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Abstract. To calculate the Minkowski-sum based similarity measure of
two convex polyhedra, many relative orientations have to be considered.
These relative orientations are characterized by the fact that some faces
and edges of the polyhedra are parallel. For every relative orientation of
the polyhedra, the volume or mixed volume of their Minkowski sum is
evaluated. From the minimum of this volume, the similarity measure is
calculated. In this article two issues are addressed. First we propose and
test a method to reduce the set of relative orientations to be considered
by using geometric inequalities in the slope diagrams of the polyhedra.
In this way the time complexity of O(n6) is reduced to O(n4.5). Secondly
we determine which relative orientation problems are ill-posed and may
be skipped because they do not maximize the similarity measure.

1 Introduction

Shape comparison is of fundamental importance in computer vision. Therefore,
in the past many families of methods to calculate the similarity of two shapes
have been proposed. Well-known families are based on the Hausdorff metric,
on contour descriptors and on moments of the object, see [1] for an overview.
Some time ago a new family of methods has been introduced, based on the
Minkowski inequality and its descendants. The central operation of this method
is the minimization of a volume or mixed volume functional, over a set of relative
orientations, of the Minkowski sum of two shapes that are to be compared [2,3,4].
It is defined for convex objects, and can be used to calculate many types of
similarity measures. It is invariant under translation and rotation, and when
desired, under scaling, reflection, isometries and similitudes [3]. In this article
we limit ourselves to translation and rotation invariance. The method may be
used in a space of any dimension, but we will concentrate on the 3D case. In [4]
a specific application is presented.

To calculate the Minkowski sum based similarity of two convex sets in 3D
space an infinite number of relative orientations has to be be considered. How-
ever, for general convex polyhedra only a finite number has to be considered,



called the critical orientations. An orientation is called critical when three faces
of one polyhedron are parallel with three edges of the other polyhedron. Thus,
the set of critical orientations can be found by treating all combinations of three
faces in one polyhedron and three edges in the other, and for every combination
rotating one of the polyhedra such that the concerned combination of faces and
edges becomes parallel. Methods to find such rotations, for three given edges
and faces, are presented in [6].

In this article two main issues are addressed. The first issue is reducing the
time complexity of this kind of similarity measure calculations. Experiments have
previously been performed on 2D polygons [2] and 3D polyhedra [3,4], and show
that for polygons the time consumption is low. However, even for 3D polyhedra
of moderate complexity in terms of the number of faces, edges and vertices, the
time consumption is prohibitive because a large number of relative orientations
has to be considered. We present a method to reduce the time complexity for
3D polyhedra by reducing the number of relative orientations to be considered.
The method determines, before critical orientations are calculated for three given
faces and edges, whether it is possible that these become parallel simultaneously.
In this way the number of critical orientations that actually has to be processed
is reduced, resulting in a lower time complexity of the algorithm.

The second main issue that is addressed in this article, is ensuring robust-
ness by detecting ill-posed critical orientation problems. For non-general convex
polyhedra, the set of critical orientations is not always finite. That is, polyhedra
with parallel and perpendicular edges and faces may result in ill-posed problems.
Some ill-posed problem instances are mentioned in [3]. We derive a general clas-
sification scheme identifying all ill-posed problem instances. Using this scheme
we show that the two classes of critical orientations in [3], called point-double
and multiply-critical orientations, may be treated in a unified way. In [5] it was
shown that critical orientations from both classes have to be considered. It has
been shown in [3] that ill-posed problem instances do not minimize the volume
or mixed volume functional, hence, they may be disregarded. The reason for
identifying and disregarding ill-posed problem instances is that in this way it is
avoided that singular or near-singular equations are solved, which would result
in meaningless or erroneous results.

The structure of this article is as follows. In section 2 we introduce the
Minkowski sum, the notion of mixed volume, the Brunn-Minkowski inequali-
ties, and we derive some example similarity measures. Also the slope diagram
representation is introduced and critical orientations are defined in terms of slope
diagrams. In section 3 it is explained how geometric inequalities may be used to
reduce the number of critical orientation calculations. In section 4 a classifica-
tion scheme is derived, identifying ill-posed instances of the critical orientation
calculation. In section 5 the implementation of the methods is discussed and in
section 6 results from our experiments are presented. In section 7 a derivation
of the observed time complexity is given.
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2 Preliminaries

2.1 Minkowski sum based similarity measures

A B C

Fig. 1. Two polyhedra A and B and their Minkowski sum C. C is shown on half the
scale of A and B.

The considered similarity measures are based on the Minkowski sum of two
convex polyhedra. The Minkowski sum C of two sets A and B is defined as

C = A ⊕ B ≡ {a + b | a ∈ A, b ∈ B}, A, B, C ∈ Rn. (1)

In this article A and B are convex polyhedra in 3D space. Then C is also a
convex polyhedron, generally with more faces, edges and vertices than A and
B, see figure 1. Obviously, the shape and volume of C depend on the relative
orientation of A and B. The volume of C may be written as

V (C) = V (A ⊕ B) = V (A) + 3V (A, A, B) + 3V (A, B, B) + V (B). (2)

Here, V (A) and V (B) are the volumes of A and B, and V (A, A, B) and V (A, B, B)
are mixed volumes, introduced by Minkowski [8].

Many inequalities about volume and mixed volume are known, for example

1. The Minkowski inequality:
For two arbitrary convex sets A and B in Rn,

V (A, A, B)3 ≥ V (A)2V (B) (3)

with equality if and only if A = B.
2. The Brunn-Minkowski inequality:

For two arbitrary convex sets A and B in Rn,

V (A ⊕ B) ≥ 8V (A)
1
2 V (B)

1
2 (4)

with equality if and only if A = B.
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From each of these inequalities a similarity measure may be derived [3],

σ(A, B) ≡ max
R∈R

V (A)2/3V (B)1/3

V (R(A),R(A), B)
(5)

σ1(A, B) ≡ max
R∈R

8V (A) 1
2 V (B) 1

2

V (R(A) ⊕ B)
. (6)

Here R denotes the set of all spatial rotations, and R(A) denotes a rotation of A
by R. Because the volumes in these equations are always positive, the similarity
measures σ and σ1 are always positive and ≤ 1, with equality if and only if
A = B, up to translation. In [3] some other properties of σ and σ1 are given.

Besides the Minkowski and the Brunn-Minkowski inequalities many other
inequalities exist, some based on the volume, some on the mixed volume, some
on the area and some on the mixed area of the Minkowski sum. From every
of these inequalities a similarity measure may be derived. In this article we
concentrate on computing σ. The technique presented in this article to speed
up this computation may be applied to other Minkowski sum based similarity
calculations as well.

To find the maximum in (5) for convex sets in general, an infinite number
of orientations of A has to be considered. However, when A and B are convex
polyhedra in 3D space, in general only a finite number of relative orientations
of A and B has to be checked [3]. Roughly speaking these orientations are char-
acterized by the fact that edges of B are as much as possible parallel to faces of
A. This can be formulated in an exact way by using the slope diagram represen-
tation (SDR) of the polyhedra [7].

2.2 Slope diagram representation

In this article the slope diagram representation plays an important role as it
is suitable to represent critical orientations. Critical orientations are defined in
terms of relative orientations of slope diagrams. The slope diagram of a convex
polyhedron in 3D space consists of points, spherical arcs of a great circle and
spherical convex polygons on the unit sphere.

The SDR of a polyhedron A, denoted by SDR(A), is a subdivision on the
unit sphere centered at the origin. A vertex of A is represented in SDR(A) by
a spherical polygon, an edge by a spherical arc of a great circle, and a face by
a vertex of a spherical polygon, see figure 2. Denoting face i of polyhedron A
by Fi(A), edge j by Ej(A), and vertex k by Vk(A) the SDR of a polyhedron is
constructed as follows.

– Face representation. Fi(A) is represented on the sphere by a point SDR(Fi(A)),
located at the intersection of the outward unit normal vector ui on Fi(A)
with the unit sphere.

– Edge representation. An edge Ej(A) is represented by the arc of the great
circle connecting the two points corresponding to the two adjacent faces of
Ej(A).
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– Vertex representation. A vertex Vk(A) is represented by the polygon bounded
by the arcs corresponding to the edges of A meeting at Vk(A).

Four remarks. SDR(A) is not a complete description of A, it only contains di-
rectional information about A. When A is rotated by a rotation R, the slope di-
agram representation rotates in the same way, i.e., SDR(R(A)) = R(SDR(A)).
In the following, when speaking about distance in an SDR we mean spherical
distance, i.e., the length of the arc of a great circle on the unit sphere. Because
the angle between two adjacent faces of a non-degenerate convex polyhedron is
always less than π, the length of an arc in an SDR is always less than π.

A SDR(A)

Fig. 2. A polyhedron A and SDR(A), i.e., the slope diagram representation of A. The
orientations of A and SDR(A) are the same, so it is possible to see how they are
related.

2.3 Critical orientations

The slope diagram representations of two convex polyhedra are used to define
their critical orientations. An orientation is called critical when, in the superim-
posed slope diagrams, three points of one slope diagram coincide with three arcs
of the other slope diagram.

Two cases are distinguished.

case 1 Three spherical points of SDR(R(A)) coincide with three spherical arcs
of SDR(B); See figure 3.

case 2 A spherical point of SDR(R(A)) coincides with a spherical point of
B, and simultaneously one spherical point of SDR(R(A)) coincides with a
spherical arc of SDR(B).

Case 1 means that three edges of B are parallel to three faces of R(A). Case
2 means that a face of R(A) is parallel to a face of B, and an edge of B is
parallel to a face of R(A). In [3] case 1 and case 2 are called multiply-critical
and point-double respectively. Possibly, σ obtains its maximum when case 1 or
case 2 fulfilled [3,4]. As will be shown later, case 2 is a special instance of case
1. Therefore, in the following we will only consider case 1.
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FRONT BACK

Fig. 3. Front side and back side of two superimposed slope diagrams. Thin lines:
SDR(R(A)). Bold lines: SDR(B). At the front side two points of SDR(R(A)) coincide
with two arcs of SDR(B), and at the back side one point of SDR(R(A)) coincides with
one arc of SDR(B). So, in total three points of SDR(R(A)) coincide with three arcs
of SDR(B), which corresponds with case 1.

3 Using geometric inequalities to skip unfeasible critical
orientations

An orientation is called critical when in the superimposed slope diagrams three
points of one slope diagram coincide with three arcs of the other slope diagram.
In this section we show how some combinations of points and arcs can be skipped,
resulting in speed-up.

Consider the unit sphere centered at the origin, with three arcs K,L,M
and three points a, b, c; see figure 4. As explained before, a rotation R has
to be calculated with the property that the point R(a) coincides with arc
K, R(b) coincides with arc L and R(c) coincides with arc M. Without ac-
tually calculating R it is possible to detect situations where no such R ex-
ists. For this purpose spherical distances are used in the following way. Con-
sider two spherical points a and b with a spherical distance d(a, b), and two
arcs K and L, where dmin(K, L) and dmax(K, L) are the minimal and max-
imal distance between the arcs. Here, dmin(K, L) is defined as the minimum
distance of the points q1 and q2 where q1 is on on K and q2 is on L, i.e.,
dmin(K,L) ≡ min(d(q1, q2)) where q1 ∈ K and q2 ∈ L. The maximum
distance dmax(K, L) is defined analogously. Obviously, only when dmin(K, L)
≤ d(a, b) ≤ dmax(K, L), a can coincide with K while at the same time b coincides
with L, see figure 4. The same principle may be used for the other two pairs of
points and arcs, i.e, a critical orientation calculation should only be performed
when

dmin(K,L) ≤ d(a,b) ≤ dmax(K,L) and (7)
dmin(L,M) ≤ d(b,c) ≤ dmax(L,M) and

dmin(M,K) ≤ d(c,a) ≤ dmax(M,K).

Problem instances that do not fulfil (7) are unfeasible, the opposite is not
necessarily true. That is because in (7) only distances are considered, and not,
for example, angles.
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a

b
c

SDR(A)
K

L

M

SDR(B)

Fig. 4. SDR(A) with three marked points a, b, c and SDR(B) with three marked
arcs K, L, M. SDR(A) may be rotated so that in the overlay R(b) coincides with L
and R(c) coincides with M, but clearly then R(a) can not coincide with K. I.e., the
situation that R(b) coincides with L, R(c) coincides with M and R(a) coincides with
K is unfeasible.

4 Identifying ill-posed problem instances

No method is known that calculates a rotation with the property formulated
in case 1 in a direct way. Instead, a two-step approach is used for this. First
an orientation is calculated where three points coincide with three great circles
carrying the given arcs. Secondly, it is checked whether the three rotated points
coincide with the three arcs, which is a trivial calculation. In this section ill-posed
problem instances will be considered, as encountered in the first step.

Consider the unit sphere centered at the origin, with three great circles k, l, m,
carrying three arcs K,L,M, each representing an edge of polyhedron B. The
vectors k, l,m are normals of the planes through the origin, carrying the great
circles, i.e., they are the normals of the great circles. Whether the normals are
on the positive or negative side of the planes is of no importance. On the unit
sphere are also given three points a, b, c. These points are the end-points of the
unit vectors â, b̂, ĉ, where a,b, c are the normals of faces of A. The lengths of
a,b, c,k, l,m are finite and non-zero, and play no role in the critical orientation
calculations.

To calculate critical orientations it is required to calculate the proper orthog-
onal transformation R with the property

k ·R(a) = 0, l · R(b) = 0, m · R(c) = 0 (8)

where · denotes the standard inner product. I.e., after rotating over R the points
a, b, c coincide with the great circles k, l, m respectively. The matrix mat(R),
which is the matrix representation of R, represents a proper orthogonal trans-
formation in 3D when
Σi RijRik = δjk, j, k = 1, 2, 3 and det(mat(R)) = 1.

How R may be calculated is discussed in [6]. There, only well-posed problem
instances are considered, where (ill-) well- posed means that the number of
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solutions of (8) is (in)finite. The calculation is performed by writing (8) as a set
of three second degree polynomial equations. It has been shown there that the
number of solutions of a well-posed problem is 0, 2, 4, 6 or 8. An example of an
ill-posed problem instance is given by

k ·R(a) = 0, l · R(a) = 0, m ·R(a) = 0, (9)

with k, l,m coplanar. I.e., the vectors a,b, c from (8) coincide. Clearly, any R
that rotates a such that R(a) is perpendicular to the plane that carries k, l,m is
a solution. However, any rotation R′(R(a)), where R′ is a rotation around R(a),
is also a solution. There is an infinite number of rotations R′ so the problem
is ill-posed. When the vectors k, l,m are linearly independent the problem is
well-posed and the number of solutions to (9) is zero. The goal of this section is
to identify ill-posed problem types in a systematic way in order to skip them.

Equation (8) is said to be degenerate when the vectors a,b, c are not in
general relative position but coincide or are perpendicular, or when the same
holds for k, l,m. As will be clear from the foregoing, some degenerate instances
of (8) are ill-posed and some well-posed. When two or three equations in (8)
are identical we are obviously dealing with an ill-posed problem instance. In the
following we assume that this type of ill-posedness has been filtered out already
by a combinatorial check on the pointers to the vectors a,b, c and k, l,m. Later,
also a geometrical check will be performed to see whether the vectors are parallel
or perpendicular.

Let us now actually determine which types of critical orientation problems
are ill-posed. Suppose we have created in some way a situation where

k · a = 0, l · b = 0, m · c = 0. (10)

It is well-known that any proper orthogonal transformation R may be written
as a rotation around an axis ρ over some angle. So an ill-posed problem instance
is characterized by the fact that there is an infinite number of axes and rotation
angles, each represented by its own R, such that

k ·R(a) = 0, l ·R(b) = 0, m ·R(c) = 0. (11)

Our approach to derive a classification scheme of ill-posed problem types is to
separately identify ill-posed instances for the pairs (a,k), (b, l) and (c,m). By
combining ill-posed pair configurations we identify ill-posed configurations for
the whole problem.

Assuming that k ·a = 0, there are two axes ρ, about which a may be rotated,
giving k · R(a) = 0. One axis coincides with a, the other with k, see figure 5.
These cases are denoted as 1 and 2. For the pairs (l,b) and (m,c) similar axes
exist, see figure 5. These cases are also also denoted by 1 and 2.

Now we combine three ill-posed configurations, one from each pair, such that
their three axes ρ coincide. For example, in the ill-posed configuration 1,1,1 the
vectors a, b, c coincide with each other and with ρ, while k, l, m are perpendic-
ular to ρ, i.e., are coplanar, see figure 6. This configuration was discussed in the
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example above. In total there are eight different combinations, hence there are
eight types of ill-posed problems. We use the following notation, where parallel
means parallel or anti-parallel. When three vectors a,b, c are parallel this is
represented by a‖b‖c. When the vectors a and b are parallel and they are both
perpendicular to c this is represented by (a ‖ b) ⊥ c. When b is perpendicu-
lar to a, and c is perpendicular to a this is represented by b⊥a ∧ c⊥a. When
a,b, c are coplanar this represented by copl(a,b, c). Using this notation gives
the scheme as shown in table 1. The index, for example 1, 1, 1, tells which three
situations have been combined. The right column describes the geometry of the
configuration.

1,1,1 a‖b‖c and copl(k, l,m)
1,1,2 (a‖b) ⊥c and k⊥m ∧ l⊥m
1,2,1 (a‖c) ⊥ b and k⊥l ∧ m⊥l
1,2,2 (b‖c) ⊥ a and l⊥k ∧ m⊥k
2,1,1 b⊥a ∧ c⊥a and (l‖m) ⊥ k
2,1,2 a⊥b ∧ c⊥b and (k‖m)⊥ l
2,2,1 a⊥c ∧ b⊥c and (k‖l) ⊥m
2,2,2 copl(a,b, c) and k‖l‖m

Table 1. Ill-posed problem types listed systematically. The first column gives combi-
nations of three pairs, as shown in figure 5. In the second column the geometry of the
configuration is given, i.e, whether vectors are parallel, perpendicular or coplanar.

Checking a problem instance for ill-posedness means that it has to be checked
for the eight situations in this list, thus eight types of checks would have to be
implemented. This number can be reduced to two by inverting and permuting
the problem. In a problem inversion the vectors a and k are exchanged, as well
as the vector b and l, and c and m. It can easily be seen that, when a problem
is ill-posed, its inverse is also ill-posed. In a problem permutation the vectors
a,b, c are permuted in some way, and the vectors k, l,m are permuted similarly.
Clearly, when a problem is ill-posed its permutations are also ill-posed. From
table (1) it can be seen that, apart from permutations and inversions, there
are actually only two ill-posed problem types. Case [1, 1, 1] is the inverse of
case [2, 2, 2]. The cases [1, 1, 2], [1, 2, 1] and [2, 1, 1] are identical, apart from a
permutation. Similarly, the cases [1, 2, 2], [2, 1, 2] and [2, 2, 1] are identical, apart
from a permutation. Finally, the cases [1, 1, 2], [1, 2, 1] and [2, 1, 1] are inverse
cases of [2, 2, 1], [2, 1, 2] and [1, 2, 2] respectively. Thus only two classes of ill-
posed problem types remain, the class consisting of [1, 1, 1] and [2, 2, 2], and the
class consisting of [1, 1, 2], [1, 2, 1], [2, 1, 1], [1, 2, 2], [2, 1, 2] and [1, 2, 2]. In this
way only two types of checks have to be implemented and these are used to test
permuted and inverted instances of the problem at hand.

From the analysis above it is clear that many degenerate problem instances
are ill-posed. However, there are also many degenerate instances of (8) that
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Fig. 5. Ill-posed problem types derived systematically. Six ill-posed configurations of
the three pairs (a,k), (b, l) and (c,m) respectively, two for each pair. k, l and m are
not shown, but their great circles k, l and m. To improve visibility, instead of the unit
sphere a sphere with radius 0.5 is shown.

1,1,1 1,1,2 1,2,1 1,2,2

2,1,1 2,1,2 2,2,1 2,2,2

Fig. 6. All eight ill-posed configurations, as listed in table 1. Every figure is a combi-
nation of three figures from figure 5, one from each pair.
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are well-posed. For example, see figure 7. The problem instance where a,b, c are
coplanar and k, l,m are coplanar is well-posed. Also the configuration where two
of the points a, b, c coincide is well-posed. Case 2, i.e., the point-double situation
is an instance of this type of configuration. See figure 7.

a k 

l b

c
m 

A
m

 a,c  
k

b

l

B

Fig. 7. Two degenerate problem instances that are well-posed. A: the vectors a,b, c are
coplanar and the vectors k, l,m are coplanar. For the visual effect the points a, b, c are
connected by a line segment. B: Case 2, i.e., the point-double configuration. The points
a and c coincide, so, when rotated they will coincide with one of the two intersection
points of the great circles k and m. In both figures one of four solutions is shown.

5 Implementation

In the implementation an important role is played by a list L, which contains all
pairs (p, a), where p is a point of SDR(A) and a is an arc of SDR(B). For general
polyhedra it holds that the number of vertices, edges and faces are proportional
to each other, so, in the slope diagram it holds that the number of points, arcs
and faces are proportional to each other. Defining the complexity of a polyhedron
as the number of faces, and assuming that A and B have the same complexity,
the length of L is proportional to the squared complexity of A or of B.

Three more data structures are d pts, mind arcs and maxd arcs. In d pts
the distance between every pair of points of SDR(A) is stored. In mind arcs
(maxd arcs) the minimum (maximum) distance between every pair of arcs of
SDR(B) is stored. The data structures are filled before the actual calculations
start.

In the Boolean function feasible distances(i,j,k,L) the calculations from (7)
are implemented. Here, i, j, k are indices in L, so, the triple i, j, k defines three
points and three arcs. The function feasible distances(i,j,k,L) uses data in d pts,
mind arcs and maxd arcs. In the Boolean function well posed(i,j,k,L) the tests
from table 1 are implemented. The actual critical orientation calculations are
implemented in the function crit or(i,j,k,L), see [6]. After calling this function
the list R contains 0, 2, 4, 6 or 8 rotation matrices. These rotation matrices are
assigned to r successively. In the Boolean function pts on arcs(i,j,k,L,r) it is
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tested whether the three points defined by i, j, k, after rotating them over r,
coincide with the three arcs defined by i, j, k. The result of these four functions
is invariant under permutation of the arguments i, j, k, so a factor of six may be
gained by iterating through i, j, k such that i < j < k. The similarity measure
of A and B, as given in (5), is calculated in σ(A,B,r), and the maximum value
is stored. The complete algorithm is given in Algorithm 1.

Algorithm 1 New algorithm
INPUT: A, B {convex polyhedra}
OUTPUT: s {the similarity measure of A and B}
SDR A ← construct slope diagram(A)
SDR B ← construct slope diagram(B)
d pts ← compute point distances(points in SDR A)
mind arcs, maxd arcs ← compute arc distances(arcs in SDR B)
L ← make combinations(points in SDR A, arcs in SDR B)
n ← length(L)
s ← 0.0
for all i such that 0 ≤ i < n − 2 do

for all j such that i + 1 ≤ j < n − 1 do
for all k such that j + 1 ≤ k < n do

if feasible distances(i, j, k, L) then
if well posed(i, j, k, L) then

R ← crit or(i, j, k, L) {R is a list of rotation matrices}
for all r in R do {r is a rotation matrix}

if points on arcs(i, j, k, L, r) then
s ← max(σ(A,B, r), s)

end if
end for

end if
end if

end for
end for

end for
print ‘‘The similarity measure of A and B is: ’’, s

In the following we refer to this algorithm as the new algorithm. This algo-
rithm without the calls to feasible distances(i,j,k,L) and well posed(i,j,k,L) will
be referred to as the old algorithm.

6 Results

6.1 Using geometric inequalities to skip unfeasible critical
orientations

In this subsection we present the measured times of the old and new algorithm.
To compare the speed of the old and the new algorithm we count for both
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Fig. 8. The results of the experiments with the old algorithm (upper dots) and new
algorithm (lower dots), plotted logarithmically on both axes. f is the number of faces of
A and B. fd is the number of times the function crit or(i,j,k,L) is called. The results of
both algorithms are linear, indicating that the time complexity is of the form fd = a.fe,
where e is the exponent and a a constant. A least squares fit in this plot gives e = 6.00
for the old algorithm, and e = 4.57 for the new algorithm. So, the experimental time
complexity of the old algorithm is O(f6.00) and of the new algorithm O(f4.57).

algorithms the number of times fd the function crit or(i,j,k,L) is called. Obvi-
ously, the number of calls in the new algorithm will be less than the number of
calls in the old algorithm. As the complexity of B and A increases, the arcs in
SDR(B) get smaller. The smaller the arcs, the smaller the range of distances
between them and thus the smaller the probability that a pair of points will fit
between them, resulting in a higher probability that combinations are skipped.
I.e., we may expect a speed improvement that is not simply a constant factor
but that is stronger for more complex polyhedra. The difference between fd
for the old and the new algorithm is practically completely caused by the func-
tion feasible distances(i,j,k,L). As explained earlier, the effect of the function
well posed(i,j,k,L) on the complexity is negligible.

We tested the new and the old algorithm on randomly generated polyhedra,
ranging in complexity from 4 to 46 faces. The polyhedra A and B had the
same number of faces. For every test we generated a random polyhedron A,
and generated random polyhedra B until a polyhedron was found with the same
number of faces as A. For the pair A, B we used the new and the old algorithm
to determine fd. In figure 8 the logarithm of fd is plotted as a function of the
logarithm of the number of faces. From this plot it can be seen that the new
algorithm is significantly faster than the old algorithm. For polyhedra with 10
faces the new algorithm is ≈ 10 times faster than the old algorithm, for polyhedra
with 46 faces it is ≈ 60 times faster. In the log-log plot, the results of the new
algorithm and the old algorithm are both linear, indicating that both algorithms
have a time complexity of the form fd = a.fe, where f is the number faces of
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A and B, and a and e are constants. Fitting a line through these points with
a least squares method gives for the old algorithm e = 6.00, and for the new
algorithm e = 4.57. So, the experimental time complexity of the old algorithm is
O(f6.00) and of the new algorithm O(f4.57). The O(f6.00) time complexity of the
old algorithm is obvious, considering that the length of the list L is proportional
to f2 and that it is processed in a threefold loop.

6.2 Identifying ill-posed problem instances

The most important effect of testing on ill-posedness is that the critical orienta-
tion calculations become robust. This was tested on various ill-posed problems.
As ill-posed problems occur in particular when working with polyhedra with
parallel and/or perpendicular edges and faces, we calculated amongst others the
similarity measure of the five platonic solids with respect to each other and with
respect to random polyhedra. Calculating the similarity of these shapes, without
testing for ill-posedness, resulted for more than 50% of the similarity calcula-
tions of A and B in at least one ill-posed critical orientation calculation. After
filtering out ill-posed critical orientation calculations, the calculations could be
performed with the generic method from [6] and resulted in a finite number
of solutions. I.e., testing for ill-posedness is an effective approach to make the
critical orientation calculations robust.

7 Derivation of the observed time complexity

The time complexity of the new algorithm is mainly influenced by using geomet-
ric inequalities to skip unfeasible critical orientations. Although sometimes some
critical orientation calculations are skipped as a result of testing on ill-posedness,
as explained before, this will have negligible effect on the time complexity. There-
fore, this section concentrates on using geometric inequalities to skip unfeasible
critical orientations.

A simple derivation of the complexity of the new algorithm is as follows.
The number of faces f , edges and vertices of a polyhedron are proportional to
each other, so the number of faces, arcs and points in a slope diagram are also
proportional to each other and proportional to f . Therefore, in the slope diagram
the average area per arc is proportional to f−1. The average area of a spherical
polygon in the slope diagram is proportional to f−1, hence the average length
of an arc in the slope diagram is proportional to f−1/2. Let us now consider the
following situation. On the unit sphere we draw an arc a with length |a|, and we
draw the region consisting of all points with a distance d to at least one point of
a. See figure 9. The region consists of a belt with an average area proportional
to d|a| ∝ df−1/2. The average number of arcs falling completely or partially in
this belt is average belt area

average arc area , i.e this is proportional to df1/2. Now we do not
only consider the arc a but all f arcs. Hence, in a slope diagram the number
of pairs of arcs a1, a2 for which it holds that dmin(a1, a2) ≤ d ≤ dmax(a1, a2)
is proportional to df1.5. In (7) we are not considering one but three pairs of
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arcs, hence, the number times that for a given d (7) is fulfilled is proportional
to (df1.5)3 = d3f4.5. The distance between two points in a slope diagram may
range from 0 to π, and d does not depend on f . Therefore, the number times
that (7) is fulfilled is proportional to f4.5.

This agrees reasonably well with our experimental result of f4.57. That our
experimental result differs from the theoretical result seems to be caused by
the fact that in our experiments we also used some polyhedra with few faces.
In figure 8 it can be seen that the slope of the curve of the new algorithm
decreases slightly for more complex polyhedra. Disregarding the first ten data
points and fitting a line to the remaining points gives an exponent of 4.52. So,
for more complex polyhedra our experimental complexity corresponds well with
the derived complexity of f4.5.

A B C D

Fig. 9. Four spheres A, B, C, D, with an arc a, and regions (black) consisting of all
points with a spherical distance of 1.5, 0.58, 0.25, 0.1 respectively, to at least one point
of a. In C and D the arc is (partially) covered by the black area.

8 Discussion, conclusion and future work

In section 4 we showed that the case 2 type of critical orientation is a special
instance of the case 1 type. As a result, case 2 can be handled by the critical
orientation calculation method used for case 1. But potentially, in this way the
calculations may become inefficient for the following reason. Case 2 means that,
as with all critical orientations, three points a, b, c have to coincide with three
arcs K,L,M respectively. Additionally, case 2 means that two points, say a
and b, coincide. Obviously, then a critical orientation is only possible when K
and L have a point in common. In a slope diagram, in general, arcs do not have
points in common, only some arcs have coinciding end points. Thus, calculating a
rotation when a and b coincide, and K and L have no point in common is a waste.
Fortunately, this situation is signaled by the procedure feasible distances(). I.e.,
the potential inefficiency, caused by unifying case 1 and case 2, is prevented by
combining this unified approach with using the procedure feasible distances().

By comparing the distance between two points in a slope diagram with the
range of distances between two arcs in a slope diagram a significant speedup of
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the critical orientation calculations is achieved. However, the time complexity is
still O(f4.57). We consider reducing this complexity further in two ways.

In the first place, instead of comparing distances we could compare angles in
the following way. Let the angle defined by the points a, b, c be the angle between
the two line segments a, b and b, c. Similarly, three points d, e, f , located on K,
L and M respectively, define a range of angles. When the angle defined by
a, b, c does not fall into the range of angles defined by d, e, f there is no critical
orientation for the points a, b, c and the arcs K, L, M. Analogously, this criterion
may be used for the other two angles defined by the points a, b, c and d, e, f .

A second possible approach is as follows. When point a coincides with K and
point b coincides with L then the position of point c is not completely determined.
The points a and b may move on K and L respectively, which causes point c to
move on one or two segments of some curve. When these curve segments do not
intersect arc M there is no critical orientation for this combination of points
and arcs.

In this article we showed that, by applying simple geometric techniques,
critical orientation calculations can be strongly reduced, without introducing
significant computational overhead. We expect that, by combining the method
proposed in this article with other simple geometric tests, the number of critical
orientation calculations can be further reduced.
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