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Abstract

This paper is concerned with a multiresolution representation for maximum intensity projection (MIP) volume

rendering based on morphological pyramids which allows progressive refinement. We consider two algorithms for

progressive rendering from the morphological pyramid: one which projects detail coefficients level by level, and a

second one, called streaming MIP, which resorts the detail coefficients of all levels simultaneously with respect to

decreasing magnitude of a suitable error measure. The latter method outperforms the level-by-level method, both

with respect to image quality with a fixed amount of detail data, and in terms of flexibility of controlling approxi-

mation error or computation time. We improve the streaming MIP algorithm, present a GPU implementation for

both methods, and perform a comparison with existing CPU and GPU implementations.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Interaction techniques.
I.4.10 [Image processing and Computer vision]: Image Representation, Hierarchical, Morphological.

1. Introduction

This paper is concerned with the development of efficient al-
gorithms for Maximum Intensity Projection (MIP) on graph-
ics hardware. MIP is a method frequently used to visual-
ize volumetric data originating from magnetic resonance an-
giography (MRA) and ultrasound data. As scanner precision
increases larger datasets are generated, for which a large
amount of memory and processing capacity is consumed
for representing and rendering these volumes. Hence, re-
search is necessary into more efficient MIP rendering algo-
rithms that maintain image quality, e.g., have a fixed error
bound. An established method to obtain this goal is the use
of multiresolution methods. Since the MIP transform is non-
linear, the standard linear multiresolution models based on
wavelets [GE95, LG95, WR00] are not applicable. Instead,
morphological pyramids involving nonlinear filtering opera-
tions can be used for multiresolution rendering.

We present novel MIP algorithms which exploit the pro-
grammability of modern graphics hardware. The class of
algorithms which we investigate makes use of morpholog-
ical pyramids as the underlying representation of the vol-
umetric data. Our algorithms are based on the so-called

Multiresolution Maximum Intensity Projection (MMIP)
method [Roe03,Roe05]. This method enables the user to vi-
sualize large datasets in real time with progressive refine-
ment. After computing the pyramid representation in a pre-
processing step, the pyramid levels can be projected individ-
ually for progressive rendering. In preview mode, the lower
levels of the pyramid are projected first to show a coarse ap-
proximation, which can be quickly refined to the original on
demand.

A disadvantage of projecting one level at a time is that
the approximation quality improves in discrete jumps, as de-
termined by the levels of the pyramid. To overcome this,
streaming MIP was introduced in [Roe05], which is based on
resorting the detail coefficients of all pyramid levels simul-
taneously with respect to decreasing magnitude of a suitable
error measure. All resorted coefficients are projected succes-
sively, until a desired accuracy of the resulting MIP image is
obtained, thus allowing for continuous error control.

The main contributions of this paper are:

• An improved method for computing streaming MIP ren-
dering

• A GPU implementation of the level-by-level MMIP and
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the streaming MIP algorithms, with the advantage that we
can spread the load and the dataset over multiple graphics
cards in a straightforward way, thereby achieving support
for large volume data with an almost optimal speedup.

We perform comparisons with existing CPU and GPU
techniques for MIP volume rendering on large datasets and
show the improvement which we obtain by our approach.

2. Previous and related work

In the case of MIP a multiresolution decomposition scheme
cannot rely on linear operations. Therefore, in [Roe01] a
morphological pyramid scheme was proposed for MIP vol-
ume rendering with progressive refinement. Such pyramids,
which involve nonlinear spatial filtering by morphological
operators, systematically split the volume data into approx-
imation and detail signals [GH00]. As the level of the pyra-
mid is increased, spatial features of increasing size are ex-
tracted. Morphological pyramids combine feature extraction
with accelerated rendering in preview mode. A disadvan-
tage of the above method is that the approximation accu-
racy makes a jump each time as an additional level of detail
signals is taken into account. To allow for continuous error
control, the streaming MIP method was proposed in [Roe05]
and it was found to outperform the MMIP method, both with
respect to image quality with a fixed amount of detail data,
and in terms of flexibility of controlling approximation error
or computation time.

The type of morphological pyramid considered here is
appropriate in the context of MIP because the morphologi-
cal operation of dilation (involving the computation of max-
ima of voxel values in a local neighborhood) is compatible
with the maximum computation involved in MIP, just as lin-
ear pyramids or wavelet representations [LG95, WR00] are
the right tool for the case of linear X-ray rendering. Even
though the morphological operators are nonlinear and non-
invertible, the pyramid scheme does allow perfect recon-
struction. Therefore, after the pyramid has been constructed
the original volume data can be discarded. Also, only integer
computations are required.

To allow for compression domain rendering, it is essential
to use a (fast) MIP implementation which can work directly
on the data structures used to represent the pyramid. This
can be achieved by a voxel projection method with an effi-
cient volume data storage scheme [MKG00], see section 4.1.
This method is analogous to point-based rendering (PBR)
which has been used for both surface and volume repre-
sentations [SP04]. A major challenge of PBR algorithms is
accurate interpolation between discrete point samples. We
achieve this by means of an additional morphological clos-
ing of the output image.

Previous work on mapping elementary morphological op-
erations to graphics hardware in the context of volume ren-
dering and analysis can be found in [HE00].

3. Overview of the multiresolution MIP algorithm

We define some elementary morphological operators [Ser82,
Hei94], introduce morphological (adjunction) pyramids, and
recall how such pyramids are used for efficient MIP render-
ing. For details, see [Roe03, Roe05].

3.1. Morphological operators

Let f be a signal with domain F ⊆ Z
d , and A a subset of

Z
d called the structuring element. The dilation δA( f ) and

erosion εA( f ) of f by A are defined by

δA( f )(x) = max
y∈A,x−y∈F

f (x− y), (1)

εA( f )(x) = min
y∈A,x+y∈F

f (x+ y). (2)

Dilation and erosion simply replace each signal value by
the maximum or minimum in a neighborhood defined by
the structuring element A. The opening αA( f ) and closing

φA( f ) of f by A are defined by αA( f )(x) = δA(εA( f ))(x),
and φA( f )(x) = εA(δA( f ))(x), i.e., openings and closings are
products of a dilation and an erosion. The opening eliminates
signal peaks, the closing valleys.

3.2. Pyramids

To construct a (non)linear pyramid from an initial data set f0,
approximations { f j} of increasingly reduced size are com-
puted by a reduction operation:

f j = REDUCE ( f j−1), j = 1,2, . . .L,

where j is called the level of the decomposition. An approx-
imation signal associated to f j+1 is defined as the difference
between f j and an expanded version of f j+1:

d j = f j −̇ EXPAND ( f j+1). (3)

The set d0,d1, . . . ,dL−1, fL is referred to as a detail pyramid.
Here −̇ is a generalized subtraction operator (see below).
If an associated generalized addition operator ∔ exists such
that, for all j,

f̂ j ∔ ( f j −̇ f̂ j) = f j, where f̂ j = EXPAND( REDUCE ( f j)),

perfect reconstruction holds, that is, f0 can be exactly recon-
structed by the recursion

f j = EXPAND ( f j+1)∔ d j, j = L−1, . . . ,0. (4)

To guarantee that information lost during analysis can be
completely recovered in the synthesis phase, one needs the
pyramid condition:

REDUCE (EXPAND ( f )) = f , for all f . (5)

In morphological pyramids, the REDUCE and EXPAND oper-
ations involve morphological filtering [GH00]. For the case
of the so-called adjunction pyramids [Roe01], the morpho-
logical operators are the dilation δA( f ) and erosion εA( f )
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with structuring element A defined in (1) and (2), respec-
tively. Then the REDUCE and EXPAND operators are written

as ψ
↑
A and ψ

↓
A, respectively, i.e.,

REDUCE : ψ
↑
A ( f ) = DOWNSAMPLE (εA( f )), (6)

EXPAND : ψ
↓
A ( f ) = δA (UPSAMPLE ( f )), (7)

where the arrows indicate transformations to higher
(coarser) or lower (finer) levels of the pyramid. By
DOWNSAMPLE and UPSAMPLE we denote downsampling
and upsampling by a factor of 2 in each spatial dimension.
As shown in [GH00], the pyramid condition (5) holds if
there exists an a ∈ A such that the translates of a over an
even number of grid steps are never contained in the struc-
turing element A.

In an adjunction pyramid, the product ψ
↓
Aψ

↑
A is an open-

ing. The anti-extensivity property of openings [Hei94] im-

plies that ψ
↓
A ψ

↑
A ( f ) ≤ f . Thus one can define the general-

ized addition and subtraction operators ∔ and −̇ in (3) by
(cf. [GH00]):

t ∔ s = t ∨ s = max(t,s), t −̇ s =

{
t, if t > s

0, if t = s
(8)

where 0 is the smallest image or voxel value possible. Hence,
the detail signals are nonnegative:

d j(n) = f j(n) −̇ψ
↓
A ψ

↑
A ( f j)(n) ≥ 0. (9)

By the definition of −̇ the detail signal d j(n) equals f j(n),

except at points n for which f j(n) = ψ
↓
A ψ

↑
A ( f j)(n), where

d j(n) = 0. So, detail signals are not ‘small’ in regions where
the structuring element does not fit well to the data.

For an adjunction pyramid with the generalized addition
being defined as the maximum operation (see (8)), recon-
struction takes a special form [Roe03]:

f = ψ
↓
A

L( fL)∨
L−1
_

k=0

ψ
↓
A

k(dk). (10)

Here L is the decomposition depth, ψ
↓
A

k denotes k-fold com-

position of ψ
↓
A with itself, and ∨ denotes the maximum op-

erator.

3.3. Multiresolution MIP algorithm

An essential property of the adjunction pyramid represen-
tation is that the MIP operator (computing maxima along
the line of sight) can be interchanged with the pyrami-
dal synthesis operator (both the upsampling operation and
the dilation δA commute with the maximum operation),
cf. [Roe01, Roe03]. So the MIP operation can be performed
on a coarse level (reduced data size), followed by a cheap
2-D EXPAND operation to a finer resolution. This leads to a
computationally efficient algorithm.

We denote the MIP operation by MΘ, with Θ = (θ,φ,α),

where θ and φ are the angles defining the projection vec-
tor perpendicular to the view plane, and α gives the orien-
tation of the view plane with respect to this vector. Succes-

sive approximations of the MIP of f are written as M
∧

Θ
( j)( f ),

j = L,L−1, . . . ,0. These approximations in the image plane
all have the size of the MIP of the full data f .

Algorithm 3.1 Multiresolution MIP algorithm based on an
adjunction pyramid.

1: INPUT: adjunction detail pyramid sequence d0, d1, . . ., dL−1, fL

of input data set f .
2: OUTPUT: progressively refined approximation images.
3:
4: Choose an orientation Θ of the viewing coordinate system.

5: M
∧

Θ
(L)( f ) = ψ

↓

Ã
L(MΘ( fL)) (∗Coarsest approximation∗)

6:
7: for j = L to 1 do (∗Progressively refine in image plane∗)

8: M
∧

Θ
( j−1)( f ) = ψ

↓

Ã
j−1(MΘ(d j−1))∨M

∧

Θ
( j)( f ).

9: end for

The MMIP algorithm for an adjunction pyramid is given
in Algorithm 3.1. We go from a level- j approximation to the
next approximation on level j−1 by first computing the MIP
of d j−1, then j− 1 times applying the 2-D pyramid synthe-

sis operator ψ
↓

Ã
, and finally taking the maximum of the re-

sulting image with the previous approximation. Here ψ
↓

Ã
is a

2-D EXPAND operator of the same form as (7) (2-D upsam-
pling followed by 2-D dilation), but with a structuring ele-
ment Ã which is the MIP of A, that is, Ã := MΘ(A). Clearly

M
∧

Θ
( j−1)( f ) ≥ M

∧

Θ
( j)( f ), since the details signals d j−1 are

nonnegative, cf. (9). So the projections increase pointwise as
one goes down the pyramid.

3.4. Streaming MIP

Here we summarize the construction of the coefficient
stream and the rendering for streaming MIP; see [Roe05]
for details.

Construction of the detail coefficient stream. By the com-
mutativity of the pyramidal synthesis operator with the max-
imum operation we can project the elements of the detail
coefficients in any order on the image plane, not necessar-
ily level by level, as we have done so far. So one can join
the detail coefficients of all levels and sort these according
to some error measure. We do not sort the detail coefficients
{d j} directly. As (9) shows, the detail coefficients are not
small in regions where the structuring element does fit ap-
proximately, but not exactly, to the data. Therefore we define
an auxiliary set of detail coefficients which is sorted with re-
spect to decreasing magnitude. Then the original detail coef-
ficients {d j} are resorted by giving them the same order as
the resorted auxiliary coefficients, which are subsequently
discarded. As a result of the construction phase, we have ob-
tained an ordered list of detail coefficients d j(x,y,z), which
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can be used to compute the MIP of the input data. By con-
struction, the order is such that each successive coefficient,
when taken into account, maximally reduces the L1-error be-
tween the partial reconstruction and the original data.

Rendering phase. During rendering, all sorted coefficients
{d j(x,y,z)} are projected successively, until either an a-

priori chosen maximum number of coefficients has been
projected, or a desired accuracy of the resulting MIP image
is obtained. When a coefficient k is projected, its value val

is compared to the current value curval at the point of pro-
jection, and curval is overwritten when curval < val. Also,
when the level of the coefficient is j, a local dilation of size
j has to be carried out, i.e., all pixels in the scaled neighbor-
hood j · Ã around the point of projection are overwritten by
val when their current value is smaller than val. Note that we
cannot do the dilation globally, in contrast to the case of the
level-by-level projection where the scale index is constant
per level.

4. Implementation on graphics hardware

As discussed in section 3.2, the morphological pyramid of a
dataset is built in a preprocessing step. For the MMIP pro-
jection which works level by level, each level is rendered
separately using a MIP rendering method. Intermediate lev-
els are rendered to a texture, starting from the coarsest level,

after which the 2-D synthesis operator ψ
↓

Ã
is applied and the

result combined with the previous approximation; see Algo-
rithm 3.1. This two-dimensional synthesis operator is imple-
mented as a fragment program which maps a N ×M texture
to a 2N ×2M texture. The upsampling and dilation steps are
rolled into one pass for efficiency. The levels are combined
using the frame-buffer maximum operation. In what follows
we discuss the separate steps in detail.

4.1. Per-voxel projection

To avoid processing empty space we use an object-
order voxel-projection method [MKG00], where one loops
through the volume and projects all non-zero voxels in
value-sorted order with each voxel contributing to exactly
one pixel. By projecting the voxels from low to high value,
old values in the image plane can simply be overwritten by
current values. This allows for MIP rendering without ex-
pensive read-compare-write GPU cycles. This method also
uses an efficient scheme for storing the volume data, based
on histogram-based sorting of non-zero voxels according to
their grey value. After the sorting step the voxels are repre-
sented by an array of positions. An additional array contains
the cumulative histogram values. All levels of the pyramid
are created and stored as value-sorted arrays.

4.2. Representing the detail coefficients

The voxel data are stored in a buffer that is created with
the ARB_vertex_buffer_object extension. This ex-

tension defines an interface that allows data to be cached
in high-performance graphics memory tailored to the use of
these buffers, thereby increasing the rate of data transfers. A
static buffer is requested that will be filled once by the appli-
cation, and used many times as the source for GL-drawing
commands. The voxels of the volume are stored in a con-
tinuous region sorted per intensity value. The second struc-
ture, the histogram, is kept with the begin and end offsets
in this buffer, for each intensity value. Voxels with one in-
tensity level can then simply be sent to the vertex processor
by invoking glDrawArrays once, with the begin and end
values as found in this histogram.

The most naive implementation stores the intensity and
the x-, y- and z-coordinates in shorts, using 8 bytes per voxel.
The different attributes are provided to the vertex program
as texture coordinates. Rows of consecutive voxels will have
the same intensity value, as represented in the histogram.
Storing this with each voxel is very redundant, as the his-
togram acts as a kind of run-length-encoding. A shader con-
stant or texture coordinate can be set to the intensity for each
span of voxels with equal intensity. Now we are left with 6
bytes per voxel (2 bytes per coordinate). Theoretically this
will allow for volumes up to 655363. In practice we cannot
support such large volumes as they will not fit into memory
on current hardware.

Let us assume that we want to reduce the memory require-
ments to 4 bytes per voxel (two GL_SHORTs). This means
we have 32 bits available. Distributing this over X , Y and Z

like 12+10+10 (4096×1024×1024) will suffice for even
huge volumes. We can unpack these in a vertex program. For
GPUs that do not have bit shift and logical operators, these
can be emulated with multiplication by a fraction (computed
using the floor Cg-function) and subtraction. Overall, this
results in a major speedup for large volumes. Even though
this unpacking requires some extra computation this is eas-
ily out-weighted by the savings in memory usage and the
associated gain in the ratio of memory bandwidth to voxel
count.

4.3. Projecting the detail coefficients

For the sake of clarity, but without sacrificing generality,
we have used orthogonal projection throughout all exam-
ples. We build a model-view matrix from a quaternion which
represents the orientation of the volume and a zoom fac-
tor (which defaults to 1 voxel on 1 pixel), both of which
can be interactively adjusted. The projection matrix and the
model-view matrix are then combined into a 4× 4 model-
view-projection matrix and passed to the vertex shader.

The entire volume is projected by iterating over the inten-
sity values present in the volume, starting from the lowest
(or from a user defined threshold below which everything is
background) and stopping at the highest. If there is an up-
per intensity threshold above which everything has the max-
imum intensity, all these voxels can be projected with one
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call to glDrawArrays, which is set to draw point primi-
tives (without rounding or anti-aliasing).

A multi-level representation is incorporated into the al-
gorithm by storing the voxels for the different levels sepa-
rately. One needs to store L + 1 volumes for an L-level de-
composition: detail levels d0 . . .dL−1 and the approximation
fL. These volumes are rendered in the same fashion as de-
scribed already. Level 0 is rendered to a quad of the same
size as the viewport, level 1 is rendered to a half-sized quad,
level 2 to a quarter-sized one, and so on.

4.4. Load balancing

The MMIP algorithm has the advantage that we can spread
the load and the dataset over multiple graphics cards in a
straightforward way. In this way large volumes can be sup-
ported, and an almost optimal speedup is obtained. Fortu-
nately, the newer NVidia drivers support multiple cards for
one X-server for multiple screens. To render to both simulta-
neously, a GL-Context is created on both X-screens, and
rendering is switched between them one time per frame. Fi-
nally, the results of both cards are combined. Because the
result of the second card is combined with that of the first,
the second card does not necessarily have to be connected
to a monitor at all. At the moment there is no extension for
directly shuffling data between two cards, so the intermedi-
ate result will have to pass through the CPU. We found that
using glReadPixels on one context and then glDraw-
Pixels on the other one was the only currently available
way of doing this. Our timings show that the preferred pixel
format for this is GL_UNSIGNED_INT_8_8_8_8.

To utilize multiple cores or multiple processors, it was
also attempted to put the rendering loop for each context in a
different thread. This did not result in any performance gain.
This is most probably because the algorithm is GPU-bound,
and the only processing done by the CPU is queuing com-
mands and data to the GPU. Spreading this tiny load over
multiple CPUs also does not outweigh the synchronization
overhead.

The best performance was achieved by splitting the sorted
array of voxels equally over both cards by interleaving the
detail coefficients (also splitting the histogram) for each
pyramid level. The coefficients are interleaved instead of be-
ing split in the middle to better divide the load in case of
progressive refinement. In the end, the resulting images are
combined using a pixel-wise maximum operator.

4.5. Streaming MIP

Streaming MIP can be implemented similarly using point
rendering. For each voxel, we will have to store an extra at-
tribute, namely the originating pyramid level. The level can
be rolled into two bits of the position attribute (see section
4.2), which spans 4 bytes, and for intensity another short is
required, making a total of 6 bytes per voxel.

To implement the level-dependent local dilation (see sec-
tion 3.4) the size of the output voxel can be set using the
point size extension to the ARB vertex program assembly
language (which maps to the PSIZE output semantic in Cg).
For example, assuming a square structuring element of size
2×2, the point size will be 1, 2 and 4 at level 0, 1 and 2, re-
spectively. The specific shape of this point for each level de-
pends on the structuring element A and the projection angle.
If the projection of A is not square, the point sprite extension
is used to apply a specific shape to the point.

In addition to the increased memory usage, the fact that
voxels are no longer ordered by intensity means that the
writes to the frame buffer now have to be done with the
maximum operator enabled. This results in some loss of per-
formance, but not a huge one as the blended primitives are
small. However, we will show next that this can be done in
an even more efficient way.

Figure 1: Optimized streaming MIP. The process of selec-

tion, projection and rendering of detail coefficients for one

level of the pyramid. The black parts of the histogram cor-

respond to the subset of detail coefficients that are selected

according to the error criterion.

4.6. Optimized streaming MIP

Note that the order in which the detail coefficients are ren-
dered is not important, even though the method sorts them in
a specific order. Therefore, the error-sorted list of details is
not used to set the rendering order but only to guide setting
the error for speed/quality tradeoff. The sorted array of detail
coefficients, resulting from the preprocessing as required for
streaming MIP, is subjected to a second histogram-sorting
step with one bin per (level, intensity) pair. The ordering by
error is maintained within these bins, having the bins store
the position attribute of each detail coefficient. This results
in a more efficient method for streaming MIP that avoids us-
ing point sprites and frame buffer blending, and which uses
only four bytes per voxel.

The level and intensity attributes of the detail coefficients
are kept in their original sorted order in one big list. The re-
sulting histogram and sorted list can be used for rendering
the entire dataset (or a per-level approximation) and also for
streaming MIP rendering. This is implemented as follows.
A percentage of detail coefficients to be rendered is chosen,
after which the corresponding part of the sorted list is tra-
versed. For each pyramid level the voxels are then rendered
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in a low-to-high intensity order, guided by the complete his-
togram and the number of coefficients that need to be ren-
dered, see Fig. 1. This is the same algorithm as in section 4.1,
except that an additional histogram is used to select which
coefficients to render. With this new algorithm we have all
the advantages of streaming MIP without any of the draw-
backs mentioned in section 4.5.

4.7. Post-processing

For non axis-aligned parallel projections the voxel-based
method can yield pixel-sized holes in the result. In a post-
processing step, a morphological closing with the structur-
ing element Ã used for synthesis fills these holes effectively
and efficiently.

Table 1: Approximation error (maximum, relative L1 and

median) as a function of the percentage of detail coeffi-

cients kept to render the VisibleWoman dataset (dimensions

512 × 512 × 1734, 210 million detail coefficients). Perfor-

mance is given in frames per second (FPS).

Coeffs. Error FPS

(%) max relative L1 median

100 0 0 0 1.14
50 3 9.6×10−5 1 2.27
25 8 2.0×10−3 3 4.41
13 13 1.2×10−2 4 8.40
6 21 2.6×10−2 4 15.4
1 63 1.0×10−1 7 51.2

Table 2: Approximation error (maximum, relative L1 and

median) as a function of the percentage of detail coef-

ficients kept to render the XMasTree dataset (dimensions

512 × 512 × 512, 105 million detail coefficients). Perfor-

mance is in frames per second (FPS).

Coeffs. Error FPS

(%) max relative L1 median

100 0 0 0 2.80
50 5 1.3×10−4 3 5.60
25 10 5.8×10−4 4 10.6
13 22 1.8×10−3 4 19.6

6 33 7.2×10−3 7 33.6
1 177 7.0×10−2 25 100.6

5. Results

All performance measurements were carried out on a ma-
chine with dual AMD Opteron 280 processor and two
GeForce 7900GTX graphics cards. Unless mentioned other-
wise, only one of the cards (and one of the CPUs) is active.

Table 1 shows the percentage of detail coefficients ren-
dered for the Visible Woman dataset (dimensions 512 ×
512 × 1734, and a total of 210 million detail coefficients)
versus three different error measures, and the performance
in frames per second. Table 2 shows the same results for
the XMasTree dataset (512× 512× 512, and a total of 105
million detail coefficients). The maximum error (L∞ norm)
is the maximum difference in grey level between the origi-
nal MIP image and its approximation. Since this measure is
not very representative for the perceived error, we also cal-
culate the median error measure (median of the grey level
differences, excluding the zero ones). The median error is
expressed in grey levels and is not very sensitive to outliers
and noise. The relative L1-approximation error measure be-

tween the original image M(0) and approximation M( j) is
defined as:

ε( j) =
∥∥∥M

(0) −M
( j)

∥∥∥/
∥∥∥M

(0)
∥∥∥ ,

where ‖·‖ represents the L1 norm.

Visually, errors remain quite unnoticeable until the me-
dian error reaches a value around 5 to 7 (on the datasets
which we experimented with), after which artifacts start ap-
pearing. For interactive purposes a large reduction percent-
age (1-5 %) of the detail coefficients is acceptable, with a
corresponding increase in performance. The frame rate ap-
proximately doubles each time the number of detail coeffi-
cients is halved, so the relation between rendering time and
number of retained detail coefficients is linear.

Table 3: Performance in frames per second (FPS) for the

Visible Woman dataset in a 512× 512 viewport for various

MIP methods: (i) the most common texture-based volume

rendering method; (ii) GPU ray-casting; (iii) MMIP, ren-

dering everything but the highest detail level; (iv) streaming

MIP, for an optimized software implementation, the GPU im-

plementation (for two error settings), and for the workload

distributed over two GPUs.

Method Error FPS

3-D Texture-based - 1.0
GPU ray-casting [KW03] - 2.0
MMIP, 2 levels (GPU) 0.16 (median 8) 8.0
Streaming MIP (software) 0.0 0.2
Streaming MIP (software) 0.07 (median 4) 3.5
Streaming MIP (GPU) 0.0 1.1
Streaming MIP (GPU) 0.07 (median 4) 18.4
Streaming MIP (2x GPU) 0.0 2.0
Streaming MIP (2x GPU) 0.07 (median 4) 30.2

Table 3 shows a comparison of various methods on the
VisibleWoman dataset: (i) a brute force 3D texture-based
method using view-aligned slices and frame buffer blend-
ing; (ii) GPU ray-casting [KW03]; (iii) MMIP, rendering ev-
erything but the highest detail level; and (iv) our streaming
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MIP implementations, both in software and on one or two
GPUs, for various error levels. The render viewport was set
to 512×512 in all cases. For both texture-based methods the
dataset was split into four: three blocks of 512× 512× 512
and one of 512×512×198, because the hardware does not
support 3D textures larger than 5123.

When full reconstruction is performed, the streaming MIP
in software achieves approximately the same performance as
the 3D texture-based method. GPU ray-casting outperforms
these methods by making smart use of fragment programs
and early ray termination. Streaming MIP starts to become
interesting when allowing for a certain error. For example,
when we admit a hardly visible error (L1 error bound of 0.07,
or median of 4 grey levels) we can achieve an interactive
frame rate of 18 frames per second. Compared to the opti-
mized software implementation, the GPU version is about
six times faster given the same dataset and error bound. Us-
ing two cards we achieve a speed-up of almost a factor of
two. In preview mode, a larger error may be acceptable (say
median 7), which increases the performance to 50 FPS.

It can be concluded that our streaming MIP method works
especially well on large datasets that do not fit into the mem-
ory of the graphics card(s) at once, and take too long to ren-
der using standard GPU ray-casting at the original resolu-
tion. With our method, such volumes can be rendered in real
time, albeit a tradeoff between rendering quality and perfor-
mance/resource usage has to be made.

Figure 2: Streaming MIP rendering of the XMasTree data

set with 5% of the detail coefficients (left image) and at full

reconstruction (right image).

Some images obtained by our optimized streaming MIP
method are shown in Figures 2 and 3. The first figure dis-
plays the rendering of the XMasTree data set, for two differ-
ent error levels. In the lower quality rendering (the left im-
age) some degradation is visible in the background and at the
base of the tree, but there is only a small difference in the tree
itself. Figure 3 shows a rendering of the entire visible woman
dataset at four error levels. The images on the first row show
hardly any visible differences. However, the zoomed-in ex-
cerpts reveal some differences for strongly reduced coeffi-
cient percentages: at 5% the fine details of the ribs are still

visible, whereas at 1% the image is visibly somewhat de-
graded.

1% 5% 10% 100%

Figure 3: Streaming MIP rendering of the complete Visible

Woman dataset in a 800 by 2000 window at various qual-

ity settings (percentages of the total number of detail coeffi-

cients). Second row: zoom-in for each quality setting; third

row: the corresponding differences with the original (the bar

indicates the error in grey levels).

6. Discussion

The sorting step during pyramid construction takes time
depending on the number of non-zero voxels (up to five
minutes for the VisibleWoman dataset). If there is a hard
time constraint in processing incoming data, a GPU sort-
ing method can be used to accelerate this step. The most
efficient method we are aware of is adaptive bitonic sorting
(complexity O(n logn)), as introduced by Gress and Zach-
mann [GZ06]. For sorting n values utilizing p stream pro-
cessor units, this approach has the optimal time complexity
O((n logn)/p). On recent GPUs, this approach has shown to
be remarkably faster than sequential sorting on the CPU.

Current graphics hardware does not have enough memory
to accommodate very large datasets. For our method, this is
less of a problem as one can decide to only store the most
important detail coefficients. With the upcoming generation
of Shader version 4 GPUs, memory virtualisation is possible
such that GPU memory is mapped on the host system. This
will lessen the memory problem, but the increased access
time of external memory can still make it worthwhile to use
a streaming method like ours.

Even though point rendering on current GPU hardware is
faster than the equivalent on the CPU, the algorithm is bound

c© The Eurographics Association 2007.



W.J. van der Laan et al. / Multiresolution MIP rendering on graphics hardware

by the vertex units of the GPU, which are still slower and less
in number than the fragment units. This problem will disap-
pear with the upcoming hardware which has unified shader
units. This will give a large improvement in rendering speeds
as the graphics hardware can allocate all of the shader units
to process points.

Throughout this paper a three-level pyramid (two detail
levels and one approximation level) was used. When us-
ing pyramids with more levels we found no improvement
in image quality or rendering speed for the data sets used.
Performance even decreased a bit because more render, up-
sample, and dilation steps are needed. The reason for the
absence of any gain appears to be that structuring elements
become larger than any structure present in the data, so that
the higher pyramid levels have little non-zero coefficients.
For even larger datasets the results might improve with more
levels.

No attempt was made to remove voxels that do not con-
tribute to the image from any viewing angle. According to
[MKG00], a view-independent hidden voxel removal step
is able to remove about half of the voxels in a dataset, at
the cost of more preprocessing. Assuming this, a speedup in
rendering by another factor of two could be achieved.

7. Conclusion

We have investigated algorithms based on morphological
pyramids for multiresolution MIP volume rendering on
graphics hardware. We found that our highly-optimized
streaming MIP GPU-method outperforms both its software
implementation as well as existing ray-casting and 3-D
texture-based methods. Using the basic texture-based MIP
method for each level and then synthesizing the result is the
most obvious way of implementing multilevel volume ren-
dering. But it is, by definition, not faster than plain volume
rendering, as it does not take advantage of storing only nec-
essary voxels and near-continuous error control.

Per-voxel projection, as discussed in this paper, is more
advantageous. It applies point-based rendering to project
the dataset a voxel at a time, and implicitly uses empty
space skipping by only rendering non-empty voxels. The
user can interactively adjust thresholds and set the perfor-
mance/quality ratio as desired. The algorithm is also cache-
efficient, as it always addresses GPU memory in a linear
way. In addition, the load and the dataset can be divided over
multiple GPUs to achieve a near-optimal speedup, even for
large volume data.
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