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Abstract
We present a novel, physically-motivated method for surface reconstruction that can recover smooth surfaces
from noisy and sparse data sets, without using orientation information. A new volumetric technique based on
regularized-membrane potentials for aggregating the input sample points is introduced, which manages improved
noise tolerability and outlier removal, without sacrificing much with respect to detail (feature) recovery. In this
method, sample points are first aggregated on a volumetric grid. A labeling algorithm that relies on intrinsic
properties of the smooth scalar field emerging after aggregation is used to classify grid points as exterior or
interior to the surface. We also introduce a mesh-smoothing paradigm based on a mass-spring system, enhanced
with a bending-energy minimizing term to ensure that the final triangulated surface is smoother than piecewise
linear. The method compares favorably with respect to previous approaches in terms of speed and flexibility.

Categories and Subject Descriptors(according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation - Ap-
proximation of surfaces and contours; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling
- Physically based modeling; I.4.10 [Image Processing and Computer Vision]: Image Representation - Volumetric;

1. Introduction

The goal of surface reconstruction is to obtain a digital repre-
sentation of a real, physical object or phenomenon described
by a cloud of points, sampled on or near its surface. Re-
cently there has been a growing interest in this field moti-
vated by the increased availability of point-cloud data ob-
tained from medical scanners, laser scanners, vision tech-
niques (e.g.range images), and other modalities. Apart from
being ill-posed, the problem of surface reconstruction from
unorganized point clouds is challenging because the topol-
ogy of the real surface can be very complex, and the acquired
data may be non-uniformly sampled and contaminated by
noise. Moreover, the quality and accuracy of the data sets
depend upon the methodologies which have been employed
for acquisition (i.e. laser scanners versus stereo using uncal-
ibrated cameras). Furthermore, reconstructing surfaces from
large datasets can be prohibitively expensive in terms of
computations.

In this paper, we propose a novel, physically-based
technique for surface reconstruction, which employs
regularized-membrane potentials, evaluated on a volumetric
grid, to output smooth surfaces from noisy and sparse data.

The purpose of these potentials is twofold: to aggregate data
points and to remove outliers due to noise. In the following
we denote byaggregationthe process in which gaps between
the data points are bridged by a slowly-varying scalar field.

The contributions of this paper include:

• a new method for aggregating the input data points, based
on regularized-membrane potentials, as an alternative ap-
proach to the widely employed distance transform (Sec-
tion 3.1)

• a new approach to surface smoothing (Section3.3) based
on a mass-spring system enhanced with a bending-energy
minimizing term.

The main advantage of our approach is that the robustness of
the proposed surface-reconstruction method with respect to
noise is improved. Furthermore, minimizing the bending en-
ergy of the surface ensures that the final triangulated surface
is smooth,i.e., smoother than piecewise linear. Our formu-
lation handles noisy as well as non-uniform data sets, and
works in any dimension. In particular, we show that the pro-
posed method quickly reconstructs surfaces of large models
and tolerates large amounts of Gaussian and shot noise.
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2. Previous and related work

Most popular approaches for surface reconstruction are
based on implicit surfaces or volumetric representations.
The traditional approach is to compute a signed distance
function and represent the reconstructed implicit surface by
an iso-contour (usually at iso-value zero) of this function
[BC00, HDD∗92, CL96, LTGS95, BBX95]. These methods
require a way to distinguish between the inside and outside
of closed surfaces. For example, the method of Hoppeet
al. [HDD∗92] approximates the normal at each data point
by fitting a tangent plane in its neighbourhood, using prin-
cipal component analysis. Tang and Medioni [TM98] use
the tensor-voting formalism to estimate the orientations of
the data points. Both methods are sensitive to noise since
they require accurate normal estimates. Zhaoet al. [ZOF01]
use the level-set formalism for noise-free surface reconstruc-
tion. Their method can handle complicated surface topology
and deformations, and the reconstructed surface is smoother
than piecewise linear. The main drawback is the sensitivity
of the method to shot noise, due to its reliance on the dis-
tance transform.

More recently, modeling of surfaces with Radial Ba-
sis Functions (RBFs) has become a popular technique
[CBC∗01, MYR∗01, KSH04, DTS02, TO99]. Turk and
O’Brien [TO99] and Carret al. [CBC∗01] use globally sup-
ported RBFs to fit data points by solving a large and dense
linear system of equations. These methods are very sensi-
tive to noise because local changes of the positions of the
input points have global effects on the reconstructed sur-
face. Morseet al. [MYR∗01] and Ohtakeet al. [OBS03] use
compactly-supported RBFs to achieve local control and re-
duce the computational cost by solving a sparse linear sys-
tem. Dinhet al. [DTS02] use RBFs and volumetric regular-
ization to handle noisy and sparse range data sets. Recently,
Ohtakeet al. [OBA∗03] proposed a method based on the
so-called “partition of the unity implicits”, which can be re-
garded as the combination of algebraic patches and RBFs.
Carr et al. [CBM∗03] further address reconstruction from
noisy range data by fitting a RBF to the data and convolving
with a smoothing kernel during the evaluation of the RBF.
Kojekineet al.[KSH04] use compactly-supported RBFs and
an octree data structure such that the resulting matrix of
the system is band-diagonal, thus reducing computational
costs. The main advantages of implicit surface representa-
tions include topological flexibility, mesh independent rep-
resentation (i.e. the possibility to generate a mesh on de-
mand,e.g. for visualization purposes) and compact repre-
sentation to within any desired precision. Moreover, efficient
algorithms for polygonization of implicit surfaces are avail-
able [LC87,NB93,Blo94].

3. The proposed method

The computational flow diagram of our method is shown
in Fig. 1. The method starts by assigning the input sample
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   Generation
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Interpolation

Figure 1: Algorithmic flow diagram of the proposed method.

points to grid cells, using cloud-in-cell (CIC) interpolation
(first step in Fig.1). Step 2 performs aggregation of the sam-
ple points by computing regularized-membrane potentials
on the grid. A labeling algorithm, which follows increas-
ing paths of the scalar potential field is engaged to classify
the grid points as exterior or interior to the surface, defin-
ing in this way an implicit (rough) surface (step 3). Prior to
polygonization, we use again diffusion potentials, but this
time with the purpose of producing a smooth implicit sur-
face. Then, we employ Bloomenthal’s polygonizer [Blo94]
to turn the implicit surface into a triangulated one (second
part of step 4), and use a mass-spring system, enhanced with
a bending-energy minimizing term, to obtain a larger degree
of smoothness (step 5).

3.1. Aggregation of the input data points

The first step of our method consists of assigning the input
data points to cells of a three-dimensional grid, using CIC in-
terpolation. Accordingly, a constant numerical value (we fix
this value to one), representing the contribution of each data
point to the initial distribution, is spread to the eight nearest
cell centers. The weights are given by the overlap volumes
of a box, centered around the data point under considera-
tion, with the neighbouring voxels. If more than one point
contributes to the same cell, the values are accumulated. The
non-empty grid cells will serve as sources generating poten-
tials on the grid (see below).

The non-empty grid cells, calledsource points, can be re-
garded as sources for the physical simulation of the flow
of heat, defined by the linear-diffusion equation. However,
aggregation using linear diffusion has the disadvantage that
it converges to constant steady state. This issue can be ad-
dressed by supplementing the diffusion equation with a re-
action term, leading to theregularized membrane equation
(see also [SS98] and [Ter86]),

∂u
∂ t

= ∇2u+β ( f −u), (1)

whereβ is a regularization parameter,u is the concentration
of diffusing material, with the original volumef as initial
condition, u(t = 0) = f . The last term in Eq. (1) ensures
that the reaction-diffusion equation reaches a steady state not
far from the original values off . However, the problem of
choosing a proper stopping time for the linear diffusion is
shifted to finding a suitable value for the parameterβ . To
alleviate this problem we have chosen the value ofβ equal
to the absolute value of the original signalf at each voxel
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locationx, yielding

∂u
∂ t

= µ∇2u+ | f |( f −u), (2)

where µ is a regularization constant which controls the
amount of smoothing. Note that in Eq. (2) we have used
β = | f | so that we can handle also negative values off ;
this will be necessary when performing interpolation in Sec-
tion 3.3, see Eq. (3). Also, the choice ofµ is not critical, as
we show in Section4.

One can use the method of eigenfunction expan-
sion [Hab97] to find approximate solutions to Eq. (2). The
approximate steady-state solution of this equation linearly
interpolates the data points, whereas transient solutions are
equivalent to Gaussian interpolants in space which decay ex-
ponentially in time.

3.2. Classification of grid cells

After aggregation, source cells correspond to regional max-
ima of the scalar fieldu, provided that a transient solution of
Eq. (2) has been (numerically) computed. In addition,ridges
of this field match shortest paths connecting nearby source
cells. It is this property which can be used to classify the grid
points as exterior or interior to the surface by an algorithm
similar to the tagging method of Zhaoet al. [ZOF01]. Since
the only modification of this tagging algorithm consists in
replacing themaximum heapwith a minimum one, we refer
to [ZOF01] for further details.

3.3. Surface smoothing and polygonization

Once the classification of the grid points into interior, bound-
ary and exterior has been completed, one can use Bloo-
menthal’s method [Blo94] to polygonize the implicit surface
given by the zero level set of the scalar fieldf defined by

f (x,y,z) =


−1 if (x,y,z) is labeled asINTERIOR

0 if (x,y,z) is labeled asBOUNDARY

1 if (x,y,z) is labeled asEXTERIOR.
(3)

3.3.1. Interpolation using membrane potentials

Direct polygonization will cause “staircase” artefacts in the
resulting mesh. A better approach is to interpolate the im-
plicit surface using the reaction-diffusion process (Eq. (2))
a second time with the labeled grid points as sources. Note
that, as given in Eq. (3), sources are instantiated only at the
locations of the interior and exterior grid points, since the
membership of boundary points is uncertain. After the po-
tentials have been computed, a smooth scalar field emerges
at these locations, and by tracing its zero iso-contour, the im-
plicit surface is turned into a triangulated one. Since bound-
ary voxels form thin bands along surface borders, a small
number of iterations is required, resulting in fast computa-
tion. The resulting triangulated surface, which is a better ap-
proximation to the real surface than the initial one, is used as

initialization for the more computationally demanding mass-
spring system, described next.

3.3.2. Mesh smoothing with a mass-spring system

Since for now we assume that the correct surface topol-
ogy has been inferred, and the triangulated surface possesses
consistent orientation (see Section3.4for a justification), we
propose to use a mass-spring system as a means for obtain-
ing a larger degree of smoothness. Also, we shall integrate in
our mass-spring system an extra term corresponding to the
bending energyof the system. This has the beneficial effect,
analogous to curvature flow, that the triangulated surface is
smoothened by moving its vertices along their normals with
a speed proportional to the (normal) curvature.

We start by defining nodespi , i = 1,2, ...,N, of the mass-
spring network, as having massmi and position vector
xi(t) = [xi(t),yi(t),zi(t)]. We will denote byNi the set of
neighbours ofpi , i.e., all particlesp j such that there exists
an edgeei j betweenpi andp j . Let springsi j connect nodes
pi and p j , have rest lengthl i j and stiffnessci j = c, where
c is a constant. Also, letr i j = x j −xi be the vector separat-
ing the two nodes. The potential energy of a particlepi of the
mass-spring system due to its interactions with neighbouring
particlesp j , j ∈Ni is given by

Ei = ∑
j∈Ni

αEsi j (r i j )+(1−α)Ebi j
(r i j ,ni), (4)

where the first term represents the energy of the spring con-

necting the particles,Esi j = c
2

(∣∣r i j
∣∣− l i j

)2, the second term
is the bending energy (see Eq. (5)), andα is a scalar weight.
Smoothing a mesh by minimizing a membrane energy func-
tional [Ter86] can be seen also as the physical simulation
of a mass-spring network with zero-rest length springs that
will shrink to a single point. On the one hand, because such
behaviour of the mass-spring system is undesirable for our
purposes, the rest lengths of the springs should be chosen
such that they reflect the lengths of the edges of the initial
(un-deformed) mesh. On the other hand, in order to facilitate
the relaxation of the mesh structure into a desirable, smooth
configuration, the rest lengths of the springs should be made
smaller than the initial lengths of the edges of the mesh,i.e.,
we use a percentage of the initial edge lengths.

The bending energy of an ideal, thin flexible plate of elas-
tic material, which is a measure of the strain energy of the
deformation, is defined as the sum of squared curvatures
along the surface. We modify this definition of bending en-
ergy slightly, to restrict it to the neighbourhood of a particle
pi as

Ebi
≡ ∑

j∈Ni

Ebi j
=

1
2 ∑

j∈Ni

k2
i j , (5)

whereki j is some discrete curvature measure between the
particle pair(pi , p j ). A (mean) curvature estimate, which
has been previously used in the context of mesh smooth-
ing [Tau95], is given by ki j = 2(ni · r i j )/|r i j |2, whereni
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is the normal atpi . Having defined the energy associated
with our mass-spring system, we can derive its equations of
motion. The variations of particle potentials with respect to
positions yield forces acting on particles. We use the Ver-
let method [Ver67] to integrate the corresponding system of
differential equations in time.

3.4. Error analysis of the framework

Let us assume that the grid resolution agrees with the (ap-
propriate) sampling rate of the unknown surface to be re-
constructed,i.e., each point of the data set is assigned to a
distinct grid cell. Note that in the small-cell-size limit, the
CIC interpolation scheme becomes nearest neighbour inter-
polation. Also, we assume a noise-free input data set. There-
fore, if hx = bx/gx, hy = by/gy, hz = bz/gzare the grid-cell
sizes,bx, by, bzare the dimensions of the bounding box of
the data points, andgx, gy, gz are the number of cells in
thex, y, z directions, then a bound on the reconstruction er-
ror is given by the length of the diagonal of a grid cell,i.e.,
ε =

√
hx2 +hy2 +hz2. Implicit surface interpolation using

Eq. (2) with initial condition given by Eq. (3) cannot in-
crease the reconstruction error since grid cells labeled as in-
terior/exterior maintain their labels (values) due to the sim-
ilarity term. Moreover, interpolation using Eq. (2) yields a
smooth field at boundary locations, which can only decrease
the reconstruction error, though the error bound remains the
same. After interpolation, the gradient field has correct ori-
entation, without singular points at boundary locations, and
therefore the reconstructed surface isconsistently oriented.
Also, when the grid resolution is large enough, any of the
surfaces of the interior/exterior layers has thesame topol-
ogyas the unknown surface, and therefore, the reconstructed
surface has the same topology.

In the presence of noise, surface features smaller than
the noise amplitude in the data set cannot obviously be re-
covered. However, as we show in Section4, the method is
noise tolerant, albeit the error bound will also increase up
to εr = η +

√
hx2 +hy2 +hz2, whereη denotes the stan-

dard deviation of the noise in the data. Note that these error
bounds remain the same even if the mapping of data points
to non-empty grid cells is not one-to-one.

The mass-spring system may potentially increase the
overall reconstruction error at the cost of obtaining smooth
surfaces. Therefore, our mass-spring system should preserve
the features of the triangulated surface.

4. Results

4.1. Large data sets

In the first experiment, we present surface reconstruction re-
sults on large data sets. The parameters of the method were
set as follows. For aggregation, we discretized Eq. (2) using
central difference approximations and solved it using the ex-
plicit Euler method for numerical integration. To guarantee

Figure 2: Reconstruction of large models, see Table1.

stability, the time step parameter∆t must obey∆t ≤ ∆x∆y∆z
6µ

;
we setµ = 1.0 and∆t = 0.16; we usedNm = 20 iterations.
The parameters of the Verlet integrator used by the mass-
spring system were dt= 0.1 andt = 10. The weight in Eq. (4)
was set toα = 0.1, to emphasize the bending-energy mini-
mizing term. As discussed in section3.3.2, to facilitate the
relaxation of the mesh structure into a smooth configuration,
the rest lengths of the springs were set to 90% of the initial
edge lengths. Finally, the largest dimension of the computa-
tional grid was set to 400 and the remaining two dimensions
were obtained by uniform scaling of the bounding box of the
sample points. Below we use the same values of the param-
eters (unless stated otherwise).

The meshes resulting from this experiment are shown in
Fig. 2. All computations were performed on a system with
a Pentium IV processor at 3.0 GHz and a GeForce FX 5900
Ultra GPU. Timing (measured in seconds) of each step of
the method, for the models shown in Fig.2, is given in Ta-
ble 1. The most expensive computations are the labeling al-
gorithm and the second stage of smoothing implemented by
the enhanced mass-spring system. Note, however, that the
computations have the same order of magnitude, and that
the computational cost generally depends exclusively on the
grid size (e.g. compare the timing for the Asian Dragon
model with that for the Armadillo model). The time taken
to reconstruct nicely either of the models Happy Buddha,
Dragon, Hand or Asian Dragon (see Fig.2) is well under
one minute, whereas the Armadillo model needs about one
minute. Table1 also provides some statistics associated with
these models. The sixth column of Table1 shows the ap-
proximation error – an estimate about the quality of the re-
construction. The approximation error is an upper bound for
the average distance from the data points to the surface, and
it is computed as the average distance from the data points to
the centers of mass of the mesh triangles. The error is given
in percentages of the diagonal of the bounding box of the
data points.
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Table 1: Statistics, reconstruction quality and timings obtained using the membrane potential for aggregation.

Model No. Points Grid No. Vertices No. Triangles Error Aggregation Marching Interpolation Smoothing Total
(%) Time (s) Time (s) Time (s) Time (s) Time (s)

Buddha 543,625 170x400x170 297,058 594,176 0.08 3.3 6.9 3.4 13.3 27.2
Armadillo 172,974 337x400x307 370,718 741,432 0.05 8.1 29.5 7.7 15.6 61.7
Dragon 433,375 400x284x184 383,674 767,352 0.08 5.1 13.4 4.9 17.7 42.0
Hand 327,323 400x283x143 190,654 381,340 0.06 4.1 11.5 4.3 8.1 28.2
Asian Dragon 3,609,600 400x226x269 206,140 412,2800.06 6.1 18.5 6.2 12.6 44.5

4.2. Coping with noise

Our second experiment concerns the behaviour of the
method under noise conditions. Additionally, we study how
the method copes with sparse data obtained by random sub-
sampling.

4.2.1. Shot noise

We changed a certain amount of empty voxels by assigning
them the value one,i.e., the same numeric value used to as-
sign the input points. The number of corrupted voxels is ex-
pressed as a percentage of the number ofsource points. We
used nearest-neighbour interpolation for grid assignment, as
this results in a binary volume and represents a fair experi-
mental setting, without a-priori information.

The results are shown in Fig.3; the number of source
points was 3,337. For the computation of the membrane po-

20% 40% 60%

80% 100% 160%

Figure 3: Shot noise. The number of corrupted voxels is ex-
pressed as a percentage of the number of source points.

tential, the number of iterationsNm was increased from 20
to 200. The reason is that a large number of iterations results
in a large aggregation support covering most of the exterior
volume around the object, which will be correctly labeled
as exterior. Note that the method is able to reconstruct the
surface of the cactus shown in Fig.3 even when as much as
40% of the source points (1,335 voxels) were corrupted by
noise.

σ = 0.0% σ = 0.5% σ = 1.0% σ = 1.5%

Figure 4: Gaussian noise with zero mean and standard de-
viation σ (expressed as a percentage of diagonal size of the
bounding box);first row: source points,second row: recon-
structed surfaces.

4.2.2. Gaussian noise

The experimental setup consisted of perturbing the input
points with Gaussian noise with zero mean and standard de-
viations σ = 0.5,1.0,1.5(%), expressed as percentages of
the length of the diagonal of the bounding box. The results
are shown in Fig.4. The grid size was 140×146×250. The
parameters of the method were set as in the previous section,
except that the stopping timet of the mass-spring system was
increased from 10 to 20. Unlike methods which rely on dis-
tance transforms, our method can cope with large amounts
of Gaussian noise. In fact, in the third case (σ = 1.0%)
shown in Fig.4, one percent of the diagonal of the bound-
ing box means thatσ = 3.2, which implies that the coordi-
nates of most points were randomly translated in the interval
[−9.6;9.6]. Yet, even in these cases the method is able to
output smooth surfaces, with errors bounded byεr (results
not shown).

4.2.3. Random sampling

Our last analysis studied the behaviour of the method with
sparse data sets obtained by randomly sub-sampling the
source points. Here, we have used a large grid (198×143×
650), such that the number of source points (136,138) is
comparable to the number of input points (140,734). Then,
keeping the grid resolution constant, we randomly sampled
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100.0% 50.0% 10.0% 3.0%

Figure 5: Random sampling.First row: sampled points as
a percentage of the number of source points;second row:
reconstructed surfaces.

subsets from the set of source points and performed recon-
struction using only the sampled points; nearest-neighbour
interpolation was used for grid assignment, and the param-
eters were set as in the previous section. Fig.5 shows the
results. Note that the method yields a very good result even
with only 10% of the source points.

4.3. Comparison to other methods

4.3.1. Mesh smoothing

We compared our mesh-smoothing method based on
mass-spring systems (see subsection3.3.2) with curva-
ture flow [MDSB03, DMSB99], and with the non-iterative,
feature-preserving method of Joneset al. [JDD03]. The re-
sults are shown in Fig.6. The stopping time for the iterative
methods (i.e. curvature flow and mass-spring system meth-
ods) was set tot = 300, whereas the parameters of the non-
iterative method were set toσ f = 2, σg = 10 (smooth large
features), which yielded the best result. Note that the non-
iterative method preserved too many mesh details, whereas,
at the other extreme, curvature flow smeared out even large
mesh features. Our method seems to offer a better tradeoff
between mesh smoothness and preservation of features. In
addition, it can be efficiently implemented on GPU hard-
ware, unlike the non-iterative method.

4.3.2. Surface reconstruction

We compared the proposed framework for surface recon-
struction to that by Hoppeet al. [HDD∗92] and to the Power

Figure 6: Mesh smoothing comparison.Left-to-right, top-
to-bottom: original mesh, method of Joneset al. [JDD03],
curvature flow [MDSB03,DMSB99], our method.

Crust algorithm by Amentaet al. [ABE98, ABK98], see
Fig. 7. The time taken by our method to reconstruct the
surface of the model shown in Fig.7 was 56 seconds on a
grid with dimensions 450×320×206 (the largest which we
could use on GPU hardware); the reconstruction error was
0.06. It took 4 minutes for the method by Hoppeet al. to re-
construct the same model. In this case some holes are visible
in the triangulated surface, since we maximally increased the
parameter controlling the sampling of the unknown surface,
in an attempt to reconstruct fine surface details. Although the
reconstructed surface is smooth, fine surface details are lost.
This method can tolerate Gaussian noise provided that each
sample point has on average the same distance to its neigh-
bours. However, the method does not tolerate shot noise (re-
sults not shown).

The highest resolution of the reconstructed surfaces is ob-
tained by methods which interpolate the data points, simi-
lar to the Power Crust algorithm, see Fig.7. However, the
time taken to reconstruct large models (see Table1) within
floating-point precision is one order of magnitude larger than
that of our method. Since this method interpolates the data
points, it cannot cope with either type of noise which we
considered.

We did not perform a direct comparison with the volu-
metric method of Zhaoet al. [ZOF01]; refer to [ZOF01] for
several results on the same data sets as we used. Although
they used lower grid resolutions, the timings required by
their level-set method is in the order of hours.

One of the fastest techniques for surface reconstruction
is that of Ohtakeet al. [OBA∗03]. Comparing the result
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Figure 7: Surface reconstruction comparison.Top-left: re-
construction by the proposed method;Top-right: Power
Crust algorithm [ABE98, ABK98]; Bottom: the method of
Hoppeet al.[HDD∗92].

Figure 8: Left: noisy data set with2,008,414 input points
and 4000 outliers; right: reconstructed surface. Computa-
tion time was234seconds.

from Table1 on the Dragon data set with that from Table II
in [OBA∗03] one can observe that our method is 2.3 times
faster, at the same accuracy (8.0×10−4). However, if very
large accuracies are needed, their method may become more
efficient. In addition, their method assumes thataccurate
normal estimates are available.

Among the few methods which can tolerate a large
amount of outliers is the recent one by Kolluriet al.
[KSO04]. The CPU time reported in [KSO04] is one order
of magnitude larger than that of our method, on the same
input set (compare Fig. 1 in [KSO04] to Fig. 8).

4.4. Reconstruction error

To verify the error bound of Section3.4, we studied the be-
haviour of the reconstruction error (cf. Table1) when grid
resolution increases, see Table2. As can be seen, the recon-
struction error is always bounded byεr , even when the mass-
spring system is used for mesh smoothing. Only at small
grid resolutions does the reconstruction error increase when

Table 2: Grid resolution vs. reconstruction error
with/without mesh smoothing; results using the Buddha
model.

Grid Error (%) Error bound, Total time (s)
w/o Smoothing εr (%) w/o Smoothing

67×150×67 0.4 0.3 0.8 3.0 1.6
108×250×108 0.1 0.1 0.5 10.9 5.7
190×450×190 0.06 0.06 0.3 53.0 34.0
272×650×273 0.03 0.03 0.2 140.8 104.4
354×850×355 0.008 0.008 0.1 295.4 218.7

mesh smoothing is applied. This happens because our mesh
smoother preserves small features of the triangulated surface
(see subsection4.3.1).

5. Limitations

Surface features smaller than the grid size are not appro-
priately reconstructed. A possible solution would be to in-
crease the grid resolution at the expense of larger compu-
tational time and memory requirements. The method is not
geometrically adaptive, but we are currently investigating an
adaptive, multi-resolution approach based on data-structures
similar to octrees, which can also be efficiently implemented
on GPUs. As is usual for methods that employ implicit sur-
face representations, we assume that the surfaces to be re-
constructed are closed, though the method does intrinsically
perform hole filling by minimal surfaces (results not shown).

6. Conclusions

We have introduced a novel framework for surface re-
construction starting from unorganized point clouds, and
demonstrated its effectiveness in several experimental set-
tings. The method can be used to efficiently reconstruct sur-
faces from clean as well as noisy data sets, and in our opin-
ion, this represents an advantage over existing methods. The
method can deliver multi-resolution representations of the
reconstructed surface, and can be used to perform recon-
struction starting from particle systems, contours or even
grey-scale volumetric data leading to image segmentation.
Most constituent parts of the method have already been im-
plemented on GPU hardware, but due to lack of space, we
will report on these topics elsewhere.

References

[ABE98] AMENTA N., BERN M., EPPSTEIN D.: The
crust and theβ -skeleton: Combinatorial curve reconstruc-
tion. Graphical Models and Image Processing 60, 2
(1998), 125–135.6, 7

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A
new Voronoi-based surface reconstruction algorithm. In
Proc. SIGGRAPH’98(1998), pp. 415–421.6, 7

c© The Eurographics Association 2006.



A. Jalba & J. Roerdink / Surface reconstruction using membrane potentials

[BBX95] BAJAJ C. L., BERNARDINI F., XU G.: Auto-
matic reconstruction of surfaces and scalar fields from 3D
scans.Computer Graphics 29(1995), 109–118.2

[BC00] BOISSONNAT J. D., CAZALS F.: Smooth surface
reconstruction via natural neighbour interpolation of dis-
tance functions. InProceedings of the sixteenth annual
symposium on computational geometry(2000), pp. 223–
232. 2

[Blo94] BLOOMENTHAL J.: An implicit surface polygo-
nizer. Academic Press Professional, Inc., San Diego, CA,
USA, 1994, pp. 324–349.2, 3

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B.,
M ITCHELL T. J., FRIGHT W. R., MCCALLUM B. C.,
EVANS T. R.: Reconstruction and representation of
3D objects with radial basis functions. InProc. SIG-
GRAPH’01(2001), pp. 67–76.2

[CBM∗03] CARR J., BEATSON R., MCCALLUM B.,
FRIGHT W., MCLENNAN T., MITCHELL T.: Smooth
surface reconstruction from noisy range data. InProc.
Graphite 2003(2003), pp. 119–126.2

[CL96] CURLESS B., LEVOY M.: A volumetric method
for building complex models from range images. InProc.
SIGGRAPH’96(1996), pp. 303–312.2

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P.,
BARR A. H.: Implicit fairing of irregular meshes us-
ing diffusion and curvature flow. InProc. SIGGRAPH’99
(New York, NY, USA, 1999), ACM Press/Addison-
Wesley Publishing Co., pp. 317–324.6

[DTS02] DINH H. Q., TURK G., SLABAUGH G.: Recon-
structing surfaces by volumetric regularization using ra-
dial basis functions.IEEE Trans. Pattern Anal. Machine
Intell. (2002), 1358–1371.2

[Hab97] HABERMAN R.: Elementary Applied Partial Dif-
ferential Equations: With Fourier Series and Boundary
Value Problems. Prentice Hall, 1997.3

[HDD∗92] HOPPEH., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Surface reconstruction from
unorganized points. InProc. SIGGRAPH’92(1992),
pp. 71–78. 2, 6, 7

[JDD03] JONEST. R., DURAND F., DESBRUNM.: Non-
iterative, feature-preserving mesh smoothing.ACM
Trans. Graph. 22, 3 (2003), 943–949.6

[KSH04] KOJEKINE N., SAVCHENKO V., HAGIWARA I.:
Surface reconstruction based on compactly supported ra-
dial basis functions. InGeometric modeling: techniques,
applications, systems and tools. Kluwer Academic Pub-
lishers, 2004, pp. 218–231.2

[KSO04] KOLLURI R., SHEWCHUK J., O’BRIEN J.:
Spectral surface reconstruction from noisy point clouds.
In Symposium on Geometry Processing(July 2004), ACM
Press, pp. 11–21.7

[LC87] LORENSENW. E., CLINE H. E.: Marching cubes:
A high resolution 3D surface construction algorithm. In
Proc. SIGGRAPH’87(1987), pp. 1631–169.2

[LTGS95] L IM C. T., TURKIYYAH G. M., GANTER

M. A., STORTI D. W.: Implicit reconstruction of solids
from cloud point sets. InProceedings of the third ACM
symposium on Solid modeling and applications(1995),
pp. 393–402.2

[MDSB03] MEYER M., DESBRUN M., SCHRÖDER P.,
BARR A. H.: Discrete differential-geometry operators for
triangulated 2-manifolds. InVisualization and Mathemat-
ics III, Hege H.-C., Polthier K., (Eds.). Springer-Verlag,
Heidelberg, 2003, pp. 35–57.6

[MYR∗01] MORSE B. S., YOO T. S., RHEINGANS P.,
CHEN D. T., SUBRAMANIAN K. R.: Interpolating im-
plicit surfaces from scattered surface data using com-
pactly supported radial basis functions. InShape Mod-
eling International(2001), pp. 89–98.2

[NB93] NING P., BLOOMENTHAL J.: An evaluation of
implicit surface tilers. IEEE Comp. Graphics and Appl.
13 (1993), 33–41.2

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK

G., SEIDEL H.: Multi-level partition of unity implicits.
In Proc. SIGGRAPH’03(2003), pp. 463–470.2, 6, 7

[OBS03] OHTAKE Y., BELYAEV A., SEIDEL H.: Multi-
scale approach to 3D scattered data interpolation with
compactly supported basis functions. InProc. of Shape
Modeling International(2003), pp. 153–164.2

[SS98] SCHARSTEIN D., SZELISKI R.: Stereo matching
with nonlinear diffusion. International Journal of Com-
puter Vision 28(1998), 155–174.2

[Tau95] TAUBIN G.: Estimating the tensor of curvature
of a surface from a polyhedral approximation. InProc.
ICCV’95 (1995), IEEE Computer Society, pp. 902–907.
3

[Ter86] TERZOPOULOSD.: Regularisation of inverse vi-
sual problems involving discontinuites.IEEE Trans. Pat-
tern Anal. Machine Intell. 8(1986), 413–424.2, 3

[TM98] TANG C. K., MEDIONI G.: Inference of in-
tegrated surface, curve, and junction descriptions from
sparse 3-D data.IEEE Trans. Pattern Anal. Machine In-
tell. 20 (1998), 1206–1223.2

[TO99] TURK G., O’BRIEN J.: Variational Implicit Sur-
faces. Tech. rep., Georgia Institute of Technology, 1999.
2

[Ver67] VERLET L.: Computer experiments on classi-
cal fluids I. thermodynamical properties of Lennard-Jones
molecules.Phys. Rev. 159(1967), 98–103.4

[ZOF01] ZHAO H., OSHER S., FEDKIW R.: Fast surface
reconstruction using the level set method. InProceedings
of the IEEE Workshop on Variational and Level Set Meth-
ods in Computer Vision(2001), pp. 194–202.2, 3, 6

c© The Eurographics Association 2006.


