A Proposal for the Implementation of a Parallel
Watershed Algorithm

A. Meijster and J.B.T.M. Roerdink

University of Groningen, Institute for Mathematics and Guriing Science
P.O. Box 800, 9700 AV Groningen, The Netherlands
Email: arnold@cs.rug.nl roe@cs.rug.nl
Tel. +31-50-633931, Fax. +31-50-633800

Abstract. In this paper a parallel implementation of a watershed élyoris
proposed. The algorithm is designed for a ring-architecivith distributed mem-
ory and a piece of shared memory using a single program rfeuttgta (SPMD)
approach. The watershed transform is generally considereé inherently se-
quential. This paper shows that it is possible to exploiafielism by splitting the
computation of the watersheds of an image into three sthgésan be executed
in parallel.

1 Introduction

In the field of image processing and more particularly in gregle Mathematical Mor-
phology [5, 6] the watershed transform [2, 3, 7] is frequen8ed as one of the stages
in a chain of image processing algorithms. Unfortunatély,domputation of the water-
shed transform of a gray scale image is a relatively time wonrsg task and therefore
usually one of the slowest steps in this chain. The use ofallpbwatershed algorithm
can significantly improve the overall performance. In [4]iatdbuted algorithm for
the watershed transform was developed by splitting thetiimpage into equally sized
blocks. Communication overhead turned out to be a majorienob

The watershed algorithm can easily be extended to graphBpas in [7]. This fact
is used to derive an alternative algorithm which is suitdbiearallel implementation.
We first transform the image into a graph in which each verggxesents a connected
component at a certain gray level Then we compute the watershed of this graph and
transform the result back into an image. The computation sKedeton of plateaus is
performed as a post-processing step.

2 The Classical Algorithm

A digital algorithm for computing the watershed transformsndeveloped by Vincent
[7]. In this section we will give a short summary of this alijlom.

A digital gray scale image is a functigh: D — N, whereD C Z? is the domain
of the image (pixel coordinates) and for some& D the valuef(p) denotes the gray
value of this pixel. Gray scale images are looked upon agigmhic reliefs wherg (p)
denotes the altitude of the surface at locatiohet G denote the underlying grid, i.e.



G is a subset o%.2 x Z2. A path P of lengthl between two pixelg andgq is anl + 1-
tuple (po,p1, .., pi—1, ) such thapy = p, pr = g andVi € [0,1) : (pi,piy1) € G.
For a set of pixels\/ the predicateconn (M) holds if and only if for every pair of
pixelsp,q € M there exists a path betwegrandq which only passes through pixels
of M. The setM is called connected ifonn(M) holds. Aconnected componeig a
nonempty maximal connected set of pixelgrégional) minimunof f at altitudeh is a
connected component of pixelswith f(p) = h from which it is impossible to reach a
point of lower altitude without having to climb. Now, supgabat pinholes are pierced
in each minimum of the topographic surface and the surfastoigly immersed into
a lake. Water will fill up the valleys of the surface creatiragsims. At the pixels where
two or more basins would merge we build a “dam”. The set of dalotgined at the end
of this immersion process is called thatershed transforrof the imagef.

Let A be a set, and, b two points inA. Thegeodesic distancé (a, b) within A is
the infimum of the lengths of all paths fromto b in A. Let B C A be partitioned irk
connected component, i.e. B = Ule B;. Thegeodesic influence zooéthe setB;
within A is defined agz4(B;) = {p € A | Vj € [1..k]\{i} : da(p, B;) < da(p, Bj)}.
The setl Z4(B) is defined as the union of the influence zones of the conneoteda-
nents of B, i.elZ4(B) = Ule iza(B;). The complement of the séZ 4 (B) within
A,i.e.SKIZ4(B) = A\IZ4(B), is called theskeleton by influence zoneSA. The
setTy(f) = {p € D | f(p) < h} is called thethreshold sebf f at levelh. Let hy,p,
andh,, . respectively be the minimum and maximum gray level of thétaigmage.
Let Minj, denote the union of all regional minima at the height

Definition Watershed algorithm Define the following recurrence:
Xhpin(f) ={p €D | f(p) = hmin}
Xpt1 =Minpyq UIZTh+1(f)(Xh), h = hminy--->hmaz — 1. Q)

Intuitively, one could interpreX, (f) as the set of pixelg, satisfyingf(p) < h, that lie
in some basin. Thevatershed transforraf the imagef is the complementaXy,,, .. (f)
in D:

Wshed(f) = D\X,,,..(f)- (2)

Most implementations of algorithms that compute the waielsof a digital gray
scale function are translations of the recursive relatignThe fact thatX}, is needed
to computeX,,; expresses the sequential nature of this algorithm.

Computing influence zones is a costly operation, while itdsmecessary to com-
pute them for non-watershed plateaus. Also, the SKIZ is eaessarily connected,
and may also be a ‘thick’ one, meaning that a set of pixels lggdestant from two
connected components may be thicker than one pixel.

3 An Alternative Algorithm

In the algorithm described in the previous section influezarees are computed during
every iteration of the algorithm. There is the problem otg@dais which may result in
thick watersheds. Now, suppose that the imAgiwes not contain plateaus, i¥n, ¢ €



D : (p,q) € G = f(p) # f(q). In this case every ‘plateau’ consists of exactly one
pixel. This observation leads us to an alternative watersigorithm, which consist of
3 stages:

1. Transform the imagg into a directed valued grapfi = (F, E).
2. Compute the watershed of the directed graph.
3. Transform the labeled graph back into a binary image.

3.1 Stagel

The first stage of this algorithm transforms the imggmto a directed valued graph
f* = (F, E), called thecomponents graph of. Here F' denotes the set of vertices of
the graph and? the set of edges. The vertices of this graph are maximal ctedsets,
calledlevel componenjof pixels which have the same gray-values. The set of level
components at levél is defined as

Ly ={C C Tp\Tr-1 | C'is a connected componentBf\ Ty 1 }.

The set of vertices of the grapftt is the collection of level components éfi.e. F =

Zz;‘;jm Ly, A pair of sets(v, w) is an element of2 if and only if 3p € v,q € w :
(p,q) € G A f(p) < f(q). With a little abuse of notation we denote the gray-value of a
level component by f(w), which is the valuef (p) for somep € w.
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Fig. 1. (a) artificially generated image. (b) labeled level setscéenponents graph.

3.2 Stage?2

The second stage of the algorithm computes the watershéxd afitected graph. The
procedure is very similar to the classical algorithm. Theib&lea of the algorithm is
to assign a colour (label) to each minimum node and its agtxtbasin by iteratively
flooding the graph using a breadth first algorithm. If to sorodev there can be as-
signed two or more different labels, i.e. the node can behehérom two different
basins along an increasing path, the node is marked to besashatl node. If the node
can only be reached from nodes which have the same label tteeia@ssigned this
same label, i.e. the node is merged with the correspondisig b& pseudo-code of this
algorithm is given in Fig. 3.



Fig. 2. (a) graph after flooding. (b) binary output image. (c) skatedf output image.

3.3 Stage 3

In the third stage of the algorithm the labeled graph is fiansed back into an image.
The pixels belonging to a watershed node are coloured whiitepixels belonging
to non-watershed nodes are coloured black. After this toamation we end up with
a binary image, in which the watersheds are plateaus. If we tidn watersheds we
need to compute a skeleton of this image, for example thetkeby influence zones
but other types of skeletons can be used as well.

MASK:=-1; WSHED:=0; lab := 1;
for h:= hmin 10 hmax do
begin forall v € F with f(v) = h dowsh[v] := MASK (* mask nodes at leveél x)
forall v € F with f(v) = h do begin(* extend basins)
iswshed = falsg
forall w € F with (w,v) € E A —~iswshed do
if wsh[v] = MASK thenwsh[v] := wsh[w] else
if wsh[w] > 0 then if wsh[v] = WSHEDthen wsh[v] := wsh[w] else
if wsh[v] # wsh[w]then beginwsh[v] := WSHED iswshed := true end
end,
(* process newly discovered minima
forall v € F with wsh[v] = MASK do
begin wsh[v] :=lab; lab :=lab + 1end
end,

Fig. 3. Watershed algorithm on a graph.
4 Parallelization of the Graph Algorithm

It turns out that the average performance of our algorithapoximately the same as
that of the classical algorithm. However, since we clustedéthe pixels which are in
the same level component in one single node of the compogesgé, we can decide
whether a node is a watershed node based on local argumentge ionly have to look
at the lower neighbours of the node in the graph. Becausdofatt, in contrast with
the classical algorithm, the graph algorithm can be pdizdie.

In the rest of this paper we assume that we have a ring netwiolk processors.
Each processor has an unique identifier calleghroc and can communicate with both
its neighbouring processors. Each processor has its owhrmemory for storing data,
and a simulated piece of shared memory called the Linda sgaee [1]. Three atomic
operations can be performed on this tuple space. A tupl® is stored using the com-
mandout (a, b). A tuple is read and deleted using the commam(, b), while a tuple
can be read without deleting it using the commee®t (a, b). When the read operation
is performed the runtime system tries to find a tuple whichcimes the value od. If
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Fig. 4. (a) data distribution for four processors. (b) labelinghd# tistributed image.

such a tuple exists, let us séy, ¢), the valuec is assigned té, otherwise the operation
is blocked until some matching tuple is stored in the tupkcsp

4.1 Data Distribution and Level Components Labeling

The parallel algorithm consists of the same three stageheasdaquential one. The
labeling of the level components is performed by only onecessor, since this is a
very fast operation which is hardly worth the burden of pafiation.

After labeling of the components the input image and thelt&abenage are dis-
tributed. Each processor is assigned an equally sizeddflicensecutive image rows,
and consecutive slices are assigned to neighbouring paceDuring distribution of
the slices one processor builds up a table, calletred. The valueshared[i] denotes
the number of processors that share compoiignifter distribution each processor
receives a copy of this table. This table is extensively usdtie second stage of the
algorithm.

4.2 Parallel Watershed Transform of a Graph

After the labeling stage each processor builds a local corpis graph. Since some
level components are shared these graphs are not disj@iclh irocessor performs a
modified version of the flooding algorithm on its own graph. éwnminimum which
is shared between two or more processors must be given theelahel. This is done
by introducing an arraywner. If owner[v] = i for some minimunm then processor
P; assigns a new label to this minimum, and stores this valukenuple space, such
that other processors sharing this vertex can read this$ #atgkbassign it to its local
vertexv. A similar method is used for expansion of basins. After fiagdf level h
each processor puts the local colour of every shared vamtéixei tuple space. After
that, every processor retrieves these values and comees If all these values are
the same label number, the corresponding local copy of thexis coloured with this
number, otherwise it is colourad SHED

L Full Linda implementations are more general than descriteed, but this subset of the se-
mantics of the Linda tuple space suffices.



LAB:=-2; MASK:= -1; WSHED:= 0; if myproc = O then out (LAB, 1);
for h .= hpin t0 hynae dO
begin forall v € F with f(v) = h dowsh[v] :=MASK (* mask nodes at levéd x)
forall v € F with f(v) = hdo (% extend basins)
beginiswshed :=false
forall w € F with (w,v) € E A ~iswshed do
if wsh[v] = MASK then wsh[v] := wsh[w)] else
if wsh[w] > 0thenif wsh[v] = WSHEDthen wsh[v] := wsh[w]
else ifwsh[v] # wsh[w] then
begin wsh[v] :== WSHED iswshed := true end
end;
(* now we have to take care of shared level componehts
forall v € F with f(v) = h A shared[v] > 1 do out (v, wsh[v]);
forall v € F with f(v) = h A shared[v] > 1 do begin
¢ :=0; while i # shared[v] A wshed[v] # WSHED do
while ¢ # shared[v] A wshed[v] # WSHED do
begini =i + 1; read (v, tmp);
if wsh[v] = M ASK then wsh[v] := tmp
elseiftmp # MASK A wsh[v] # tmp then wsh[v] := WSHED

end
end,
forall v € F with wsh[v] = MASK do (x process newly discovered minima
if owner[v] = myproc then

begin in (LABlab); wsh[v] := lab;
for i := 1to shared[v] — 1 do out (LABlab + 1)
end else reau, wsh[v])
end;

Fig. 5. Parallel (SPMD) watershed algorithm on a graph.

At the end of the flooding process the local component graphsansformed back
into image slices. Since the watersheds in these slicese#nidk plateaus we could
decide to perform a skeletonization, which we regard as gppmsessing stage.
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