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Abstract— In this paper we formulate a morphological approach to path planning problems, in
particular with respect to the empty-space problem, that is, the question of finding the allowed

states for an object, moving in a space with obstacles.

Our approach is based upon a recent

generalization of mathematical morphology to spaces with noncommutative invariance groups.

I. INTRODUCTION

The problem of path planning is to find a path for
an object, say a robot or a car, moving in a space
(called ‘work space’) with obstacles. The problem
falls apart into two distinct subproblems [3]. First,
the empty-space problem: find the allowed states
of the robot '. Any possible configuration of the
robot is represented as a point in a configuration
space C, whose dimensionality equals the number
of degrees of freedom of the robot [2]. Points in C
such that a robot in that configuration would col-
lide with any of the obstacles in work space are
‘forbidden’. The set of allowed points of C is called
‘empty-space’. The second problem to be solved
i1s the find-path problem: find a trajectory in the
empty space, where the definition of ‘trajectory’
has to specify which transitions between allowed
states are permissible. This may involve certain ad-
ditional constraints, such as connectedness or con-
tinuity. Kinematic constraints also fall in this cat-
egory; for example, a car cannot move sideways,
ete.

This paper, which uses an approach based on
mathematical morphology, is only concerned with
the empty-space problem. That is, we do not deal
with the kinematics, nor the dynamics of robot mo-
tion.

First consider mobile robots whose location is not
fixed. If only translations of the robot are possible
the solution 1s simple. Since a robot has a finite
size, one can find allowed positions of the (arbit-
rarily chosen) center of the robot by an ordinary
erosion of the space outside the obstacles, where the
structuring element B is the robot itself. Equival-
ently, one may perform the dilation by the reflected

I From now on, we use the word ‘robot’ as a generic term
for a moving object.

set é of the set of obstacles to find the forbidden
positions of the center of the robot. The second al-
ternative is more efficient when the obstacle space
1s smaller than the space outside the obstacles.

If the robot has rotational degrees of freedom
the problem is more difficult. Now one has to per-
form dilations with all rotated versions of the ro-
bot. This case was briefly discussed already in [7].
The problem becomes even more difficult when the
robot has internal degrees of freedom. This hap-
pens, for example, for a robot with several rotating
joints.

The goal of this paper is to outline a general solu-
tion of the empty space problem in terms of mor-
phological operations, thus generalizing the exist-
ing solution for robots with translational degrees of
freedom. To this end we use a general construction
of morphological operators on spaces with trans-
itive transformation groups developed recently by
the author [5]. Here transitive means that for any
pair of points in a set X acted upon by a group
T', there exists a transformation ¢ € I which maps
one point on the other. In the classical case, the
group I is given by the translation group T, which
acts on the plane ¥ = R?. When also rotations
are allowed, the group I' becomes the Euclidean
motion group M. For robots with several joints
the problem can be decomposed into subproblems
for each joint, with associated motion groups I'; as
will be shown below. The examples given here are
limited to planar robots, but the results can easily
be extended to higher dimensional cases.

Another class of problems arises for manipulator
robots, that is, robots — with one or more joints
— fized in one point. Then the group of allowed
motions, e.g. rotations of the joints, is no longer
transitive on the points of the plane, and a modi-
fication of the framework of transitive transform-



ation groups is necessary. It turns out that even
then a morphological approach to the empty-space
problem is possible. This case, requiring the study
of intransitive group actions, will be treated in a
forthcoming paper [6].

II. PRELIMINARIES

A. Generalized Minkowsk:i operators

The classical Minkowski addition and subtrac-
tion for subsets X, A of R™ are given by

XoA = [J X, (1)
aEA
XeA = =()X_a, (2)
aEA

where
Xo=7(X)={x+a:2€X},

is the translate of X over the vector a € R”, # + y
is the sum of x and y, and —x the reflection of x.
It can be shown that

XaA={heR": A, 4 X}, (3)

where A = {—a : a € A} is the reflection of A
and A ff B (A ‘hits’ B) is a general notation for
ANB#0.

On any group I' one can define generalizations of
the Minkowski operations [5]. Recall that a dilation
(erosion) is a mapping commuting with unions (in-
tersections). For any subsets G, H of T define the
dilation

(G)=G&H =) Gh=]gH, (4

’ heH gea
which generalizes the Minkowski addition to non-
commutative groups. Here
gH :={gh:he H}, Gh:={gh:gec G},

with gh the group product of ¢ and h. Similarly,
define the erosion (h~1! is the group inverse of h)

£(G) = GEH = ﬂ Gh™',
heH
which generalizes the Minkowski subtraction. Both

mappings are left-invariant, e.g.

(9G) =9(G), VgeTl.

This is the reason for the superscript ‘A’ on the ‘&’
symbol. For later use we also define the inverted

set Gt of G by
G '={g":ge G} (5)

Duality by complementation i1s expressed by the
formula (G & ) =a@G° AL,

B. Group actions

Let X be a non-empty set, I' a transformation
group on X', that is, each element ¢ € T" is a map-
ping g : X — A, satisfying

(1) gh(z) = g(h(z)) (1)

where e is the unit element of T', and ¢gh denotes
the product of two group elements g and h. The
inverse of an element g € T’ will be denoted by ¢~ 1.
Instead of g(x) we will also write gz. We say that
T is a group action on X [1,4,8].

The group I is called transitive on X if for each
x,y € X there is a ¢ € T such that g = y, and
simply transitive when this element ¢ is unique.
A homogeneous space is a pair (', X') where T is
a group acting transitively on X'. Any transitive
abelian permutation group I is simply transitive.
If T' acts on X', the stabilizer of x € X' 1s the sub-
group I'y; := {9 € T : go = z}. Let ¢ be an
arbitrary but fixed point of X', henceforth called
the origin. The stabilizer I'; will be denoted by X
from now on:

e(x) = x,

Yi=T,={gel:go=0} (6)

The set of group elements which map ¢ to a given
point x is called a left coset and denoted by

s = {gss s € X} (7)

Here g, is a representative (an arbitrary element)
of this coset.

In the following we present two examples, as we
will need them in what follows. In each case T
denotes the group and A’ the corresponding set.

Frample 1: X = Fuclidean space R?, T' = the
Euclidean translation group T. T is abelian. Ele-
ments of T can be parametrized by vectors h € R™,
with 7, the translation over the vector h:

me=x+h, hecT,zecR" (8)

Ezample 2: X = Euclidean space R" (n > 2),
I' = the Euclidean motion group M := E*(3)
(proper Euclidean group, group of rigid motions),
i.e. the group generated by translations and rota-
tions (see [7]). The subgroup leaving a point p fixed
is the set of all rotations around that point. M 1is
not abelian. The collection of translations forms
the Euclidean translation group T. The stabilizer,
denoted by R, equals the circle group S* (also com-
mutative) of rotations around the origin. TLet 7,
denote the translation over the vector h € R? and
p{; the rotation over an angle ¢ around the point p.



The following relations, whose proof is left to the
reader, are needed in the sequel:

Py = TPy

PoTh = Ty Py

= Tp—pfj,ppg’ (9)
(10)

Let 75,4 denote a rotation around the origin fol-
lowed by a translation:

Yh,é :Thpg, hERZ, ¢ € St (11)

Any element of M can be written in this form. Us-
ing the rules (9)—(10) one finds the multiplication
rule

Pyh,¢7h',¢l :7h+pih17¢+¢l. (12)

B.1 Geometrical representation

The following representation is useful in this case
[5,7]. Attach a set of unit vectors ¥ with direction
varying over the unit circle to each a point in the
plane. We call p := (#,%) a pointer. Given any
pointer p = (z, ¥), there is a unique element of the
group T' which maps a fixed pointer b := (g, ¢})
to p, where ¢ is the origin and €} a unit vector in
the z-direction. So the pointer p = (z, %), where
U = (cos ¢,sin ¢), represents the motion 7, 4.
In this representation, the rotation group R is the
set of unit vectors attached to the origin and T
is represented by the collection of horizontal unit
vectors attached to points of R?. In the discrete
case we will use a hexagonal grid and replace R by
a finite group H consisting of rotations over mul-
tiples of 60°. The coset 7, R is represented on the
hexagonal grid by the six unit vectors attached to
the point = [5].

B.2 Morphological operations

One can construct morphological operations on
an arbitrary homogeneous space A as follows.
Define the ‘origin’ ¢ to be an arbitrarily chosen
point of X'. To each subset X of X we associ-
ate all elements of the group which map the origin
¢ to an element of X. We also can go back from
the group T to the space X' by associating to each
subset GG of T the collection of all points gg where
g ranges over (. This is summarized in the follow-
ing definition. Here and below, we use the symbol
P(A) for the set of al subsets of A, A an arbitray
set.

Definition 3: The lift 9 : P(X) — P(T) and ca-

nonical projection m : P(I') — P(X) are defined
by
I(X) {9eT:goe X}, XCX
"(G) = {wg€G), GCT.

For the case of Example 2, these formulas specialize
to

I(X)= | nR=7(X) R, (13)
where
m(X):={m 2 € X}. (14)

In [5,7] a construction was performed of various
morphological operators between the distinct lat-
tices P(X') and P(T'). Here we restrict ourselves to
dilations. That is, consider the mapping — referred
to as the hitting function below — which associates
to a subset X of A’ the set of group elements g € T
for which the translated set ¢B := {gb : b € B}
hits X (cf. (3)):

Op(X) ={g9eT:yB1 X} (15)
Then it was shown in [5] that
Qp(X) = {geT:gd(B) 1 9(X)}
= J(X)E9(B). (16)

Here ¥(X) & Y¥~1(B) is a generalized Minkowski
operation on subsets of T' as defined in (4), with
Y~1(B) the inverted set of ¥(B), cf. (5). This

mapping is
e adilation P(X) — P(T);

e invariant under T, that is

Qp(9(X)) == 9QB(X),

More generally, if A i1s a subset of ' and z — g, a
function from A" to I', the mapping

(X)) = U e A,
rzeX

gel.

(17)

is a dilation P(X) — P(T') which is I'-invariant.
For this reason we speak sometimes of group dila-
tions, or I'-dilations. Dilations (and erosions) from
P(T) to P(X) or from P(X) to P(X) can be con-

structed similarly but are not needed in the sequel.

I1I. PATH PLANNING

In this section we give a solution of the empty
space problem in path planning by morphological
techniques. Only the case of mobile robots is dis-
cussed here. First the standard case of a robot with
translational degrees of freedom is reviewed. Next
we allow rotations, and give the solution already
outlined in [7]. Finally we consider robots with
two fully rotational joints, where the rotation angle
runs from 0 to 27. Once more it is emphasized that
the find-path problem does not concern us here:



when we speak of an ‘allowed motion’ ¢ below, we
merely mean that the state resulting from the ac-
tion of ¢ on an allowed initial state 1s allowed as
well. This does not imply any statement whatso-
ever about the permissibility of intermediate states
during the motion.

A. Mobile robots with one joint

In this subsection the allowed motion group
equals either the translation group or the
translation-rotation group.

A.1 Translations only

Consider a robot moving in the plane R? with
obstacles. The robot corresponds to a subset B of
the plane and the obstacles to another subset, say
X. The problem is to find the set of forbidden con-
figurations. The state of the robot is parametrized
by the location h of an arbitrary point of the robot
B, initially at the origin; hence the configuration
space C is identical to R?. The allowed motions
form the translation group T which can be identi-
fied with B2, see Example 1 above. The forbidden
points can be identified with the set

Qp(X)={heR’:7, B X}. (18)

One immediately recognizes this (cf. (3)) as the
Euclidean dilation of X by B. This leads to the
first result.

Proposition 4: If B € R? is a robot with transla-
tional degrees of freedom, then the hitting function

Qg : P(R?) = P(C) is given by
Qn(X) = X&B

_. 4T _ o
= (X)) = ~B.
rzeX

(19)

For clarity the dependence of the Minkowski sum
on the Euclidean translation group T is explicitly
indicated in (19). An example can be found in
Fig. 1.

A .2 Translations and rotations

Next the case of a mobile robot with transla-
tional and rotational degrees of freedom is con-
sidered. The appropriate group is M, the Eu-
clidean motion group, see Example 2. To para-
metrize the state of the robot, choose two distinct
points, say P; and P, inside the robot. The con-
figuration space C is 3-dimensional in this case,

C:={(h,¢):heR? ¢S}, (20)
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Figure 1: The forbidden set Qp(X) for a robot B with
translational degrees of freedom. (a) continuous case: dark
area X: the obstacle; hatched area (plus the enclosed dark
area): the dilated set. The origin ¢ is in the center of the
(b) discrete case: heavy dots: the obstacle X;
heavy plus open dots: the dilated set. The underliningin B

rectangle B.

indicates the location of the origin.

with h the location of point P; and ¢ the angle
of the line segment [Py P;] with respect to the -
axis. Note that C can be identified with the para-
meter space of the Euclidean motion group M:
to each (h,¢) in C corresponds a unique motion
Yhié = Th pg and vice versa. This identification
will tacitly be made below without furter comment.
An alternative way to represent C is by means of
pointers; see Sect. B. Assuming the initial state to
be equal to {h = (0,0), ¢ = 0}, the hitting function

in this case becomes

Qp(X) ={(h,¢)eC:me BN X} (21)

Now the results of Sect. B are applicable. From
the general result (16) together with (13)-(14) it
follows that

Qp(X) = I(X)E07\(B
= I(X)ERETIB)  (22)
where (cf. (14))
B = {0 be By =n(B), (29

with é the reflected set of B. From (22) one ob-
tains using the following result.

Proposition 5: If B € R? is a robot with trans-
lational and rotational degrees of freedom, then the
hitting function Qp : P(R*) — P(C) is given by

(X)) = Un®E(B)  (24)
= U UmnirB) @)
peSTTEX

The equality (25) expresses the fact, which is obvi-
ous from (21), that Qp(X) can be found by doing,



a A P A A P

o H H e W H o
G W W R P
oo He H b H Ao

d ¥ v Jd Y b

Figure 2: The forbidden set Qp(X) for a robot B with
translational and rotational degrees of freedom. Heavy dots:
the obstacle space X; b: base pointer. Arrows attached to
heavy and open dots: the forbidden set.

for each ¢ € S' an ordinary dilation with a rotated
version pY B of the structuring element. Equation
(24) says that Qp(X) can also be found as a union
of translates, that is, by a dilation

FX)=JnB (26)
rzeX
where R .
B:=R& 7 1(B). (27)

Eq. (26) differs from a usual T-dilation through
the fact that the structuring element (27) is not a
planar, but a 3D subset of C. The construction of
B is straightforward:

- take the reflection é of B;
- lift B to C by applying 7;
- construct rotated copies of 7(B) in C.

These results can be nicely presented geometric-
ally using the representation by pointers (cf. Ex-
ample 2), see Fig. 2. Alternatively, one may use a
3D representation in configuration space C.

B. Mobile robots with several joints

The case of mobile robots with a finite number
of joints can be solved by a combination of cases
presented above. This is demonstrated here for a
two-joint robot. This case is atypical in the sense
that it can be completely decomposed into two 3D
problems. The case of three joints is considerably
more involved; lack of space does not permit us to
treat it here. The interested reader is referred to
the full paper [6].

So consider a robot B consisting of two joints By
and Bs, which are connected in one point P. Al-
lowed motions are translation of the complete robot

Figure 3: Mobile robot with two freely rotating joints.

B and free rotations of By, By around P. To para-
metrize the state of the robot, choose a point P;
inside B; and a point Ps inside By — both distinct
from P. As state vector we now take (h, ¢1, ¢2),
where h is the location of the point P in the plane,
and ¢1, ¢2 are the angles of the two joints (i.e., of
[P Py] and [P Ps], respectively) with respect to the
z-axis; cf. Fig. 3. The configuration space C is
4-dimensional in this case,

C = {(ha¢1a¢2) : h S R2a¢1 S Sla¢2 € Sl} (28)
The hitting function is now

{(ha¢1a¢2) € C :
Th (P, BiU py, B2) 1 X}, (29)

where it is assumed that the initial state is (0,0, 0).
Using the fact that 7, commutes with unions, and
realizing that the union of two sets hits a third set
X if and only if one of these sets hits X, (29) can
be written as a union of two M-dilations:

Qp(X) =

Qp(X) = Qp,(X) U Qp,(X) (30)
where, for i = 1,2,
Qg (X) =
{(h,¢1,¢2) €C: (h,¢3) €63 (X)) (31)
Here 63! : P(Ci) — P(Ci), where
Ci:={(h,¢;): h eR* ¢; € S}, (32)

are two M-dilations as defined in (26).

This formula shows that the empty space prob-
lem is decomposed into two independent parts, one
for each part of the robot. Moreover, each of the
two subproblems is essentially a 3D problem. It
can be shown that (30) is again expressible as a
T-dilation, with a structuring element in C; cf. [6].
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