
Real-Time Computer Animation of Bicyclists and
Pedestrians in a Driving Simulator

Jos B.T.M. Roerdink, Mattijs J.B. van Delden�, Andrea J.S. Hin�

Department of Mathematics and Computing Science, University of Groningen,

P.O. Box 800, 9700 AV Groningen, The Netherlands

Tel. +31-50-3633931; Fax +31-50-3633800;

Email �����������	
; URL: �����������������	
�����

and
Peter C. van Wolffelaar

Traffic Research Centre, University of Groningen,

P.O. Box 69, 9750 AB Haren, The Netherlands

Tel. +31-50-3636764; Fax +31-50-363784; Email ��
�����������	

Abstract

The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands
has developed a driving simulator with ‘intelligent’ computer-controlled traffic, consisting
at the moment only of saloon cars. The range of possible applications would be greatly
enhanced if other traffic participants could be simulated too. This paper presents a study of
the possibilities of simulating bicyclists and pedestrians in general, and in the TRC driving
simulator in particular. The new traffic participants must be controlled interactively, and
move and behave in a natural way. A prototype system has been designed and implemented.
The system simulates a bicyclist that is controlled by the user through a graphical interface.
Integration of the prototype system in the TRC driving simulator is the subject of future
research.

Keywords: Driving simulator, computer animation, bicyclists and pedestrians, motion
generation, graphical modelling

1 Introduction

The Traffic Research Centre of the University of Groningen carries out research on the behav-
ioral and social aspects of traffic and transportation. For this purpose a computer controlled

�Present address: Virtual Environments, Systems, and Consultancy, Duinrand 2, 9483 TP Zeegse, The Nether-
lands

�Present address: TNO Human Factors Research Institute, P.O. Box 23, 3769 ZG Soesterberg, The Netherlands

1

driving simulator was developed, which provides a safe and programmable environment for
road user studies (van Wolffelaar & van Winsum 1995). The simulator is made up of a car
installed on a fixed platform with a curved wide-angle projection screen two meters in front
of the car to provide a 165 degrees horizontal and 40 degrees vertical out-of-the-window view
on the computer generated traffic scenery. All controls of the car have been modified and are
linked to a computer system. The system reads input from the simulator driver, and outputs
forces to the steering axle and the accelerator pedal. The screen image is generated by a Silicon
Graphics Sky-Writer 340 VGXT graphical computer with two hardware graphic pipelines, and
is projected on the curved screen by three large video projectors. Rear view mirrors are sim-
ulated by small windows on the main projection screen at approximately the correct positions
with respect to the driver. A snapshot of the middle projection screen is shown in Fig. 1.

Figure 1: Screen image of the middle projector of the TRC driving simulator.

Perhaps the most innovative feature of the TRC simulator is the dynamic traffic environ-
ment. Currently this consists of ‘intelligent’ cars that interact with each other and with the
simulator user. A road network can be specified through a programming language or a graph-
ical user interface. The dynamic environment (traffic, traffic lights, animated signs, etc.) can
be controlled by means of a scenario, which is a script file that accurately creates desired traffic
situations for experiments. In spite of the simplicity of the computer generated environment
(see Fig. 1), traffic participation is generally experienced by the simulator driver to be very re-
alistic due to the dynamics of the traffic environment. Currently, an important shortcoming lies
in the fact that only saloon cars are simulated. An extension is desirable to trucks, busses, vans,
motorcyclists, pedestrians, moped riders, and bicyclists that make up an extremely varied and
complex traffic environment. Pedestrians, moped riders and bicyclists are substantially different
from the currently implemented cars: they have several parts with internal motion, such as arms
and legs.

In this paper, we report on a prototype system for real-time graphical visualization/animation
of bicyclists and/or pedestrians, which will be collectively referred to as ViPs, or ‘Virtual inter-

2

active Persons’. For a more extensive discussion of background and technical details the reader
is referred to van Delden (1995).

The organization of this paper is as follows. In Section 2 general requirements are formu-
lated and discussed concerning speed, interactivity and naturalness of motion of slow traffic
participants in a driving simulator. Section 3 contains the design of the system meeting these
requirements. The implementation of a prototype bicyclist real-time animation system is de-
scribed in Section 4. Finally we give in Section 5 a summary of this work and present conclu-
sions and possibilities for future research.

2 Requirements

2.1 Real-time simulation

The definition of real time given by Hodgins, Wooten, Brogan & O’Brien (1995) states that ‘in a
real-time system, simulation time is less than wall clock time’. This means that all calculations
and actions for a new image that represents the situation one second in the future, must be
performed within that second.

The fact that it must be possible to simulate about 10 to 20 pedestrians and bicyclists in real
time puts a severe constraint on possible solutions with respect to execution time.

2.2 Interactive simulation

Real time as defined above is not sufficient for visual simulation applications such as a driving
simulator. In addition, the visual simulation has to be interactive, meaning that any actions of
the simulator user should be immediately reflected in changes of the state of the environment.
Actions such as steering, pressing the accelerator pedal and braking, change the state of the
computer generated world in such a short interval that the driver gets the impression that the
steering wheel is directly controlling the heading of the front wheels, and pedal motion is im-
mediately affecting the speed. The system response delay for a typical simulator session varies
between 50 and 90 milliseconds. This means that there can be a delay of about a tenth of a
second between turning the wheel and seeing the result on the screen. Generally, delays up to
100 ms are considered acceptable in driving and flight simulators. The addition of bicyclists
and pedestrians in the simulation must take as little system time as possible, in order to meet
the interactivity requirement.

2.3 Display frames and simulation frames

The TRC driving simulator uses two types of frames: drawing frames and simulation frames
that run asynchronous and in parallel. The graphical drawing process generates frames as fast as
possible in an endless loop taking actual world position data of the simulated vehicles for each
new frame from the simulation process. By extrapolating these positions in time vehicle motions
appear very smooth on the screens. For pedestrians and bicyclists, however, extrapolating world
positions in time will not be feasible as they are linked to gestural movements. This implies that
all calculations necessary for displaying the next frame must be completed before drawing of

3

that frame starts. An upper bound on the number of simulation frames per second (fps) is
given by the display refresh rate, which must be around 60 fps for flicker free display. The
actual simulation frame rate of the TRC driving simulator depends on the complexity of the
environment, and varies between 10 and 60 fps with an average of 20 to 30 fps.

2.4 Natural motion

When dealing with pedestrians and bicyclists, humans must be modeled while walking, running
and cycling. Accurate human models take up thousands of polygons and are not feasible for
interactive simulation. The human models to be used in the simulator are allowed to look
‘blocky’ in order to meet the real-time requirements. However, realistic or natural motion will
be crucial for making the models appear human. A similar observation holds for the cars in
the simulation, which look remarkably simple (see Fig. 1). Apparently, in a dynamic simulator
natural movement is more important than accurate shape.

2.5 Range of motions

A desirable set of possible movements for each traffic participant is initially chosen as follows:

pedestrian

� stand still

� start walking

� walk with variable speed - straight ahead - take turns of variable radius

� stop walking

bicyclist

� stand still

� get on bike

� cycle with variable speed - straight ahead - take turns of variable radius

� keep legs still

� get off bike

In addition to natural motion, every ViP needs to have its personal style of walking and
cycling, called ‘personified motion’.

4

HL Command

Old ViP parameters
Motion Specification

Motion Generation

Model Mapping

ViP Database

Generation of LL commands

based on current HL command
and state of the ViP

Generation of new posture
of the skeleton based on
LL command and current
motion

Mapping of the graphical

model on the skeleton

Graphical model of

ViP in new pose

Graphical model

New state skeleton

Personification

New ViP parameters

Old ViP parameters

Parameters for each ViP:
- Skeleton
- Graphical model
- Personification
- Current state
-

New ViP parameters

ViP data

Figure 2: Conceptual view of the system, showing logical modules with data flow indicated by arrows.

2.6 Control and interface

The ‘intelligent’ vehicles in the TRC driving simulator are governed by a model which controls
them on the level of behaviour in traffic. The cars do not possess skeletal or intrinsic move-
ments, but slow traffic simulation has to take place at several motion levels. The first level of
motion (FLM) consists of the primary motions such as taking a step, taking a turn, or getting
off a bike. The behaviour of traffic participants in the virtual world forms the second level of
motion (SLM). This level is actually a motion planning system that requires information from
the environment database.

This paper only addresses the problem of creating the first level of motion. The existing sec-
ond level of motion in the TRC driving simulator will be used or adapted to handle slow traffic
participants as well. Only the interface between the first and second level, describing how the

5

simulated persons will be controlled, has been implemented. This will make it possible to add
an intelligence module to the system that communicates with the FLM through a well defined
interface. Instead of using a SLM module, it is also possible to receive input from a script file
processing module, through scenarios, or by direct control via an input device. An important
step is therefore the specification of a complete and easy-to-use interface to control the ViPs.
The degree of control specifies the extent to which ViPs will be able to obey commands.

3 System design

The task of controlling and moving Virtual interactive Persons (ViPs) can be separated into
motion specification and motion generation, as is common usage in most of the systems found
in the literature (Morawetz & Calvert 1990, Badler, Phillips & Webber 1993, Gerard 1989).
Motion generation can be subdivided into internal and external motion generation. A conceptual
overview of the system’s subdivision into a number of logical parts or modules is given in
Fig. 2. The motion specification (MS) and motion generation (MG) modules form the core of
the system. Other modules are the ViP database and the graphical mapping of the model.

3.1 Skeleton model

Neck (3 DOF)

Elbow (1 DOF)

Shoulder (3 DOF)

Hip (3 DOF)

Knee (1 DOF)

Ankle (2 DOF)

Shoulder (3 DOF)

Elbow (1 DOF)

Hip (3 DOF)

Knee (1 DOF)

Ankle (2 DOF)

Torso (3 DOF)

Figure 3: Example of a simplified human
skeleton used for a ViP.

A skeleton-like structure can be used both for motion
definition as well as the construction of the graphical
model. Motions will be defined on the skeleton, and
therefore it must be possible to transform postures of
the skeleton to postures of the graphical model (Badler
et al. 1993, Badler, Barsky & Zeltzer 1991, Magnenat-
Thalmann & Thalmann 1985, Magnenat-Thalmann &
Thalmann 1990). A skeleton consists of inflexible seg-
ments (the bones) and flexible joints. General joints
can be constructed as translational joints, rotational
joints, or a combination of both. An internal degree
of freedom (DOF) exists for each independent rota-
tion and translation. In Fig. 3 an example skeleton is
shown, with the number of rotational degrees of free-
dom of each joint indicated. The human skeleton as a
whole has six external degrees of freedom: three trans-
lational DOFs and three rotational DOFs of the centre
of mass. In the example, the total number of DOFs
is 32, which is less than for many of the skeletons
mentioned in the literature (Badler et al. 1993, Badler
et al. 1991, Magnenat-Thalmann & Thalmann 1990).
The problem of rotation over angles that are impossible for joints of real persons can be solved
by constraining each DOF. By specifying a minimum and maximum for each angle, the motion
can be limited. A natural way to represent the skeleton is by a directed (acyclic) graph struc-
ture, for example a tree. Each segment is defined in its own coordinate system (CS) defined

6

relative to the CS of its parent. To calculate the position of the child segment of a given joint,
the segments are transformed to world coordinates and every child node is assigned a relative
transformation with respect to its parent.

3.2 Graphical modelling

The main problem of graphical modelling is to create naturally looking ViPs that can be ren-
dered efficiently. The graphical model constructed from suitable primitives will be wrapped
around the skeleton structure. This is called mapping the model on the skeleton. Graphical
primitives suitable for human modelling can be classified into three groups: wire-frame, vol-
ume and surface primitives (Magnenat-Thalmann & Thalmann 1985). Since in the simulator,
the ViPs will only be visible from the outside, a surface representation will be appropriate.

stand still

get off bike

get on bike pedal

stop braking

brake

ades >0

start braking

ades >0

v
cur

=0

default

ades<0

default

default

default

default

default

default

Figure 4: Finite State Machine for motion specification of the bicyclist. ���� is the desired acceleration,
���� the current velocity.

3.3 Motion specification

The MS module contains rules describing sequences of motions to be generated by the MG
module. It is the interface between the user controlling the ViPs and the database of available
motions, translating high level (HL) commands issued by the user to low level (LL) commands
of the system. The LL commands are interpreted by the MG module as elementary motion
instructions. The ViP database is consulted on the current parameters of each ViP, such as
position and orientation in the world, personification parameters, etc. The MS module does not
concern itself with low-level details of motion; these are taken care of by the MG module.

7

3.3.1 Motion specification graph

An obvious logical structure for specifying motion is a graph structure, in this case a finite state
machine, cf. Fig. 4. Nodes in the graph are basic motion states of the ViP. The current node
indicates the LL command that is sent to the MG module. Transitions from one basic motion
to another correspond to traversals to neighbouring states, as indicated by arrows. Transitions
have HL command labels or expression labels attached. A transition can only be made if the
currently active HL command corresponds to the label, or the attached expression evaluates to
true. A default transition is made when no other transitions are valid. The initial state is the one
which has an incoming arrow without source state.

3.3.2 Processing high-level commands in time

An important problem is the delay between the moment that the HL command enters the system
and the moment it can be obeyed. This implies that the MS and/or MG module must be able to
predict how long motions will take. For example, when a moving bicyclist must stop, the ViP
has to stop pedalling first and brake until its velocity is almost zero. Therefore, HL commands
will have a parameter �, which specifies at what distance from the current location the desired
motion has to start. A HL command sent by the SLM module can be obeyed in time if the
distance specified in the command is larger than the distance it will take to switch to the specified
motion. The FLM cannot guarantee that HL commands will be obeyed in time. The higher
levels of motion have to handle the consequences of HL commands that haven’t been obeyed in
time.

3.4 Motion generation

The MG module determines the new state of the skeleton depending on the current parameters
and the LL command to be executed. The new state is returned to the ViP database and also sent
to the mapping module. This module maps the graphical model of the ViP onto the skeleton,
creating a new posture of the ViP for display. For each frame a LL command is issued, a
motion is generated, the ViP database is updated, and the posture of the model is determined.
In contrast to LL commands, HL commands are not generated every frame. The SLM has to
monitor the behaviour of each ViP to guide the ViP through the traffic environment. In Fig. 2,
this is indicated by the arrow extending out of the ViP database module pointing upwards.

3.4.1 Internal motion generation

A number of methods for generating internal motions have been examined to see whether they
would meet the requirements of real-time performance, interactivity, naturalness and personifi-
cation of motion, and the capability of simulating both pedestrians and bicyclists. Among these
methods we mention the following:

Keyframe Animation. A key-frame animation system is intended to create moving pictures
that generally are not generated real time. Also, natural motion (in contrast to single postures)
is very hard to achieve with a key-frame system.

8

Kinematics. Although inverse kinematics is very suitable to generate a posture for a ViP, it
is less successful when used for motion generation. The biggest problem is that kinematics
does not take into account physical concepts of mass, force, acceleration and velocity. Inverse
kinematics is a computationally expensive algorithm, especially when human figures with a
large number of degrees of freedom are simulated.

Dynamics. Dynamic simulation of human figures has recently been examined and imple-
mented by Hodgins et al. (1995). Their system contains algorithms to simulate human skills
such as walking/running and cycling. Inverse dynamics results in natural motion, but it is com-
plicated and even slower than inverse kinematics. van Overveld (1991) describes an iterative
approach to 3D dynamic simulation for real-time interactive computer animation. Although his
algorithm is faster than full dynamic simulation, the reported performance of approximately five
frames per second on a SUN-4 is insufficient for simultaneous simulation of a dozen of ViPs.
So dynamics violates the speed requirement, but it also needs additional methods to specify
motion paths for parts of the body.

Combined Kinematics and Dynamics. With this method, natural motion of limbs is guar-
anteed by using inverse dynamics while motion paths are specified with a key-frame system.
Limbs are positioned on these paths using inverse kinematics. Again, the drawback of this
method is the large computational demand. van Overveld & Ko (1994), who use this mixed
kinematics/dynamics approach, report a frame rate of about 20 fps on a Silicon Graphics Per-
sonal Iris (Indigo) workstation for a flat human figure with 14 degrees of freedom. When
simulating a dozen ViPs simultaneously, preferably on a frame rate of 60 Hz, a faster method is
desired.

Motion Capture. The two merits of motion capture are speed and naturalness of motion
(Maiocchi 1996). Playing back recorded motion is the fastest way of motion ‘generation’.
Capturing the movements of real human actors will yield realistic motion provided that the
capture process is accurate enough. Captured motions can be transferred to a skeleton structure.
Altering the motion to generate personified motion is not possible with motion capture. For
each personified motion, the movements of a real actor have to be recorded and stored.

In view of the requirements formulated above, we have decided to use motion capture to
create a library of basic internal motions. Using these motions and additional algorithms to
create new motions, all required motions can be generated in real time. The MG module will
combine basic motions in two ways. First, motions can be executed in a sequence with smooth
transitions. Second, a number of basic motions can be interpolated to create a new, different,
motion. For example, interpolation is necessary to create walking with a variable step size, or
cycling with a variable amount of effort. Also, basic motions, sequenced motions, and blended
motions can be played back at different velocities to extend the range of possible motions even
further. For efficiency reasons, creation of a new motion by interpolation always uses just two
basic motions.

9

3.4.2 External motion generation

External Motion Generation (EMG) must ensure natural motion of each ViP through the world.
A suitable EMG system will allow the ViPs to move through the world as flexibly as possible
and in such a way that it appears that the external motions are driven by internal motions.
The MS module has to ensure that the internal and external MG modules create ‘compatible’
motion. External motions can be classified by freedom of movement, i.e., in one, two, or
three dimensions. Ideally, each higher degree of motion is constructed out of a lower degree
combined with new algorithms. An example of this is walking along a curve being created
out of modified straight line walking, with the orientation of the VIP adjusted according to the
position on the curve. Although the paths followed by pedestrians and bicyclists are similar,
both motion specification and the relation with internal motion differ considerably. We limit
ourselves here to a discussion of external motions of bicyclists.

3.4.3 Bicyclist straight-line motion

There are three motion states: starting, moving (accelerating or decelerating) and stopping. A
number of parameters are used corresponding to speed and acceleration. Also, depending on
the forces slowing the bike down or speeding the bike up, the ViP has to push more or less hard
on the pedals. To incorporate this effort we introduce an effort parameter �.

The EMG module uses input parameters like current velocity ����, desired velocity ����	 af-
ter a given distance �, and personification parameters. From this, it computes output parameters
like possible acceleration, the required effort � and required special case of basic motion, using
certain expressions based on physical principles like force, mass and acceleration. (The EMG
module doesn’t use forces directly, that would be tantamount to using dynamics for motion
generation, which is not the case in our approach.)

For maintaining velocity captured motions of a person cycling with minimal effort and with
maximal effort, respectively, can be interpolated using the parameter �.

Next, consider changing velocity. At any time, there is a target velocity ����	 (specified by a
HL command) that the ViP has to obey. Possible actions are:

1. continue pedalling with unaltered force (����	 � ����)

2. continue pedalling with less force (����	 � ����)

3. continue pedalling with more force (����	 � ����)

4. stop pedalling (����	 � ����)

5. brake (����	 � ����)

6. start (get on bike) (���� � � and ����	 � �)

7. stop (get off bike) (���� � � and ����	 � �)

A choice from the special cases 1-5 can be made based on the desired acceleration ���� of the
bike, given by

���� � ����� � ����	������	 � �����������

10

Acceleration alone does not provide a choice out of cases 3, 4 and 5. In order to do that, it
is necessary to calculate another parameter: natural deceleration �
�� (a negative acceleration).
When ���� is equal to �
��, the ViP can keep its legs still: case 4. If ���� is greater than �
�� ,
the ViP will have to keep pedalling: case 3. If ���� is smaller than �
��, the natural deceleration
isn’t slowing down the bike sufficiently, and the ViP has to brake: case 5.

One of the most important position-critical motions is a special case of braking: stopping, as
initiated by the HL command ‘Velocity � � after � meters’. Stopping a bike is accomplished by
braking, followed by either putting one foot or two feet on the ground or by stepping off the bike,
collectively called ‘getting off the bike’. The procedure of stopping consists of ‘start braking’,
‘brake’, and ‘stop braking’. The last phase can mean getting off the bike (when ����	 � �)
or resume pedalling motion. All three phases will have to be carried out precisely within the
distance � given in the HL command.

Starting to cycle is triggered by a high level command specifying a target velocity greater
than zero issued to a ViP that is standing still. The actual motion of getting on the bike depends
on the current posture of the ViP, which itself depends on the motion used to get off the bike
somewhere in the past. For each of the methods of getting off the bike, a corresponding motion
must be available to get on again. Standing still is a separate state of the ViP. Basic motions are
required for standing still and getting on the bike.

3.4.4 Bicyclist curve-based motion

The simplest extension of straight-line motion is moving along a curve in the horizontal ground
plane. The ideal type of curve will satisfy four important properties:

� resemble motion paths of real humans;

� suitable to describe motions in a traffic environment;

� easy to specify by the SLM module;

� efficient to calculate.

An obvious choice for curves describing movement are Bézier or spline curves. In the case
of the traffic environment (consisting of straight or curved roads and intersections) all that is
needed are straight line segments and circle arcs. Therefore we will add circular turns to the
motion repertoire.

Two HL commands suffice to specify all 2D motions of the bicyclist:

� Speed � ����	 (m/s) after � (m)

� Radius � � (m) after � (m)

A left turn has a positive radius, a right turn a negative one, see Fig. 5. Motion along a straight
line is specified by setting the radius equal to zero. Each new HL command specifies a new path
segment. The midpoint of the circle is calculated at the moment that the ViP switches to the
new circle segment. A path segment is called active when the ViP is on the segment. A segment
ends when another segment becomes active. The position of the ViP on the end of the current

11

segment has to be calculated first. Then the ViP is moved along the new segment covering the
remaining distance.

r>0

x

y

left turn

midpoint 1

initial position

midpoint 2

right turn

r<0

Figure 5: Left and right turns are specified by a positive or negative radius.

When riding along circles the bicycle as well as the posture of the ViP changes from upright
towards a slanting position. The ‘banking angle’ 	, which is the slant angle with respect to the
vertical position, has to be equal to the stable banking angle which can be computed from the
physics of centripetal motion. It is given by

	 � ��	
���
��

�

�

Velocity � and path radius � refer to the centre of mass, and
 is the gravitational constant.
Clearly, 	 increases when the radius of the circle gets smaller. In reality, there are more compli-
cated adjustments of the front and rear wheel of the bicycle, but we have chosen not to model
those. When exiting the turn, the bicyclist has to stop banking and therefore is pushed into an
upright position.

4 Prototype system

In this section we give an overview of a prototype system which has been implemented, includ-
ing a simple graphical user interface taking the role of control (second level of motion), discuss
the implementation of the bicyclists as a test-case for the developed method, and give some test
results on different platforms for given (graphical) complexity of the bicycle and bicyclist.

In developing the prototype system additional tools were used, such as the PRIMAS motion
capture system (van Kasteren 1994) (cf. Section 4.3), Wavefront Kinemation human modelling
and animation software, Wavefront Model 3D object modeller, and IRIS Performer, ‘a high
performance multiprocessing toolkit for real-time 3D graphics’ (Rohlf & Helman 1994). Per-
former consists of a low-level library for high performance image drawing and a high-level
library that implements, amongst other things, pipelined parallel traversals of scenes defined by
hierarchical graphs. It provides functions to create objects, lights, groups of objects, animate

12

objects, handle levels of detail, construct world databases in a tree-like manner, set and control
viewports, display views of these viewports into the database and perform collision detection.
Additional functions are available for vector and matrix calculations, and multiprocessing con-
trol and management.

(bike front)

scene node

(environment)
geode group node

(bicyclist)

SCS node DCS node
geode

(bike rear)

geode
(VIP object)

geode

Figure 6: IRIS Performer database structure consisting of an environment and one bicyclist.

In the current implementation, the graphical mapping module shown in Fig. 2 is absent.
Basic motions are not defined in terms of a skeleton, but directly in terms of the graphical
model. The captured motions defined on the skeleton are transformed in a preprocessing stage
to basic motions defined on the graphical model using the Kinemation software. In this way we
bypass the mapping process by providing the polygon structure directly. When this mapping
problem is solved efficiently, it will become possible in the future to use basic motions defined
on the skeleton. A second missing feature is Level-Of-Detail (LOD) switching. Depending on
the size of the object on the screen, a graphical model is chosen out of a set of models with
decreasing detail. As each basic motion is currently defined directly on the graphical model,
the complete set of basic motions would have to be defined on each model. When motions are
defined on the skeleton, the model mapping module would map the model chosen by the LOD
algorithm on the skeleton.

4.1 Graphical modelling

Because 3D graphics are handled by IRIS Performer, only triangle primitives are used, which
are rendered very efficiently by the SGI graphics hardware. A graphical model of a human
person has been created with Wavefront Model, consisting of 224 vertices and 280 shaded poly-
gons. All polygons are double-sided by default, so a further saving by a factor of 2 is possible.
Texture mapping is absent at the moment. A simple bike has also been designed with Wavefront
Model, consisting of 236 vertices and 178 polygons. To keep the number of polygons as low as
possible, the wheels each consist of one double-sided polygon.

13

Performer functions are applied to create a database with a tree structure consisting of an
environment and a bicyclist. The elementary node (the geometry node or geode) is the parent
of a number of geometry sets or geosets: structures that contain the actual geometric primitives
of objects. The database tree is shown in Fig. 6.

There are three objects involved: front and rear part of the bike, and the ViP object. An
additional transformation with respect to the parent node is used to place the ViP on the ‘saddle’.
Personification parameters for bike and bicyclist are: (i) Name identifier (ii) Radius of the front
and rear wheel; (iii) Pedal-to-rear-wheel angular speed reduction; (iv) Tire friction constant;
(v) Mass of the bike; (vi) Distance between front and rear wheel; (vii) Offset to saddle; (viii)
Steering axis; (ix) Object files for the front and rear geometry of the bike.

Figure 7: Screenshot of the prototype system showing a single frame and the user interface.

4.2 Motion specification

Specification of motion in the prototype system consists of two parts: the user interface and the
state machine, as described in Section 3.3. The finite state machine used is shown in Fig. 4. The
available HL commands for the bicyclist in the prototype are:

� Speed = ����	 (m/s) after � (m)

� Radius = � (m) after � (m)

Personification commands have not yet been included.
The user interface of the prototype system is shown in Fig. 7. There are buttons to control

the camera mode (fixed or tracking) and camera position (side view or top view). Sliders control
parameter values, such as desired speed or radius, which trigger the appropriate HL commands.

14

4.3 Motion generation

The basic motions used in the prototype system have been obtained using the PRIMAS mo-
tion capture system developed at the Delft University of Technology, The Netherlands (van
Kasteren 1994). The system works with reflectors (markers) attached to the body of the test
actor. Motions are captured by several cameras up to a frame rate of 200 fps. After recording
the motions, special software is used to combine the digital recordings of the cameras resulting
in 3D positions of the markers in the recorded frames. All motions have been obtained using
only two cameras, so that only one side of the test person could be captured. The other side
is obtained as a mirrored version of the captured motion, that has been offset in time. This
works fine in the case of cyclic symmetrical motions such as cycling and walking straight on.
In other cases (start and stop cycling), it is possible to create the other side of the motion using
key-frame animation. Cycling motions have been captured with the bicycle fixed to the ground.

A skeleton consisting of 14 joints was created based on the marker positions of the captured
motions and animated using keyframes or by importing captured motion. The graphical model
was imported in Wavefront Kinemation and attached to the skeleton. External motion generation
uses the steps discussed in Section 3.4.2. A number of different motion types as implemented
in the prototype system are shown in Fig. 8.

4.4 Performance results

4.4.1 Real-time performance

In the prototype system, the major bottleneck in the simulation loop is the drawing process. The
system has been tested on three SGI platforms.

� INDY workstation with a MIPS R4000 processor and software GL implementation. When
the window is very small (80 by 60 pixels), the simulation runs at the maximum frame
rate of 60 fps. Full-screen simulation (1280 by 1024 pixels) runs at a frame rate of about
2 fps.

� SKYWRITER equipped with four MIPS R3000 processors and a dual VGXT graphics
hardware pipeline. Full screen simulation (1280 by 1024 pixels) runs at 30 fps. When the
window is reduced to a quarter of the screen (640 by 512 pixels), the frame rate increases
to 60 fps. The pixel-fill rate of the VGXT pipeline is the main cause of lower frame rates
at high resolution.

� ONYX equipped with four MIPS R4400 processors and Reality Engine� graphics hard-
ware. This provides 60 fps full screen animation (1280 by 1024 pixels) running on one
processor. The combination of full screen anti-aliasing and 60 Hertz update results in
very smooth motion.

4.4.2 Interactive control

The standard control method of specifying a HL command with a distance that describes when
the command must be obeyed may be useful for the second level of motion (SLM) module in
the driving simulator environment, but it isn’t a suitable method for the user controlling ViPs

15

via the graphical user interface of the prototype system. Specifying commands that are directly
executed provides the user with a more intuitive control.

4.4.3 Natural motion

Because motion capture is used, internal motion generation is realistic, although improvements
in captured motions and subsequent keyframe animation are still possible. Not all current mo-
tions connect seamlessly, which is visually quite disturbing. Linear interpolation of pedalling
motion looks convincing, even though the behaviours of the upper body in the two basic mo-
tions are quite different. A problem is the transition from start-braking to pedalling with variable
effort, because the ViP cannot alter its posture to ensure a smooth connection with the next mo-
tion. Steering left and right by rotating the hands and adjusting the elbows looks remarkably
well. External motion generation is realistic, even though the path of the ViP consists only of
straight and circular segments. However, when the bicyclist is cycling fast, a transition from a
left to a right turn or vice versa results in an unnatural rapid change of banking angle.

5 Summary and conclusions

In this paper we have addressed the problem of real-time graphical animation of bicyclists
and/or pedestrians as an extension of an existing driving simulator. Requirements are real-time
performance, interactivity and naturalness of motion.

A system design has been presented containing a number of modules, of which motion
specification (MS) and motion generation (MG) modules are the most important. Control flow
is on two levels of motion. The first level of motion consists of the primary motions such as
taking a step, taking a turn, or getting off a bike. The behaviour of traffic participants in the
virtual world forms the second level of motion (SLM). Other modules are the ViP database and
the graphical mapping of the skeleton model of the pedestrians and bicyclists.

From an evaluation of the prototype system which has been implemented, we draw the con-
clusion that real-time interactively controlled computer animation of pedestrians and bicyclists
is feasible on modern simulation systems. The combination of motion capture and interpola-
tion for internal motion generation with simple curve following algorithms for external motions
results in a bicyclist that is flexible enough to travel through a flat traffic environment such as
provided by a driving simulator. Having a set of pre-generated internal motions is crucial to
ensure reasonable performance. Motion capture is the most obvious way to generate natural
motion. Altering the motions while the simulation is running is possible even with very simple
algorithms such as linear interpolation. Implementation of the ViPs in the simulator will re-
quire a powerful platform like a multiprocessor Onyx with Reality Engine� graphics hardware
in order to obtain acceptable frame rates.

Many improvements of the prototype system are possible. One is achieving more graphical
realism with less polygons by a more careful design of the models. This should make it feasible
to simulate a dozen of pedestrians and bicyclists at an acceptable frame rate. Basic motions
should be defined on a skeleton structure instead of directly on the graphical model, reducing
the required amount of memory and speeding up the interpolation process. An efficient method
has to be developed to map a graphical model on the skeleton. Also Level-Of-Detail (LOD)

16

(a) (b)

(c)

Figure 8: Different types of cycling motion. (a): cycling with medium effort; (b): cycling with maximum
effort; (c): making a turn.

17

switching is a desired addition to the system. A method is needed to ensure smooth transitions
of motions, even when the basic motions themselves do not connect smoothly. A useful feature
is to allow individual cycles of periodic basic motions to be interrupted by HL commands. This
will enable the ViPs to respond quicker to new HL commands, which is important in emergency
situations. It will be necessary to include more physical properties into the system to limit
the number of unnatural reactions. Complete 3D motion freedom will be required in general
environments with viaducts with access ramps and sloping roads. Finally, the prototype system
has to be integrated in the TRC Driving Simulator, with ViPs controlled by a SLM module
which guides the ViPs through the traffic environment.

References

Badler, N. I., Barsky, B. A. & Zeltzer, D., eds (1991), Making Them Move: Mechanics, Con-
trol, and Animation of Articulated Figures, Morgan Kaufmann Publishers inc, San Mateo
California.

Badler, N. I., Phillips, C. B. & Webber, B. L. (1993), Virtual Humans and Simulated Agents,
Oxford University Press, New York, NY.

Gerard, M. (1989), The Computer Animation of Legged Animals: Simulation, Design and
Control, PhD thesis, Ohio State University.

Hodgins, J. K., Wooten, W. L., Brogan, D. C. & O’Brien, J. F. (1995), Animating human
athletics, in ‘ACM Siggraph Proceedings’.

Magnenat-Thalmann, N. & Thalmann, D. (1985), Computer Generated Images, Springer, New
York.

Magnenat-Thalmann, N. & Thalmann, D. (1990), Synthetic Actors in Computer Generated
Films, Springer, New York.

Maiocchi, R. (1996), 3-D character animation using motion capture, Prentice-Hall, Englewood
Cliffs, NJ, chapter 2, pp. 10–39.

Morawetz, C. L. & Calvert, T. W. (1990), ‘Goal-directed human animation of multiple move-
ments’, Proceedings of Graphics Interface pp. 60–67.

Rohlf, J. & Helman, J. (1994), Iris performer: A high performance multiprocessing toolkit
for real-time 3d graphics, in ‘ACM Siggraph Computer Graphics Proceedings, Annual
Conference Series’, p. 381.

van Delden, M. J. B. (1995), Real time computer animation of interactively controlled bicyclists
and pedestrians, Master’s thesis, Dept. of Computing Science, University of Groningen,
the Netherlands.

van Kasteren, J. (1994), ‘Primas zorgt voor natuurlijker beweging in cartoons’, Delft Integraal
(in Dutch) 4.

18

van Overveld, C. W. A. M. (1991), ‘An iterative approach to dynamic simulation of 3-d rigid-
body motions for interactive computer animation’, The Visual Computer 7, 29.

van Overveld, C. W. A. M. & Ko, H. (1994), ‘Small steps for mankind: Towards a kinemati-
cally driven dynamic simulation of curved path walking’, J. Visualization and Computer
Animation 5, 143.

van Wolffelaar, P. C. & van Winsum, W. (1995), Traffic modelling and driving simulation - an
integrated approach, in ‘Proceeding of the Driving Simulator Conference DSC ’95, Sophia
Antipolis, France, September 12-13, 1995’, Neuf Associes, Teknea.

19

