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We examine the range of validity of previously developed lattice bond enumeration methods for 
the calculation of asymptotic properties of random walks on inhomogeneous periodic lattices. 

1. Introduction 

Some time ago, Shuler’) developed an Ansatz, hereafter referred to as the 
lattice bond enumeration method (LBE), for the calculation of asymptotic 
properties of nearest-neighbor random walks on so-called sparsely periodic 

lattices. In the case of a two-dimensional square lattice, such a sparsely periodic 
lattice is obtained by periodically removing a number of vertical columns. An 
example is given in fig. 1. On this lattice, motion in the y-direction is only 
possible at a subset of points, the so-called intersection sites (we assume that 
only steps to nearest neighbors are taken). The jump probabilities are f in each 
possible direction at an intersection site, and 5 at a non-intersection site. More 
generally, suppose that the lattice has periodicity k, i.e. there is one vertical 
column for every kth site along the horizontal direction. If (n,(n)) and (n,(n)) 
are the average number of steps in the x- and y-direction after a total number 
of n steps, then Shuler’s Ansatz is 

(1.1) 

Here B, and B,, are the number of bonds in the x- and y-direction within a unit 
cell of the lattice, or rather within an irreducible lattice fragment (ILF), which is 
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Fig. 1. (a) Sparsely periodic lattice with horizontal periodicity /c, = 2 and vertical periodicity 

k, = 1. The arrows indicate the allowed steps of the walker. The corresponding jump probabilities 

are indicated. (b) Irreducible lattice fragment belonging to fig. la. 

the smallest lattice fragment from which the lattice can be constructed by 

repetition (see fig. lb). Since the walk is locally unbiased*, the variances of the 

displacement are given by (we assume the lattice constants are unity) 

(x’(4) = h(n)> = n -& (n + rn> (1.2a) 

and 

(1.2b) 

where we used that (n,(n)) + (n,,(n)) = PZ. These results have been confirmed, 

among others, by the matrix method for calculating the moments of multistate 

random walks developed recently2). A comparison between a periodic and a 

random distribution of vertical columns was subsequently made in ref. 3, where it 

was shown that if a column is present with probability p = k-‘, and absent with 

probability 4 = 1 -p, then the result for the mean square displacements is 

identical to (1.2) with probability 1. In other words, the spatial arrangement of the 

columns is irrelevant; only the average density k-’ is important. For a dis- 

cussion of another Ansatz made by Shuler’) to calculate the probability of 

return to the origin and the expected number of distinct sites visited, see refs. 2 

and 3. 

* A locally unbiased walk is one in which the single step averages of the displacement from any 
site on the lattice in every space direction are zero. 
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Fig. 2. (a) Two-dimensional anisotropic lattice. x scattering sites. The stepping probabilities are as 
indicated. (b) Irreducible lattice fragment belonging to fig. 2a. 

A slightly modified lattice bond enumeration method (MLBE) was 
developed by Shuler and Mohanty4) for random walks on lattices with aniso- 
tropic scatterers. An example is given in fig. 2. They obtained the ratio of the 
mean square displacements in the x- and y-direction as 

(X2(d) & (n ,w) 

-- 

(Y2&B, ’ (1.3) 

where &(B,) is obtained by counting all bonds in the ILF which are parallel to 
the x(y-)-axis, and multiplying each bond by the corresponding stepping 
probability. For the example of fig. 2, this method yields (the ILF consists of 4 
sites, labeled l-4 in fig. 2b) 

(x’(n)> al2 + 314 

o)= b/2+3/4 (n-+w)9 (1.4) 

a result which is confirmed in section 3 below. In ref. 3 it was found that for these 
types of lattices the spatial arrangement of the scatterers is relevant, i.e. the 

ratio (x2(n)>l( y’(n)> can be different for different arrangements with the same 
number of scatterers in the corresponding ILF’s. 

It is the purpose of this paper to clarify why the lattice bond enumeration 
methods give the correct results in the cases discussed above, and to find 
necessary and/or sufficient conditions for their validity. We will show that the 
range of validity of the LBE and MLBE is quite limited. This implies no restric- 
tion whatsoever on the applicability of the general formalism developed in ref. 
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2, since it is precisely this method by which the results of the present paper are 
derived. 

For later use we briefly summarize the matrix method of ref. 2 for the mean 
square displacements of locally unbiased walks. The position of the random 
walker on an inhomogeneous periodic lattice, i.e. a lattice consisting of a 
periodically repeated unit cell with internal sites, (the lattices of figs. 1 and 2 
are special cases) is labeled by a vector 1, indicating the unit cell which the 
walker occupies, and an index (Y, which denotes the site (or “internal state”) 
within the unit cell which the walker occupies. All Greek indices run from 1 to 
m, where m is the number of sites in the unit cell. Fundamental in our method 
is the stochastic matrix T (i.e. C, Tap = I) with elements 

where T,,(I - I’) is the transition probability of unit cell 1’ and internal state j3 
to unit cell 1 and internal state (Y. We always assume that the walk is irreducible, 
i.e. each site (f, a) can be reached from every other site (I’, p) after a sufhcient 
number of steps. The basic quantity to be determined is the right eigenvector z 
of T, corresponding to the maximal eigenvalue A, = 1. Let r(n) be the dis- 
placement of the walker after II steps, with components r;(n) = r(n)* e,, where 
{e,} is a complete set of unit vectors spanning the Euclidean space Rd. Then the 
following result for the covariances of the displacement was derived in ref. 2, 
assuming that the walk is locally unbiased: 

(r$z)q(n)) ^I 2nDij (n + m), 0.6) 

where the brackets (0 * .) denote the average over all realizations of the random 
walk and where the diffusion coefficients Djj are given by 

(1.7) 

Here the single-step covariance from state p is defined as 

with pa(r) the single-step transition probability from the internal state /3. 
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It turns out that for some walks which are not locally unbiased the Ansatz 
(1.1) is still valid, although no corresponding statement for the variances holds. 
In order to discuss this we need an asymptotic result for the aueruge number of 
steps in the various directions {e,], not merely the corresponding variances of 
the displacement. This is done in appendix A. In order to state the result, let us 
label the collection of transition probabilities (T,(I)} in the ILF for different (Y 
and 1 and a given value of /3 by a parameter vs. To each value of va = 1,2, . . . 

corresponds a certain transition from a site (0, p) to a site [Z(v,), CX(~,)]. For 
example, in the lattice of fig. 1 there are four different transitions from an 
intersection site 1 and two from a non-intersection site 2, so v1 runs from 1 to 4 
and v, runs from 1 to 2. The probability of the transition labeled by va is 
indicated by p,, and the corresponding displacement by r(@.* Then the 

average number (n,(n)> of steps of type vs after n steps has the large-n behavior 
(see appendix A) 

(n,(4) = P,7Qn (n +@J) 7 (1.9) 

where 7~~ is the asymptotic occupation probability of the site p from which the 
transition of type va occurs. If we know (n,(n)) for all {Y,} then the average 
number of steps in the direction ei can be obtained by summing over all those 
values of {v,} which correspond to transitions in the direction e,. 

In the following we first discuss the LBE in section 2 and then in section 3 
the MLBE. 

2. Validity of the LBE 

The result (1.2) can be obtained from the more general formula (3.4) of ref. 3 
by putting pI=ql=i; q2=q3=--*= qk = 0. From that formula it is also 
evident that the Ansatz (1.1) by which the result is found by bond counting no 
longer applies for general values of {pi, qi}. In the following we derive some 
sufficient conditions for the validity of the LBE. 

We assume the following conditions, besides irreducibility of the multistate 
random walk: 

i) all transitions are parallel to one of the axes {e,} of a d-dimensional 
lattice; a transition with zero displacement (i.e. a pause) is also allowed; 

ii) for any transition between different sites also the reverse transition 
occurs (not necessarily with the same probability); 

iii) only transitions to nearest neighbors are allowed; 

iv) all lattice constants are unity. 

*SOP”@ =p~[r(“~$ where p@(r) is the same as in eq. (1.8). 



258 J.B.T.M. ROERDLNK 

Assumptions (i)-(iii) are necessary in order that the LBE has unambiguous 

meaning, whereas (iv) is assumed for convenience. 

The ratio of the average numbers of steps in two directions e, and ei after n 

steps is given by 

(2.1) 

where (1.9) has been used. The summations are over all values of vl, z+, . . . , vm, 

i.e. over all transitions from the sites in the ILF. However, the symbol ZCi) 

means that only transitions in the direction e, should be taken into account 

[and similarly for X(j)]. 

If the following condition is met: 

P,~-~==c (p= 1,2 ,..., m), (2.2) 

where c is a constant, then clearly 

(2.3) 

Here Bi and Bj are the number of bonds in the ILF parallel to e, and e,, 
respectively. Hence under the condition (2.2) the Ansatz (1.1) holds. In the case 

of the sparsely periodic lattice, the relation (2.2) is indeed satisfied [see eq. 

(2.2.33) of ref. 2 for the equilibrium probabilities {rP} for this case]. 

Before discussing a somewhat more general situation in which (2.2) holds, let 

us briefly discuss the implications of (2.2) for the variances of the displacement 

in the directions e, and et If the walk is locally unbiased, then 

(r2(n)) ZJ rP12(n,(nN += 
Wn)) c [+‘]*Qqn)) ’ 

h#J 

(2.4) 

where rCYfl) is the displacement during a transition of type ‘_‘R. Under the 

assumptions (i)-(iv) above, ri”fl) = 1 if a transition is parallel to the direction e, 
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and zero otherwise. Hence, if (2.3) holds, 

0) _ (%tn)) = Bi 

(r;(n)) (nj(n)) Bj (n -+@‘) (2.5) 

So if (2.2) is satisfied, the ratio of the variances can be obtained by the LBE as 

well, provided the walk is locally unbiased. 

Remarks 
i) The LBE will remain valid if (2.2) is only satisfied for those transitions us 

for which r(Q) is not identically zero [if r(“a) is zero, this corresponds to a 
“pause” of the walker]. Although the numerators and denominators in (2.5) 
will be affected, the corresponding ratios are not. 

ii) Although (2.2) looks like a detailed balance relation between the tran- 
sitions among the m internal states, it is in fact stronger, for detailed balance 
affirms (2.2) only for those transitions which lead from an internal state /3 to a 
different internal state (Y. For example, in the lattice of fig. 2 of ref. 3, detailed 
balance was satisfied, but (2.2) is not true in that case and neither is (2.3). 

iii) One should distinguish between the LBE as applied to the ratio of 
average numbers of steps, as in (2.3), and the LBE as applied to the ratio of 
variances, as in (2.5). For example in the case of the modified sparsely periodic 
lattice discussed in subsection 3.3 of ref. 3, the LBE is correct as far as the 
numbers of steps is concerned [this follows from the lemma below] but gives 

the wrong result for the ratio of the variances. The reason is that this walk is 
not locally unbiased in the vertical direction. In fact, the LBE predicts the same 

result for all arrangements of bonds with the same density of bonds in the 
various space directions. In the case of the modified sparsely periodic lattice 
the vertical variance depends upon the arrangement, however3). 

The next question which comes up is under what conditions eq. (2.2) is 
satisfied. One of the cases in which this occurs is when the walker at each site i 

selects with equal probability n;’ one of the open pathways leading away from 
the site i presently occupied, where n, is the total number of open pathways 
from site i [this is the “myopic ant” algorithm of ref. 51. The proof is based on 
the following lemma, which is proved in appendix B: 

Lemma. Consider an irreducible (not necessarily nearest neighbor) random 
walk on an inhomogeneous periodic lattice. Assume that for every transition 
i + j between two sites i and j also the reverse transition j + i is allowed. Let 
the probability of pausing at a site i = (I’, /3) be ts and let the probability of any 

transition i + j with i # j be equal to (1 - ts), multiplied by the inverse of the 
total number ns of transitions originating from site i = (l’, /3) and ending in a 

different site j = (I, (Y). 
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Then the eigenvector rr of the matrix T corresponding to this multistate 
random walk has components 

%-~=ccn,(l-t*)-’ (cu=1,2 ,...) m), (2.6) 

where 

c= &$(l-lb)-’ 1 I 
-1 

/3=1 

Corollary. Since p, = n;l(l - ts) for all transitions which do not correspond to 
a pause of the walker, eq. (2.2) is satisfied for all ZJ~ with r(“~) # 0. This implies 
the validity of eq. (2.3) [see remark (i) above]. 

Another situation in which (2.2) is satisfied at least for I-(“~) f 0 is when both 
p, is constant for all {v,} with r (“fi) # 0 and 7rB is constant for all p. [The latter 
requires that rP = m-l, i.e. that the matrix T is symmetric*.] This is the case, 
for example, for the “blind ant” algorithm of ref. 5, where the walker chooses 
with a constant probability n-’ one of the ni open pathways leading away from 
a site i and pauses at site i with probability (1 - n,n-‘), where ni s n. This leads 
to the same ratio (2.3) as the “myopic ant” algorithm. 

As an application, consider a sparsely periodic 2-D lattice with a unit cell of 
m x m sites, where a number of both columns and rows is deleted, so that m, 
columns and mz rows remain. Then four types of sites occur, type 1 with two 
horizontal and two vertical bonds, type 2 with two horizontal bonds and no 
vertical bonds, and type 3 with two vertical and no horizontal bonds. Let us use 
the “myopic ant” algorithm, i.e. the jump probability along each of the bonds 
is f for a site of type 1 and i for the other types. Then the lemma is applicable 
and the walk is locally unbiased, so from (2.5) 

o,_Bx mom2 m2 -=_ 

D, B,,-m.m, m, 

and since for a locally unbiased nearest neighbor walk without pauses and steps 
of unit length D, + D, = i, we also have 

1 m2 D,=--.-.-.- 
1 ml 

2m,+m,’ D,=---- 2m,+m,’ 

* A symmetric stochastic matrix is also called “doubly stochastic” since both column and row 
sums are unity. 
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The formulae (1.2a) and (1.2b) are recovered by putting m2 = k, m, = 1. Again, 
the arrangement of the rows and columns is irrelevant. This implies that the 
case of random arrangements is also very simple. For, if the probability of a 
column or row to be present is p and q, respectively, independent of the other 
rows or columns, then by the same method as in section 3 of ref. 3 we find that, 
with probability one, 

1 9 D,=-- 1 P 

2p+q' 
D,=-- 

2p+q' 

3. Validity of the MLBE 

To investigate the range of validiy of formula (1.3) for lattices with anisotro- 
pit scatterers, we first write down the general expression for the ratio DJD, of 
the diffusion coefficients, which is given by (1.7) as 

(3.1) 

This formula would certainly give the same result as (1.3) if the occupation 
probabilities {7rP} of all the sites were equal. This would be equivalent to saying 
that the matrix T is doubly stochastic. However, the matrix T for the case of fig. 

2 is given by 

(3.2a) 

where a + b = 1. This matrix is not doubly stochastic (unless a = i), and the 
occupation probabilities are not equal at all, but (the labeling of states is as in 

fig. 2) 

7c = ColG, :(a + f), i, a(b + i)} . (3.2b) 

Hence, although a doubly stochastic matrix is a sufficient condition for the 
validity of the MLBE, it is certainly not necessary. 
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To see what makes (1.3) true in the case of fig. 2, we note that we can write 

c (x2)p&‘3 = (x2)*T* + 2’ (x2)p8 ( 

8  

8  

(3.3) 

where the asterisk refers to the scattering site, and the primed summation runs 
only over regular sites. Since for all the regular sites (x~)~ = f, we can write 

(3.3) as 

c (X2)p-@ = (x2)*5-* +; 2’ m8 = (x*)*7r* + ;<1- 7r*>. 
B 8 

Doing the same for the denominator of (3.1) we find 

0, (xZ)*m* + f(l- 7r*) = a + @-* - 1) 

D,-(y2)*7r*+f(l-~*) 6+&*-l) 

which is identical to the result (1.4) of the MLBE if l/z-* = 4. This is indeed the 

case, as (3.2b) shows. 
The MLBE is also valid for a two-dimensional lattice with k x k sites per 

cell, one of which is a scatterer (fig. 3). In this case r* = l/k2 as the following 
argument shows’). The occupation probability rr* of the scatterer can be 
calculated as the limit (the scatterer is labeled as state 1) 

ri- * = lim p@“‘(l 1 1) , (3.4) n-rm 

where ~““‘(1 1 1) is the probability that the walker returned to the starting site 
while executing a random walk on the ILF of k2 sites with periodic boundary 
conditions (return after an odd number of steps is impossible). We took the 
initial and final state to be identical since the limit (3.4) is independent of the 
initial state. Now consider the set S,, of all paths of 2n steps which lead the 
walker back to his starting site for the first time. We can split up the set S,, in a 
set Sp) consisting of all paths which start in the x-direction, and a set St) of paths 
starting in the y-direction. For every path w in Sf) there exists a path in S(,y) 
which is obtained by reflecting the path w along the diagonal of the unit cell, 
and vice versa. Hence,the number of elements of the set Sl;” equals that of Sy’. 
Let us consider first the case that a = b = 5. The probability of returning to the 
origin after 2n steps for the first time is 

f”“‘(l 1 1) = ($2nISml , (3.5) 
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Fig. 3. ILF for a 2-D lattice with a square unit cell and one scatterer per ILF. 

where ]S,,j is the number of elements in S,. Now assume a f b. The probability 
f@“‘(l( 1) can be written as a sum of paths which start in the x- and y-direction, 
respectively. Hence, 

= ; Is”l(;+ g,(y-’ = (pq ) (3.6) 

where we made use of the facts that ISk’j = IS:‘\ = klS,,j, and a + b = 1. Hence, 
the result is the same as in the regular case (note that S, does not depend on 
a). The same argument can be used for all walks which return to the origin, but 
not necessarily for the first time. So we see that p”“‘(lI 1) is the same as in the 
regular case, hence also the limit T*, and therefore 

1 r*=- 
k 2’ (3.7) 
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since in the regular case all k* sites are equivalent. Eq. (3.7) is sufficient to 
guarantee the validity of the MLBE in this case, as used by Shuler and 
Mohanty4). The ratio of the corresponding diffusion coefficients is 

o,_W+;(k’-1)+ 24 
o,- u/2+$(k*- 1) (3.8) 

where 4 = l/k2 is the concentration of scatterers [eq. (8) of ref. 51. 
The argument leading to (3.7) can easily be extended to a d-dimensional 

lattice where the ILF is a hypercube of kd sites, which contains one or more 
scattering sites (of the same type), all lying on one of the main diagonals. An 
example is the lattice of fig. 4a 3). But in the other cases 4b,c the MLBE is 
invalid since the occupation probability n* is affected by the anisotropy (see 
ref. 3, section 4). 

There is a difference between the lattices of fig. 4a and figs. 4b,c in the sense 
that in the latter case there occur adjacent scatterers, i.e. there are direct 
scatterer-scatterer transitions. So one might wonder whether this is the reason 
for the breakdown of the MLBE. The answer turns out to be negative, as the 
example of fig. 5 shows. There are no adjacent scatterers on the lattice 
generated by the ILF of fig. 5. To test if the MLBE is valid, we only have to 
determine whether the occupation probability 7~* of site 1 is equal to i. The 
matrix T for this case is 

(at (b) (c) 

2,I J 2r 1 2 
.2 

x X I tk 
1 2 1 1 1 2 

Fig. 4. ILF’s for a lattice with anisotropic scatterers, all containing 2 scatterers per ILF. 
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4 

tkk 

6 

1 2 3 

Fig. 5. Two-dimensional ILF with six sites and one scatterer. 

and the vector rr is given by 

n = 7r* col{l, c, c, d, e, e}, 

where 

and 

,rr* = [6 + ;(l - 2b)]-’ . (3.9) 

So 7r* is not equal to i (except in the completely regular case a = b = i) and the 
MLBE is not valid in this case. Moreover, there does exist an arrangement in 
an ILF of 6 X 6 sites with 6 scatterers on the diagonal for which MLBE is valid 
and therefore has different diffusion coefficients from the lattice of fig. 5, 
although the density is the same and although no adjacent scatterers occur. 
Hence, the conclusions drawn above remain valid, even if the arrangements 
with adjacent scatterers are excluded. 

We conclude therefore that the MLBE is only valid in very special cases, 
which are all readily derived from the general results of ref. 2. Therefore, it is 
on the latter method that we have based our investigations of lattices with 
random arrangements of scatterers3). 
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Appendix A 

We prove here the result (1.9). Let 

if the ith step of the walker is of type va, 

The number n,(n) of steps of type va after a total of n steps is 

so the average is 

(n,(n)> = i: (4 Ji)> . 
i=l 

(A.11 

Let (d ,$i) ) y) be the conditional average of d ,,(i), given that the ith transition 

occurs from internal state y. Then we have 

independent of i. Here p, is the single-step probability of a transition of type 
vs. So, if p,(i) is the probability that the walker is at a site with internal state y 

just before the ith step, then 

(n,(n)> = i C (4(i) I Y)P,(O = i: P,p,O) . 
i=l y i=l 

(A.3) 

Now, suppose we let the initial distribution of the internal states be the 
equilibrium distribution, i.e. p@(O) = rPa, where {mP} are the components of the 
eigenvector 7r of T, as defined in section 1. Then p,(i) = r6, so from (A.3) 

If the initial distribution p,(O) is arbitrary, then (A.4) is true asymptotically as 
n + 03 as long as the embedded Markov chain on the set of internal states is 
irreducible, i.e. the matrix T in eq. (1.6) is irreducible [the argument is the same 
as that used in ref. 21. 
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Appendix B 

In this appendix we give a proof of the lemma in section 2. Let there be m 
sites in a unit cell (or ILF, to be more precise). First we construct the transition 
matrix elements T,,. The diagonal elements T,, consist of two contributions. 
The first one is the probability t, of a transition (l, a)+ (l, cy), i.e. a pause; 
secondly, there are a number, say n,,, of transitions (f, a)+ (I’, (Y) where I 

and 1’ represent different unit cells, each having a probability n;‘(l - r,) as 
stated in the conditions of the lemma. Thus 

(B.la) 

The off-diagonal elements T,, consist of all the transitions, say nap in number, 
from a site (I, p) to (1’, (Y) with (Y Z p, but where 1 and 1’ may be identical. 
Each of these transitions also has a probability n,‘(l - t8). Thus 

T4=%(1-t,) (a#@. 
% 

(B.lb) 

Consistency requires that the total number ns of transitions with nonzero 
displacement satisfies the equality 

ns = C nap . (B.2) 
a 

The assertion is now that the occupation probabilities {7rB} are given by (2.6). 
That is, we have to check that the vector rr is a right eigenvector of the matrix 
T with matrix elements (B.l) corresponding to the eigenvalue A, = 1. The proof 
is straightforward: 

= c 2 n+ + tana (1 - f,)-’ I B 1 

= 4% + Ln,(l - f,)-‘> = cn,(l - t,)-l = Za . (B.3) 
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Here we have used that nns = nsn in agreement with the requirement that for 
every transition between different sites also the reverse transition is allowed. 
The constant in (2.6) is fixed by normalization of the occupation probabilities 
{rP}. This finishes the proof. 
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