage of the 1-D hat scale spaces over CSS
is that they are faster to compute. The computational com-
plexity of constructing the CSS representation is O(L · N ),
where N is the number of contour points and L is the
number of scales. As shown in this paper, the hat scale
spaces can be constructed in linear time, i.e. O(N ), for arbi-
trary dimensions, and the number of pattern vectors (scale
spaces entries) is usually two orders of magnitude smaller
than the size of the input image. The CPU time spent to
construct either of the hat scale spaces, for an image of
1000×800 pixels, on a Pentium III at 670 MHz, is under one
second.

In conclusion, morphological hat scale spaces can suc-
cessfully be used in pattern classi%cation tasks, are eLcient
to compute, and yield very good results.
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