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Abstract. In this paper a parallel implementation of a watershed algorithm is
proposed. The algorithm is designed for a ring-architecture with distributed mem-
ory and a piece of shared memory using a single program multiple data (SPMD)
approach. The watershed transform is generally consideredto be inherently se-
quential. This paper shows that it is possible to exploit parallelism by splitting the
computation of the watersheds of an image into three stages that can be executed
in parallel.

1 Introduction

In the field of image processing and more particularly in grayscale Mathematical Mor-
phology [5, 6] the watershed transform [2, 3, 7] is frequently used as one of the stages
in a chain of image processing algorithms. Unfortunately, the computation of the water-
shed transform of a gray scale image is a relatively time consuming task and therefore
usually one of the slowest steps in this chain. The use of a parallel watershed algorithm
can significantly improve the overall performance. In [4] a distributed algorithm for
the watershed transform was developed by splitting the input image into equally sized
blocks. Communication overhead turned out to be a major problem.

The watershed algorithm can easily be extended to graphs, asshown in [7]. This fact
is used to derive an alternative algorithm which is suitablefor parallel implementation.
We first transform the image into a graph in which each vertex represents a connected
component at a certain gray levelh. Then we compute the watershed of this graph and
transform the result back into an image. The computation of askeleton of plateaus is
performed as a post-processing step.

2 The Classical Algorithm

A digital algorithm for computing the watershed transform was developed by Vincent
[7]. In this section we will give a short summary of this algorithm.
A digital gray scale image is a functionf : D �! N, whereD � Z2 is the domain
of the image (pixel coordinates) and for somep 2 D the valuef(p) denotes the gray
value of this pixel. Gray scale images are looked upon as topographic reliefs wheref(p)
denotes the altitude of the surface at locationp. LetG denote the underlying grid, i.e.



G is a subset ofZ2� Z2. A pathP of lengthl between two pixelsp andq is anl + 1-
tuple (p0; p1; :::; pl�1; pl) such thatp0 = p, pl = q and8i 2 [0; l) : (pi; pi+1) 2 G.
For a set of pixelsM the predicate
onn(M) holds if and only if for every pair of
pixelsp; q 2 M there exists a path betweenp andq which only passes through pixels
of M . The setM is called connected if
onn(M) holds. Aconnected componentis a
nonempty maximal connected set of pixels. A(regional) minimumof f at altitudeh is a
connected component of pixelsp with f(p) = h from which it is impossible to reach a
point of lower altitude without having to climb. Now, suppose that pinholes are pierced
in each minimum of the topographic surface and the surface isslowly immersed into
a lake. Water will fill up the valleys of the surface creating basins. At the pixels where
two or more basins would merge we build a “dam”. The set of damsobtained at the end
of this immersion process is called thewatershed transformof the imagef .

LetA be a set, anda; b two points inA. Thegeodesic distancedA(a; b) within A is
the infimum of the lengths of all paths froma to b in A. LetB � A be partitioned ink
connected componentsBi, i.e.B = Ski=1 Bi. Thegeodesic influence zoneof the setBi
within A is defined asizA(Bi) = fp 2 A j 8j 2 [1::k℄nfig : dA(p;Bi) < dA(p;Bj)g.
The setIZA(B) is defined as the union of the influence zones of the connected compo-
nents of B, i.e.IZA(B) = Ski=1 izA(Bi). The complement of the setIZA(B) withinA, i.e.SKIZA(B) = AnIZA(B), is called theskeleton by influence zonesof A. The
setTh(f) = fp 2 D j f(p) � hg is called thethreshold setof f at levelh. Let hmin
andhmax respectively be the minimum and maximum gray level of the digital image.
LetMinh denote the union of all regional minima at the heighth.

Definition Watershed algorithm Define the following recurrence:Xhmin(f) = fp 2 D j f(p) = hmingXh+1 = Minh+1 [ IZTh+1(f)(Xh); h = hmin; : : : ; hmax � 1: (1)

Intuitively, one could interpretXh(f) as the set of pixelsp, satisfyingf(p) � h, that lie
in some basin. Thewatershed transformof the imagef is the complement ofXhmax(f)
in D: Wshed(f) = DnXhmax(f): (2)

Most implementations of algorithms that compute the watershed of a digital gray
scale function are translations of the recursive relation (1). The fact thatXh is needed
to computeXh+1 expresses the sequential nature of this algorithm.

Computing influence zones is a costly operation, while it is not necessary to com-
pute them for non-watershed plateaus. Also, the SKIZ is not necessarily connected,
and may also be a ‘thick’ one, meaning that a set of pixels equally distant from two
connected components may be thicker than one pixel.

3 An Alternative Algorithm

In the algorithm described in the previous section influencezones are computed during
every iteration of the algorithm. There is the problem of plateaus which may result in
thick watersheds. Now, suppose that the imagef does not contain plateaus, i.e.8p; q 2



D : (p; q) 2 G ) f(p) 6= f(q). In this case every ‘plateau’ consists of exactly one
pixel. This observation leads us to an alternative watershed algorithm, which consist of
3 stages:

1. Transform the imagef into a directed valued graphf� = (F;E).
2. Compute the watershed of the directed graph.
3. Transform the labeled graph back into a binary image.

3.1 Stage 1

The first stage of this algorithm transforms the imagef into a directed valued graphf� = (F;E), called thecomponents graph off . HereF denotes the set of vertices of
the graph andE the set of edges. The vertices of this graph are maximal connected sets,
called level components, of pixels which have the same gray-values. The set of level
components at levelh is defined asLh = fC � ThnTh�1 j C is a connected component ofThnTh�1g:
The set of vertices of the graphf� is the collection of level components off , i.e.F =Shmaxh=hmin Lh. A pair of sets(v; w) is an element ofE if and only if 9p 2 v; q 2 w :(p; q) 2 G ^ f(p) < f(q). With a little abuse of notation we denote the gray-value of a
level componentw by f(w), which is the valuef(p) for somep 2 w.
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Fig. 1. (a) artificially generated image. (b) labeled level sets. (c) components graph.

3.2 Stage 2

The second stage of the algorithm computes the watershed of the directed graph. The
procedure is very similar to the classical algorithm. The basic idea of the algorithm is
to assign a colour (label) to each minimum node and its associated basin by iteratively
flooding the graph using a breadth first algorithm. If to some nodev there can be as-
signed two or more different labels, i.e. the node can be reached from two different
basins along an increasing path, the node is marked to be a watershed node. If the node
can only be reached from nodes which have the same label the node is assigned this
same label, i.e. the node is merged with the corresponding basin. A pseudo-code of this
algorithm is given in Fig. 3.



Fig. 2. (a) graph after flooding. (b) binary output image. (c) skeleton of output image.

3.3 Stage 3

In the third stage of the algorithm the labeled graph is transformed back into an image.
The pixels belonging to a watershed node are coloured white while pixels belonging
to non-watershed nodes are coloured black. After this transformation we end up with
a binary image, in which the watersheds are plateaus. If we want thin watersheds we
need to compute a skeleton of this image, for example the skeleton by influence zones
but other types of skeletons can be used as well.

MASK:= -1; WSHED:= 0; lab := 1;
for h := hmin to hmax do
begin forall v 2 F with f(v) = h dowsh[v℄ := MASK; (�mask nodes at levelh �)

forall v 2 F with f(v) = h do begin(� extend basins�)iswshed := false;
forall w 2 F with (w;v) 2 E ^ :iswshed do
if wsh[v℄ = MASK thenwsh[v℄ := wsh[w℄ else
if wsh[w℄ > 0 then if wsh[v℄ = WSHEDthenwsh[v℄ := wsh[w℄ else
if wsh[v℄ 6= wsh[w℄ then beginwsh[v℄ := WSHED; iswshed := true end

end;(� process newly discovered minima�)
forall v 2 F with wsh[v℄ = MASK do
beginwsh[v℄ := lab; lab := lab + 1 end

end;

Fig. 3.Watershed algorithm on a graph.

4 Parallelization of the Graph Algorithm

It turns out that the average performance of our algorithm isapproximately the same as
that of the classical algorithm. However, since we clustered all the pixels which are in
the same level component in one single node of the componentsgraph, we can decide
whether a node is a watershed node based on local arguments, i.e. we only have to look
at the lower neighbours of the node in the graph. Because of this fact, in contrast with
the classical algorithm, the graph algorithm can be parallelized.

In the rest of this paper we assume that we have a ring network of N processors.
Each processor has an unique identifier calledmypro
 and can communicate with both
its neighbouring processors. Each processor has its own local memory for storing data,
and a simulated piece of shared memory called the Linda tuplespace [1]. Three atomic
operations can be performed on this tuple space. A tuple(a; b) is stored using the com-
mandout (a; b). A tuple is read and deleted using the commandin (a; b), while a tuple
can be read without deleting it using the commandread (a; b). When the read operation
is performed the runtime system tries to find a tuple which matches the value ofa. If
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Fig. 4. (a) data distribution for four processors. (b) labeling of the distributed image.

such a tuple exists, let us say(a; 
), the value
 is assigned tob, otherwise the operation
is blocked until some matching tuple is stored in the tuple space.1
4.1 Data Distribution and Level Components Labeling

The parallel algorithm consists of the same three stages as the sequential one. The
labeling of the level components is performed by only one processor, since this is a
very fast operation which is hardly worth the burden of parallelization.

After labeling of the components the input image and the labeled image are dis-
tributed. Each processor is assigned an equally sized sliceof consecutive image rows,
and consecutive slices are assigned to neighbouring processors. During distribution of
the slices one processor builds up a table, calledshared. The valueshared[i℄ denotes
the number of processors that share componentLi. After distribution each processor
receives a copy of this table. This table is extensively usedin the second stage of the
algorithm.

4.2 Parallel Watershed Transform of a Graph

After the labeling stage each processor builds a local components graph. Since some
level components are shared these graphs are not disjoint. Each processor performs a
modified version of the flooding algorithm on its own graph. A new minimum which
is shared between two or more processors must be given the same label. This is done
by introducing an arrayowner. If owner[v℄ = i for some minimumv then processorPi assigns a new label to this minimum, and stores this value in the tuple space, such
that other processors sharing this vertex can read this label and assign it to its local
vertexv. A similar method is used for expansion of basins. After flooding of levelh
each processor puts the local colour of every shared vertex in the tuple space. After
that, every processor retrieves these values and compares them. If all these values are
the same label number, the corresponding local copy of the vertex is coloured with this
number, otherwise it is colouredWSHED.1 Full Linda implementations are more general than describedhere, but this subset of the se-

mantics of the Linda tuple space suffices.



LAB := -2; MASK:= -1; WSHED:= 0; if mypro
 = 0 then out (LAB; 1);
for h := hmin to hmax do
begin forall v 2 F with f(v) = h dowsh[v℄ := MASK; (�mask nodes at levelh �)

forall v 2 F with f(v) = h do (� extend basins�)
begin iswshed := false;

forall w 2 F with (w; v) 2 E ^ :iswshed do
if wsh[v℄ = MASK thenwsh[v℄ :=wsh[w℄ else
if wsh[w℄ > 0 then if wsh[v℄ = WSHEDthenwsh[v℄ :=wsh[w℄

else ifwsh[v℄ 6= wsh[w℄ then
beginwsh[v℄ := WSHED; iswshed := true end

end;(� now we have to take care of shared level components�)
forall v 2 F with f(v) = h ^ shared[v℄ > 1 do out (v;wsh[v℄);
forall v 2 F with f(v) = h ^ shared[v℄ > 1 do begini := 0; while i 6= shared[v℄ ^wshed[v℄ 6=WSHED do

while i 6= shared[v℄ ^wshed[v℄ 6=WSHED do
begin i := i+ 1; read (v; tmp);

if wsh[v℄ = MASK thenwsh[v℄ := tmp
else iftmp 6= MASK ^wsh[v℄ 6= tmp thenwsh[v℄ :=WSHED

end
end;
forall v 2 F with wsh[v℄ = MASK do (� process newly discovered minima�)
if owner[v℄ = mypro
 then
begin in (LAB,lab); wsh[v℄ := lab;

for i := 1 to shared[v℄� 1 do out (LAB,lab+ 1)
end else read(v; wsh[v℄)

end;

Fig. 5.Parallel (SPMD) watershed algorithm on a graph.

At the end of the flooding process the local component graphs are transformed back
into image slices. Since the watersheds in these slices can be thick plateaus we could
decide to perform a skeletonization, which we regard as a postprocessing stage.
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