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Abstract. We study nonlinear multiresolution signal decomposition based on

morphological pyramids. Motivated by a problem arising in multiresolution vol-

ume visualization, we introduce a new class of morphological pyramids. In this

class the pyramidal synthesis operator always has the same form, i.e. a dilation by

a structuring element A, preceded by upsampling, while the pyramidal analysis

operator is a certain operator R
(n)
A

indexed by an integer n, followed by down-

sampling. For n = 0, R
(n)
A

equals the erosion εA with structuring element A,

whereas for n > 0, R
(n)
A

equals the erosion εA followed by n conditional dila-

tions, which for n → ∞ is the opening by reconstruction. The resulting pair of

analysis and synthesis operators is shown to satisfy the pyramid condition for all

n. The corresponding pyramids for n = 0 and n = 1 are known as the adjunction

pyramid and Sun-Maragos pyramid, respectively. Experiments are performed to

study the approximation quality of the pyramids as a function of the number of

iterations n of the conditional dilation operator.

1 Introduction

Multiresolution signal decomposition schemes have enjoyed a long standing interest.

Analyzing signals at multiple scales may be used to suppress noise and can lead to more

robust detection of signal features, such as transitions in sound data, or edges in images.

Multiresolution algorithms also may offer computational advantages, when the analysis

of the signal is performed in a coarse-to-fine fashion. Examples of linear multiresolution

schemes are the Laplacian pyramid [?] and decomposition methods based on wavelets

[?].

This paper is concerned with nonlinear multiresolution signal decomposition based

on morphological pyramids. A detailed study of such pyramids was recently made by

Goutsias and Heijmans [?, ?]. Morphological pyramids systematically split the input

signal into approximation and detail signals by repeatedly applying a pyramidal analy-

sis operator which involves morphological filtering followed by downsampling. As the

level of the pyramid is increased, spatial features of increasing size are extracted. The

original signal can be recovered from the pyramid decomposition by repeated applica-

tion of a pyramid synthesis operator. If the analysis and synthesis operators satisfy the

so-called pyramid condition, then perfect reconstruction holds, i.e. the original signal

can be exactly recovered from the pyramidal decomposition data.
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The goal of this paper is to derive a class of morphological pyramids in which the

pyramidal synthesis operator ψ↓
A = δA σ

↓ is fixed to be a dilation δA by a structuring

element A (preceded by an upsampling operator σ↓), but where the pyramid analysis

operator has the form ψ↑
A = σ↑ ηA where σ↑ denotes downsampling and ηA may be

chosen in different ways. Two particular cases of this type of pyramid were mentioned

in [?, ?]: (i) the adjunction pyramid, where ηA equals an erosion εA by a structuring

element A; (ii) the Sun-Maragos pyramid, where ηA is an opening αA = δA εA. As

we will show below, choosing the operator ηA to be an erosion εA, followed by an

arbitrary number of conditional dilations with structuring element A also leads to a

valid synthesis operator, that is, the pair (ψ↑
A, ψ

↓
A) satisfies the pyramid condition. Note

that this class also contains the opening by reconstruction, which is the connected filter

obtained by iterating the conditional dilations until idempotence [?].

The motivation to study this class of pyramids stems from our work on multiresolu-

tion volume visualization. Volume visualization or volume rendering is a technique to

produce two-dimensional images of three-dimensional data from different viewpoints,

using advanced computer graphics techniques such as illumination, shading and colour.

Interactive rendering of volume data is a demanding problem due to the large sizes

of the signals. For this purpose multiresolution models are developed, which can be

used to visualize data incrementally (‘progressive refinement’). In preview mode, when

a user is exploring the data from different viewpoints, a coarse representation is used

whose data size is smaller than that of the original data, so that rendering is accelerated

and thus user interaction is improved. For the case of X-ray volume rendering, which is

a linear transform based upon integrating the 3-D data along the line of sight, wavelets

have been studied extensively for multiresolution visualization [?, ?].

Another volume rendering method widely used in medical imaging is maximum

intensity projection (MIP) where one computes the maximum, instead of the integral,

along the line of sight. Since this transform is nonlinear, morphological pyramids are a

suitable tool for multiresolution analysis. More in particular, pyramids where the syn-

thesis operator is a dilation are particularly appropriate, because in this case the maxima

along the line of sight can be computed on a coarse level (where the size of the data is

reduced), before applying a two-dimensional synthesis operator to perform reconstruc-

tion of the projection image to full grid resolution. Two cases we have recently investi-

gated for MIP volume rendering are the adjunction pyramid [?,?] and the Sun-Maragos

pyramid [?]. One of the problems with the adjunction pyramid is that too few small

features are retained in higher levels of the pyramid. The basic reason is that the initial

erosion of the analysis operator removes fine details. The subsequent downsampling

step only aggravates the situation. In the Sun-Maragos pyramid this situation improved,

essentially because erosions are replaced by openings, which keep image features to a

larger extent, so that the chance that (parts of) these features survive the downsampling

step is larger. From here, it is only a small step to conjecture that perhaps a number of

conditional dilations after the erosion might do even better, because such operators re-

construct more of a certain feature provided some part of it survives the initial erosion.

In future work, we intend to apply the new class of pyramids derived here to the MIP

volume rendering problem to see whether further improvements can be obtained.
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The remainder of this paper is organized as follows. Section ?? recalls a few pre-

liminaries on morphological pyramids. In section ?? we derive the new class of mor-

phological pyramids. Some examples are discussed in section ??. Section ?? contains a

summary and discussion of future work.

2 Preliminaries

Consider signals in a d-dimensional signal space V0, which is assumed to be the set

of functions on (a subset of) the discrete grid Z
d, where d = 2 or d = 3 (image and

volume data), that take values in a finite set of nonnegative integers.

The general structure of linear as well as nonlinear pyramids is as follows. From an

initial signal f0, approximations {fj} of increasingly reduced size are computed by a

decomposition or analysis operator ψ↑:

fj = ψ↑ (fj−1), j = 1, 2, . . . L.

Here j is called the level of the decomposition. In the case of a Gaussian pyramid, the

analysis operator consists of Gaussian low-pass filtering, followed by downsampling

[?]. An approximation error associated to fj+1 may be defined by taking the difference

between fj and an expanded version of fj+1:

dj = fj −̇ ψ↓ (fj+1). (1)

Here −̇ is a generalized subtraction operator. The set d0, d1, . . . , dL−1, fL is referred to

as a detail pyramid. Assuming there exists an associated generalized addition operator

∔ such that, for all j,

f̂j ∔ (fj −̇ f̂j) = fj , where f̂j = ψ↓(ψ↑ (fj)),

we have perfect reconstruction, that is, f0 can be exactly reconstructed by the recursion

fj = ψ↓ (fj+1)∔ dj , j = L− 1, . . . , 0. (2)

For the linear case, the detail pyramid is called a Laplacian pyramid, and the synthesis

operation consists of upsampling, followed by Gaussian low-pass filtering [?]. In the

case of morphological pyramids, the analysis and synthesis operators involve morpho-

logical filtering instead of Gaussian filtering [?, ?]. It should be noted that, in principle,

the analysis and synthesis operators may depend on level, but we assume them to be the

same for all levels j throughout this paper.

To guarantee that information lost during analysis can be recovered in the synthesis

phase in a non-redundant way, one needs the so-called pyramid condition:

ψ↑ (ψ↓ (f)) = f for all f. (3)

By approximations of f we will mean signals in V0 of the same size as the initial

signal f which are reconstructed from higher levels of the pyramid by omitting some of

the detail signals. More precisely, a level-j approximation f̂
(0)
j of f is defined as

f̂
(0)
j = ψ↓j (fj), (4)
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where ψ↓ j means repeating the ψ↓ operator j times.

The generalized addition and subtraction operators ∔ and −̇ appearing in the def-

inition (??) of the detail signals and the reconstruction equation (??) may be taken as

ordinary addition and subtraction, although other choices are sometimes possible as

well [?, ?, ?].

2.1 Adjunction pyramid

Morphological adjunction pyramids [?] involve the morphological operators of dilation

δA(f) and erosion εA(f) with structuring element A. In this case the analysis and

synthesis operators are denoted by ψ↑
A and ψ↓

A, respectively, and have the form

ψ↑
A(f) = σ↑ (εA(f)), (5)

ψ↓
A(f) = δA (σ↓ (f)), (6)

where the arrows indicate transformations to higher (coarser) or lower (finer) levels of

the pyramid. Here σ↑ and σ↓ denote downsampling and upsampling by a factor of 2 in

each spatial dimension:

σ↑(f)(n) = f(2n)

σ↓(f)(m) =

{

f(n), if m = 2n

0, otherwise

The pyramid condition (??) is satisfied, if there exists an a ∈ A such that the translates

of a over an even number of grid steps are never contained in the structuring element

A, cf. [?]. Introducing the notation

Z
d[n] = {k ∈ Z

d|k − n ∈ 2Zd}

A[n] = A ∩ Z
d[n]

the pyramid condition can be expressed as

A[a] = {a} for some a ∈ A. (7)

2.2 Sun-Maragos pyramid

This pyramid is defined by the following choice of analysis and synthesis operators:

ψ↑
A(f) = σ↑ (αA(f)), (8)

ψ↓
A(f) = δA (σ↓ (f)), (9)

where αA = δA εA is the opening by structuring element A. Note that the synthesis

operator is identical to that of the adjunction pyramid, cf. (??). Under the condition that

A[0] = {0}, (10)
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where 0 is the origin of Zd, the pyramid condition (??) is satisfied (see [?, Proposition

5.9]), that is,

ψ↑
Aψ

↓
A = σ↑ δA εA δAσ

↓ = id,

where id denotes the identity operator. Since (εA, δA) is an adjunction, we have that

δA εA δA = δA. Therefore, when A satisfies (??), the previous formula implies that

σ↑ δA σ
↓ = id. (11)

3 A new class of morphological pyramids

In this section we present the main contribution of this paper, which is the derivation

of a new class of morphological pyramids containing the adjunction pyramid and Sun-

Maragos pyramid as special cases.

We start by recalling the definition of the opening by reconstruction. Let f be a

d-dimensional signal (e.g. image or volume data). We define a sequence of operators

R
(n)
A for n = 0, 1, 2, . . . by the following recursion:

R
(0)
A (f) = εA(f) (12)

R
(n)
A (f) = f ∧ δA(R

(n−1)
A (f)), n = 1, 2, . . . . (13)

The operator in (??) is a conditional dilation, that is, after each dilation step the infimum

with the original signal f is taken. Then R
(∞)
A (f) is the opening by reconstruction of

f from its erosion εA(f). In practice, f is defined on a finite subset D ⊆ Z
d and the

recursion terminates after a finite number of steps.

We now consider the class of pyramids whose analysis/synthesis operator pairs have

the form

ψ↑
A(f) = σ↑ (R

(n)
A (f)), (14)

ψ↓
A(f) = δA (σ↓ (f)), (15)

where σ↑ and σ↓ denote dyadic downsampling and upsampling as introduced in sec-

tion ??, and the structuring elementA satisfies condition (??). By observing thatR
(0)
A (f)

is the erosion εA of f and R
(1)
A (f) is the opening αA = δA εA of f , we see that the

cases n = 0 and n = 1 correspond to the adjunction pyramid and Sun-Maragos pyra-

mid, respectively. Our task is to prove that the pair of operators (??), (??) satisfies the

pyramid condition.

First, the following lemma is proved.

Lemma 1. Consider a morphological pyramid with analysis operator ψ↑ = σ↑ η and

synthesis operator ψ↓ = δA σ
↓, satisfying the following assumptions:

1. η is an anti-extensive operator

2. η δA ≥ id

3. The structuring element A satisfies condition (??).
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Then the pyramid condition holds.

Proof. By assumption 2 we have that ψ↑ ψ↓ = σ↑ η δA σ
↓ ≥ σ↑ σ↓ = id. On the other

hand, from assumption 1, ψ↑ ψ↓ ≤ σ↑ δA σ
↓. By assumption 3, formula (??) holds, that

is, σ↑ δA σ
↓ = id. Hence we found that ψ↑ ψ↓ ≤ id and that ψ↑ ψ↓ ≥ id, so ψ↑ ψ↓ = id.

Now we return to the problem of showing that the pair (??), (??) satisfies the pyra-

mid condition for each n. It is sufficient to show that the operator η = R
(n)
A satisfies

assumptions 1 and 2 of the lemma, since assumption 3 was assumed to hold anyhow.

1. The operator R
(0)
A = εA is anti-extensive, because (??) implies that 0 ∈ A, and

hence the erosion εA is anti-extensive. For n > 0, equation (??) trivially implies

that R
(n)
A (f) ≤ f . Hence R

(n)
A is anti-extensive for all n ≥ 0.

2. We prove by induction that assumption 2 holds. First,R
(0)
A (δA(f)) = εA(δA(f)) ≥

f since εA δA is a closing. Second, for n > 0

R
(n)
A (δA(f)) = δA(f) ∧ δA

(

R
(n−1)
A (δA(f))

)

.

Applying the induction hypothesis, i.e. R
(n−1)
A δA ≥ id, we find

R
(n)
A (δA(f)) ≥ δA(f) ∧ δA(f) = δA(f).

Finally, (??) implies that 0 ∈ A, and hence the dilation δA is extensive. Therefore

R
(n)
A (δA(f)) ≥ f , and we are done.

4 Example

In this section, we apply the pyramids discussed in the previous section for image anal-

ysis. We computed image decompositions according to a number of analysis/synthesis

operator pairs (??), (??) corresponding to various values of n. Two aspects were consid-

ered in the experiments. First, the error E
(j)
k of a level-j approximation f̂

(0)
j as defined

in (??):

E
(j)
k = ‖f − f̂

(0)
j ‖k/‖f‖k, (16)

for k = 1, 2,∞ corresponding to the L1, L2 and L∞ norms, respectively. Here f̂
(0)
j is

computed by f̂
(0)
j = ψ↓

A
j (fj), cf. (??), where the partial reconstruction fj is computed

according to the recursion (??). For a pyramid with L levels, f̂
(0)
j only takes the highest

approximation signal fL, as well as the detail signals dm with m = L− 1, L− 2, . . . , j
into account. In all cases, we computed the detail signals and reconstructions by using

ordinary addition and subtraction in (??) and (??).

Second, we looked at the entropy of the detail signals, which is a measure for the

amount of data compression which is achievable. Both measures are essential quality

indicators for the case of volume rendering of three-dimensional data which is the mo-

tivation for this work (see the introduction).


