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Abstract

In this paper we introduce and investigate similarity measures for convex polyhedra
based on Minkowski addition and inequalities for the mixed volume and volume
related to the Brunn-Minkowski theory. All measures considered are invariant under
translations; furthermore, some of them are also invariant under subgroups of the
affine transformation group. For the case of rotation and scale invariance, we prove
that to obtain the measures based on (mixed) volume, it is sufficient to compute
certain functionals only for a finite number of critical rotations. The paper presents
a theoretical framework for comparing convex shapes and contains a complexity
analysis of the solution. Numerical implementations of the proposed approach are
not discussed.

Key words: shape comparing, similarity measure, convex set, convex polyhedron,
Minkowski addition, slope diagram representation, affine transformation,
similitude, volume, mixed volume, Brunn-Minkowski inequality.

Preprint submitted to Elsevier Preprint



1 Introduction

Shape comparison is one of the fundamental problems of machine vision. Shape
similarity is usually measured in the literature either by a distance function
or a similarity measure. In practice it is usually important for the result of
comparisons to be invariant under some set of shape transformations, leading
to the necessity of solving complicated optimization problems. On the other
hand one is always interested to compare shapes in an efficient way. Since
this is not possible in general, it is important to study and describe shape
classes and transformation sets for which a compromise between generality
and efficiency can be found.

Most of the known related results are valid for comparing 2D shapes (see, for
example, [1,2]) and it is not clear how to extend them for comparing 3D shapes
efficiently. This is mainly because of the fact that contour representations are
used for comparison of shapes. In 3D the problem becomes much more difficult
and here polyhedral shapes can be considered as a simple but sufficiently
general model for developing techniques for shape comparison. In this paper
we deal however with the more constrained case of conver polyhedral shapes.
This allows us to estimate the complexity of the problem and to develop an
approach that avoids the necessity of checking all possible variants, unlike
other methods known in the literature.

The method we use in this paper for comparing convex polyhedra is based on
Minkowski addition. The Brunn-Minkowski theory [3] allows one to introduce
several similarity measures for convex shapes based on inequalities for the
volume and mixed volume. We consider similarity measures for convex shapes
which are invariant under subgroups of the group of affine transformations
on R? and follow the outline of the paper [4] devoted to 2D convex polygons.
All these similarity measures are translation-invariant. If one considers the
measures which are invariant under the group of orthogonal transformations,
the direct computation of similarity measures in the 3D case becomes very
time consuming. Every orthogonal transformation with positive determinant
can be considered as a rotation about some axis by a fixed angle. Therefore
the optimization should be performed for all possible positions of rotation axes
and rotation angles.

Data representation is a very important part of every computation. A spher-
ical representation of convex polyhedra is most suitable while dealing with
Minkowski addition. One of the simplest of such spherical representations is
the Extended Gaussian Image (EGI). According to this representation every
polyhedral facet is given by a point on the unit sphere having the same unit
normal vector as the corresponding facet. A weight is assigned to such a point
which equals the area of the corresponding facet. It follows from the Minkowski



existence theorem [3] that the discrete distribution of these weights uniquely
defines a convex polyhedron. The representation is translation-invariant and if
the polyhedron rotates its EGI rotates in the same way. Due to these properties
the EGI representation is often used in computer vision for solving problems
of recognition and pose determination of 3D shapes [5-8].

Although the EGI defines a unique convex polyhedron, the reconstruction of
a polyhedron itself from its EGI is a difficult problem. Several algorithms
have been developed for this reconstruction. Little [9] suggested an iterative
algorithm which finds the distances of the polyhedral facets from the origin.
Recently Moni [10] proposed an algorithm which first establishes an adjacency
relation of facets and then finds directions and lengths of polyhedral edges.
However this algorithm is quite time consuming due to necessity of solving
nonlinear optimization problems. The time complexity of the polytope recon-
struction problem from its EGI was investigated in [11]. Since the EGI is
limited to convex shapes, several extensions of it have been proposed in the
literature to deal with non-convex shapes as well [12-14].

This paper deals only with convex polyhedra and uses the slope diagram rep-
resentation [15]. The facets, edges and vertices of a polyhedron are represented
on the unit sphere in R* by spherical points, spherical arcs and spherical poly-
gons, respectively. Additionally, we keep information about areas of facets and
lengths of polyhedral edges. This representation is unique for convex polyhe-
dra, allows easy polyhedron reconstruction and computation of Minkowski
addition of polyhedra. This representation is redundant in comparison to EGI
which contains only spherical points and areas of corresponding polyhedral
facets. As will be shown later, spherical arcs play also an important role in
computing similarity measures for convex polyhedra. Although in fact they
can be derived from spherical points using time consuming reconstruction al-
gorithms, we prefer to have them explicitly in the polyhedron representation.

If one restricts oneself to comparing convex polyhedra then it is possible to
prove that the volume and mixed volume (which will be referred to as ‘ob-
jective functionals’) of a Minkowski sum of polyhedra are piecewise concave
functions of the rotation angle of one polyhedron with a fixed axis of rotation.
This implies that, for every fixed rotation axis, there is only a finite number of
rotation angles at which it is necessary to compute the objective functionals in
order to obtain the similarity measure. We also show that the set of rotation
axes to be checked can be found using only information about the orientation
of facets of polyhedra and the position of their edges. This set depends also
on the similarity measure under consideration. Moreover we show that for the
case of (mixed) volume the set of rotation axes to be checked is finite.

The paper is organized in the following way. In Section 2 we briefly discuss
the approaches for Minkowski addition of convex polyhedra, and introduce



the slope diagram representation of convex polyhedra, as well as some facts
about the affine transformation group and its subgroups. Properties of mixed
volumes and main inequalities related to the Brunn-Minkowski theory needed
in the paper are given in Section 3. To compare convex polyhedra we intro-
duce in Section 4 the notion of similarity measures and define a number of
such measures based on inequalities for the volume and mixed volume. In Sec-
tion 5 similarity measures based on (mixed) volume are investigated which are
invariant under rotations and scaling. Given any axis of rotation, it is proved
that it is sufficient to compute the objective functionals needed to obtain these
measures only for a finite number of critical rotations, thus generalizing a sim-
ilar result for the 2D case [4]. Moreover it is proved for the case of (mixed)
volume that only a finite number of rotation axes has to be checked.

2 Preliminaries

This section presents some basic notation and other prerequisites needed in
the remainder of the paper. Also, the representation of convex polyhedra using
slope diagrams is introduced, as well as some facts about the affine transfor-
mation group and its subgroups.

By K(R?), or briefly K, we denote the family of all nonempty compact subsets
of R3®. Provided with the Hausdorff distance [3] this is a metric space. The
compact convex subsets of R® are denoted by C = C(R?), and the convex
polyhedra by P(R?). In this paper, we are not interested in the location of a
shape A C R3; in other words, two shapes A and B are said to be equivalent
if they differ only by translation. We denote this as A = B.

2.1 Minkowsk: addition of convex polyhedra

Minkowski addition of two sets A, B C R” is defined by
AeB={a+b|lac A, be B}.

It is well-known [3] that every element A of C is uniquely determined by its
support function given by:

h(A,u) = sup{{a,u) | a € A}, u € S%.

Here (a,u) is the inner product of vectors a and u, and S? denotes the unit
sphere in R3. It is also known that [3]:

h(A® B,u) = h(A,u) + h(B,u), u € S?, (1)



for A,B € C. The support set F(A,u) of A at u € S? consists of all points
a € A for which (a,u) = h(A,u). Support sets can be of dimension 0, 1, 2.
The support set of dimension &k, (k = 0,1,2) is called a k-face and denoted
by F*.If A is a convex polyhedron, then 0-faces, 1-faces and 2-faces are called

vertices, edges and facets of A, respectively. Henceforth, a facet will be denoted
by F;, and its area by S(F;).

It is known from Minkowski’s existence theorem [16] (see also [3, p. 390] for
a discussion of the n-dimensional case as well as a general concept of surface
measures for convex sets) that a convex polyhedron is uniquely determined by
areas and normal vector directions of its facets.

Theorem 2.1 (Minkowski’s existence theorem) Let uy,...,u; € S? be
distinct vectors linearly spanning R®, and let mq, ... , my be positive real num-
bers such that

k
=1

Then there exists a convex polyhedron P in R® having k facets with normal
vectors u; and area my;, i.e.,

fori=1,... k.
This theorem is true for n-dimensional polytopes as well.

Several equivalent ways are known to define Minkowski addition [17] for con-
vex polyhedra using representations based on vertices or facets. These are
especially helpful for the actual computation of Minkowski sums. Let p;, 1 =
1,...,np be the vertices of P and ¢;, 1 =1,...,n¢ be those of (). Then

PoQ=conv{p,+q;|i=1,...,np, j=1,... ,ng}
Here conv{ - } denotes the convex hull.

Theorem 2.2 Let P and Q be two convexr polyhedra in R®. Then for every
u € S?,

F(P®Q,u) = F(P,u)® F(Q,u). 2)

This theorem is valid for the n-dimensional case as well [3, Thm.1.7.5].

Equation (2) is the basis for computing Minkowski addition of convex poly-
hedra. We follow here the outline of [15] and refer to it for a more detailed
discussion.



Since a convex polyhedron is defined by its oriented facets, it is sufficient for
computation of P& @ to find only the facets of polyhedron P & Q). For every
facet F'(P @ @, u) the normal unit vector u is either orthogonal to a facet of P
or/and @, or there exist non-parallel edges of P and @) for which u is a normal
vector. Therefore the facets of P @ @ can be obtained by [15,18]:

(1) Minkowski addition of two facets: addition of a facet of P and a facet of
Q;

(2) Minkowski addition of a facet and an edge: addition of a facet of one of
the two summands and an edge of the other;

(3) Minkowski addition of a facet and a vertez: addition of a facet of one of
the two summands and a vertex of the other;

(4) Minkowski addition of two non-parallel edges: addition of non-parallel
edges of P and Q).

Here the added facets, edges, and vertices lie in supporting planes with parallel
outward normals.

2.2  Polyhedra representation

The remainder of the paper makes use of the slope diagram representation
(SDR) of convex polyhedra [15]. According to this representation, facets, edges
and vertices of a polyhedron are given by points, spherical arcs and convex
spherical polygons of the unit sphere S?, see Fig. 1.

o Facet representation. A facet F; of a polyhedron which is orthogonal to the
unit vector u; is represented on the sphere S? by the end point of this vector;

e FEdge representation. Each edge is represented by the arc of the great circle
(spherical arc) joining the two points corresponding to the two adjacent
facets of the edge;

e Verter representation. The region (called the spherical polygon) of the sphere
bounded by the spherical arcs corresponding to the edges which are adja-
cent to a polyhedral vertex, represents this vertex on the sphere S?. The
spherical arcs are included in the region.

Sometimes we speak about spherical points and arcs of a polyhedron, meaning
spherical points and arcs of its slope diagram representation. Also, weights of
spherical points and spherical arcs are used. The weight of a spherical point
or arc equals the area of the corresponding polyhedral facet, or the length of
the corresponding polyhedral edge, respectively.

Therefore the SDR of a polyhedron P is a triple SDR(P) = (V, A, W). Here
V = {u,us, ..., Un,} is the set of spherical points, for which the same nota-
tion is used as for the corresponding unit vectors {u;} of P. A CV xV is the



Fig. 1. Polyhedron (a) and its slope diagram representation (b).

set of spherical arcs. An arc from A connecting points u; and u; is denoted
by (ui,u;). YW denotes the weights of points and arcs, i.e., ap(u;) (or a(u;))
equals the area of the corresponding facet F; and {p(u;, u;) (or simply I(u;, u;))
equals the length of the edge between facets F; and F; of the polyhedron P.

In the two dimensional case, i.e., in the case of convex polygons, the slope
diagram can be considered also as a function M(P,u) defined on the unit
circle S'. Given a polygon P C R?, denote by /; the length of edge ¢ and by
u; the vector orthogonal to this edge. Then

iy if u =y,
M(P,u) =
0, otherwise.

This representation is also called in [4] a perimetric measure representation.

As follows from (2), Minkowski addition of two convex polygons can be com-
puted by merging their respective slope diagrams. Mathematically, this amounts
to the following relation [19,17]:

M(P®Q,u) = M(P,u) + M(Q,u), for P,Qe€ P(R?)anduec S (3)

Let us denote by a; = Zu; the angle between the positive z-axis and u;. Then,
given a slope diagram representation M (P, u) of a convex polygon P, its area
S(P) can be computed as follows [4]:

S(P)=> lisiney; Y ljcosa; — 3 > 17 sin o cos a. (4)
i=1 i=1

=1

Here n is the number of vertices of polygon P.



Now we have all the necessary tools to find Minkowski addition of two con-
vex polyhedra P and ) by merging their slope diagram representations. The
following three cases need special attention:

(1) A spherical arc of one polyhedron intersects a spherical arc of the other;
(2) A spherical point of one polyhedron lies on a spherical arc of the other;

(3) Two spherical points coincide.

Let us consider these cases in more detail.

(a) Spherical arc (b) Spherical arc (c) SDR of P & Q
(u,u') of P. (v,v") of Q. with new spherical
point w.
LI/
h
. \
u’ v /:\ \
. |

<
‘A
<\
/7<
I/E
e /\

(d) Edge of P corre-

sponding to (a). (e) Edge of Q

corresponding to

(b). (f) Facet of P @ @ corre-

sponding to (c).

Fig. 2. Minkowski addition of two convex polyhedra P and ) with intersecting

spherical arcs.

Case 1 Let two spherical arcs (u, u') and (v, v') intersect at the point w € S?



(a) Spherical point (b) Spherical point (c) SDR of P @ Q.
s of P connected to s of ) connected to
U1, U2, us- V1,02, 0V3,04.

(d) Facet of v

d 2
P correspond- (e) Facet O_f Q N
ing to (a). corresponding (f) Facet of P & @ corre-
to (b). sponding to (c).

Fig. 3. Minkowski addition of two convex polyhedra P and ) with coinciding spher-
ical points.

(see Fig. 2(c)). Point w represents a facet of P& (). This point is adjacent to
u,u’,v,v" and the weights of the corresponding spherical arcs are computed
as follows (see Fig. 2(d-f) for illustration):

ZPGBQ(wa ’LL) = lP@Q(wa ul) = lP(u: u ):
lpag(w,v) = lpgo(w,v') = lg(v,v').

For, the edges corresponding to arcs (u,u’) and (v, ') will be the edges of a
facet (parallelogram) of P@® (@ corresponding to w. The normal vectors u” =
‘Ziz‘ and v" = |Z§Zi| are parallel to the corresponding edges of polyhedra
P and @ represented by the arcs (u,u') and (v,v'), respectively. Directions
and lengths of all edges of the facet corresponding to the point w being
known, one can find the area of this facet by (4).

Case 3 Let us consider now an example of case 3. Denote the coinciding




spherical points of P and @ by s (see Fig. 3(a), (b), (c)). Suppose also that
point s is adjacent to spherical points ui, us, u3 of P and spherical points
V1, Vg, U3, U4 Of ). Point s represents a facet of polyhedron P & (). The arcs
(s,us2), (s,us), (s,v2) and (s,v,4) are assumed to belong to different great
circles. Therefore there will be arcs (s, us), (s,us), (s,v2) and (s, v4) in the
SDR of P& () with lengths determined by the SDR of P and @), respectively.
For, the edges corresponding to these spherical arcs will be the edges of the
polyhedral facet corresponding to s in P @ Q. The arcs (s,u1), (s,v1) and
(s,v3) are assumed to belong to the same great circle, such that the arcs
(s,u1) and (s,v;) have the same direction and the arc (s,u;) is shorter
than (s,v;). Therefore the spherical point s in P @ @ will be adjacent to
uy and vz and Ipgg(s,u1) = Ip(s,u1) + lo(s,v1) and lpgg(s, v3) = lg(s, vs).
That is, the edges €1, e5 corresponding to the arcs (s, u;) and (s,v;) on the
same great circle are parallel, with the length of the corresponding edge of
polyhedron P & @ being equal to the sum of the lengths of the edges ey, e5.
This rule of changing weights is illustrated in Fig. 3(f). Similarly to case 1
we can compute the area of the facet of P® () corresponding to the spherical
point s by (4).

Case 2 This is similar to case 3. Suppose that a spherical point u lies on a
spherical arc (v,v;). Let us introduce a new spherical point v’ on the arc
(v,v1) at the same position as u having weight zero, i.e. corresponding to a
rectangular facet of zero area. This brings us back to case 3.

2.8 Transformation groups

Consider subgroups of the group G’ of affine transformations on R*. If g € G’
and A € K, then g(A) = {g(a) | a € A}. We write g = ¢' if g(A) = ¢'(A)
for every A € K. This is equivalent to saying that ¢~'¢’ is a translation. We
denote by G the subgroup of G' containing all linear transformations, i.e.,
transformations g with ¢g(0) = 0.

The following result is obvious.
Lemma 2.3 For any two sets A, B C R? and for every g € G,

g(A® B) = g(A) @ g(B). (5)

We introduce the following notations for subsets of G:

M: multiplications with respect to the origin by a positive factor;
R: rotations about an axis (passing through the origin);

E: (plane) reflections (planes passing through the origin);

I: isometries (distance preserving transformations);
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S: similitudes (rotations, reflections, multiplications).

Observe that I, R, M and S are subgroups of G [20]. For every transformation
g € G one can compute its determinant ‘det g’ which is, in fact, the determi-
nant of the matrix corresponding to g. If g is an isometry then | det g| = 1; the
converse is not true, however. If H is a subgroup of GG, then H, denotes the
subgroup of H containing all transformations with positive determinant. For
example, I, = R and S, comprises all multiplications and rotations. If H is a
subgroup of G, then the set {mh | h € H, m € M} is also a subgroup, which
will be denoted by M H. Rotations in R?® are denoted as follows. When ¢ is
an axis (i.e., directed line) passing through the coordinate origin, r,, means
a rotation about ¢ through angle « in a counter-clockwise direction.

At several instances in this paper, the following concept will be needed.

Definition 2.4 Let H C G and J C K. We say that H is J-compact if, for
every A € J and every sequence {h, } in H, the sequence {h,(A)} has a limit
point of the form h(A), where h € H.

It is easy to verify that R is K-compact. However, the subcollection {r™ | m €
Z}, where r = 14,4 € R is a rotation with «/7 irrational, is not K-compact for
fixed axis £. The following result is easy to prove.

Lemma 2.5 Assume that H is J-compact and let f : J — R be a continuous
function. If A € J and fo := suppey f(h(A)) is finite, then there exists an
element hg € H such that f(ho(A)) = fo.

3 Mixed volumes

This section briefly describes properties of volumes and mixed volumes of
compact sets in R3. For a comprehensive treatment the reader may consult

[3]-

The following theorem is due to Minkowski for n = 3 [21, p. 353]. Here C(R")
is the space of compact convex subsets of R".

Theorem 3.1 (Minkowski theorem on mixed volumes) The volume of
the Minkowski sum A = \MA; @ -+ ® A\pAm of convex sets from C(R™), where
m s a positive integer and \; > 0, s a homogeneous polynomial of degree n
N Ay ...y Am. That s

m m

11=1 in=1

11



where the coefficients V(A;,, ..., A;,) are invariant under permutations of
their arguments. The coefficient V(A;,, ..., A;,) is called the mixed volume
of the conver sets A; A,

q19 9 in *

For our purposes the case n = 3, m = 2 is the most interesting one. Thus, for
convex sets A, B in R® and A, u > 0 one has

VM@ uB) = X3V (A) +3X2uV (A, A, B) + 3)\*V (A, B, B) + 1i*V (B).
(6)

Let us present some useful properties of mixed volumes [22,3]:

V(A, A A) =V (4) (
V(A,B,C) > 0; if V(A),V(B),V(C) > 0, then V(4,B,C) >0 (8
V(AA, B,C) = AV (A, B,C) for every A >0 (
If 7 € R}, then V(A+z,B,0) =V(A,B,C) (1
If A, C A, then V (A1, B,C) < V(As, B, C) (11
V(g(A),g(B),g(C)) =|detg|-V (A, B,C), for every affine g (
V (A, B,C) is continuous in A, B,C w.r.t. the Hausdorff metric.  (

Note that the fundamental relation
V(g(A)) = [detg[ - V(A), (14)
holding for every affine transformation g, is in agreement with (7) and (12).

If P is a convex polyhedron with facets F; and corresponding outward unit

normal vectors u;, ¢ =1,...,k, then [3]
1k

V(A4,P,P) = 2 3" h(A,u)S( (15)
i=1

where S(F;) is the area of the facet F; of P and h(A, ;) is the value of the
support function of A for the normal vector u;.

In this paper the following inequalities play a central role, see Hadwiger [23]
or Schneider [3] for a comprehensive discussion.

Brunn-Minkowski inequality. For two arbitrary compact sets A, B C R3
the following inequality holds:

wl*—‘

V(A® B): > V(A): + V(B)3, (16)

with equality if and only if A and B are convex and homothetic modulo
translation, i.e., B = A\A for some \ > 0.

12



Minkowski inequality. For convex sets A, B € C(R?)
V(4, 4, B > V(4)?V(B), (17)
and as before equality holds if and only if B = AA for some A > 0.

Using the fact that for two arbitrary real numbers x,y one has (z +y)? > 4zy
with equality iff x = y, one derives from the Brunn-Minkowski inequality that

V(A® B) > 8V(A):V(B)3, (18)
with equality if and only if A = B and both sets are convex.

There exist several formulas, based on the support function and areas of facets,
that can be used to calculate the volume of convex polyhedra (see, for ex-
ample, [17, p. 324]). Let wuy,us, ... ,ur be unit normal vectors of the facets
Fy, F, ..., Fy of a 3-dimensional convex polyhedron P, and let A(P, u) be the
value of the support function of P for the unit vector u. Then, from (15), the
volume of P can be calculated as follows
1.k
V(P) = 5 Y (P S(F). (19)

i=1

Here S(F;) is the area of the facet F;. Other formulas for convex polyhedra
can be found in [24] and for non-convex ones in [25].

4 Similarity measures

This section adopts the approach developed in [4] to compare different shapes
in such a way that this comparison is invariant under a given group H of trans-
formations. For example, if one takes for H all rotations, then the comparison
should return the same outcome for A and B as for A and r(B), where r is
some rotation. In this section, we consider subgroups of the group G of linear
transformations on R?, as introduced in Section 2.3.

To compare different shapes the notion of similarity measures is introduced.
Recall that K is the family of all nonempty compact subsets of R3.

Definition 4.1 Let H be a subgroup of G and J C K. A function o : J x
J — [0,1] is called an H-invariant similarity measure on J if

(1) 0(A,B) = o(B, A);

(2) 0(A,B)=0(A",B")if A= A" and B = B’;
(3) 0(A,B) =0(h(A),B), h € H,;

(4) 0(A,B) =1 <= B = h(A) for some h € H;

13



(5) o is continuous in both arguments with respect to the Hausdorff metric.

When H contains only the identity mapping, then o will be called a similarity
measure.

Although not stated explicitly in the definition above, it is also required that
J is invariant under H, that is, h(A) e Jif A€ J and h € H.

Remark 4.2 If o in Definition 4.1 satisfies the inequality
0(4,0) > 0(4, B)o(B,C),

then the function d(A, B) = —log(o(A, B)) constitutes a metric on J mod-
ulo translations and transformations h € H. That is, d satisfies the triangle
inequality.

The following result is needed.

Proposition 4.3 If o is a similarity measure on J and H is a J-compact
subgroup of G, then

o'(A,B) = :1612 o(h(A), B)

defines an H-invariant similarity measure on J .

Unfortunately, o’ is difficult to compute in many practical situations. Below,
however, we consider several cases (with J = C) for which the computational
complexity can be reduced if one limits oneself to convex polyhedra.

Let H be a given subgroup of GG, and define

A ETE I )
oo(A, B) = sup |det h|3V(A)3V(B)3 (21)

heH V(AaAvh(B)) ’

1 |det h[3V(A)SV(B)3  |deth|3V(A)3V(B)3
03(A, B)=—=su . (22
e 2h£( V(A,A,h(B)) ’ v(A, h(B),h(B)) ) )

Remark 4.4 It is easy to show that o3(4, B) = 3(02(4, B) + 02(B, A)).
Instead, one can also define o4(A, B) = min{oy(A, B),02(B, A)}.

The following proposition and its proof are very similar to Proposition 4.4
in [4].

Proposition 4.5 If H is a C-compact subgroup of G, then

14



(a) o1 is an H-invariant similarity measure on C;

(b) o3 is an M H -invariant similarity measure on C;

(c) oo possesses only properties 2-5 of an M H-invariant similarity measure
on C.

Proof:

We prove (a). The proof of (b) and (c) goes along the same lines. Conditions
(1), (2) and (5) in Definition 4.1 are straightforward to verify. First let us
prove (3). Using (14) and (5) one gets

8|det h|2V (h(A))2V (B)?
h(A). B) =
— sup 8| det h'|z|det |2V (A)2V(B)?2

h'eH V(h(A o h_lh'(B))

= V(A® h-'W(B))
—1pt A 1 B 1
= sup 8‘ deth h |2V( )ZV( )2 (puttlng h” — h—lhl)

WeH V(A D h_lhl(B))
8| det h"|2V (A)2V (B)z
= sup
wen  V(A® Rh'(B))
:O'l(A,B).

Finally we prove (4). It is easy to see that o1(A,B) = 1 if B = h(A). To
prove the converse, assume that o1(A, B) = 1. Since H is C-compact, one can
conclude from Lemma 2.5 that there exists an h € H such that

1

8/det h|3V(A)2V (B)7 _
V(A @ h(B)) o

that is,

1

V(A@® h(B)) = 8V (A):V(h(B))3.

N[

In (18) we have seen that this implies that A = h(B). This concludes the
proof. 1

In the next section invariance under rotations and multiplications is inves-
tigated. Here we consider similarity measures which are invariant under the
multiplication group.

15



Example 4.6 (Invariance under multiplications) Take H = M, the mul-
tiplication group. Since the determinant of the multiplication by \ equals \*
one has

AV(A)3V(B)s  V(A)3V(B)3

UQ(A’B):S;;% V(A,A,\B) _ V(A A,B)

Using Remark 4.4 one may also find a simple expression for 3.

The computation of o1 (A4, B) is reduced to minimizing V(A\"2A @& A2 B) for
A > 0, a non-trivial task. Proposition 4.7 below presents a result that can be
applied to overcome this difficulty.

In a number of cases it is possible to transform an H-invariant similarity mea-
sure into an M H-invariant similarity measure. Towards that goal the following
normalization procedure can be used. Given A € K, define A’ = A/V (A)3.
Thus A’ has volume 1. Furthermore, ¢’ = | det g|~'g for g € G; the normalized
transform ¢’ has determinant 1. It is obvious that

[9(A)] = g'(A), for A€K, g€G.
The following result holds; the proof is rather straightforward.
Proposition 4.7 Assume that H C G and J C K are such that

he H=h e H
Aeg=A4A¢eJ.

If o is an H-invariant similarity measure on J, then o' given by
o' (A,B) =0(A", B’

is an M H-invariant similarity measure on J. Furthermore, o' = o if and
only if o s M H-invariant.

We conclude this section with the following simple but useful result on re-
flections, which is similar to the Proposition 4.6 from [4]. Denote by e the
reflection on R?® with respect to the origin.

Proposition 4.8 Assume that A € J implies e(A) € J. Let o be a similarity
measure on J, and define

o'(A, B) = max{o(A, B),c(e(A), B)}.

(a) If o is R-invariant, then o' is an I-invariant similarity measure.

(b) If 0 is Gi-invariant, then o' is a G-invariant similarity measure.
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Proof:

The proofs of (a) and (b) are almost identical. Here only (b) will be proved.
The properties (1), (2), and (5) of Definition 4.1 are straightforward to verify.
We prove (3) and (4).

(3): Let g € G. There are two possibilities: g € G, or g € G \ G.. Consider
the second case. One can write ¢ = he with h = ge, and also g = eh’ with
h' = eg; then h,h' € G,. Now

as was to be shown.

(4): Assume o'(A, B) = 1, then either 0(A, B) =1 or o(e(A), B) = 1. In the
first case one has B = g(A), for some g € G, and in the second case B =
g(e(A)) for some g € G . Therefore, B = g(A) for some g € G. ]

5 Rotations and multiplications

In this section we consider similarity measures on the space P of convex poly-
hedra which are S,-invariant, i.e., invariant under rotations and multiplica-
tions. Towards this goal, the similarity measures will be used as defined in
(20)—(22) with H = S; and H = R, respectively. In these expressions, the
terms V(P & h(Q)), V(P, P,h(Q)) and V (P, h(Q), h(Q)) play an important
role. Let the slope diagram representations of two convex polyhedra P and
@ be given by (V(P), A(P),W(P)) and (V(Q),A(Q), W(Q)), where V(P)
={u1,ug,... ,un,} and V(Q) = {v1,v2, ..., Vs, } are the normal vectors to
facets of polyhedra P and (), respectively.

5.1 Representation and objective functionals

It is well known (see e.g. [26]) that every similitude transformation can be
represented as a product of a homothetic transformation with prescribed cen-
ter and an orthogonal transformation. Every orthogonal transformation in
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R? with a positive determinant can be represented (up to translation) as a
rotation about some axis.

Let ¢ be an axis passing through the coordinate origin and 7, be the rotation
in R® about £ by an angle « in a counter-clockwise direction. Let § be the
angle between ¢ and the z-axis, and ¢ the angle between the projection of ¢
on the zy-plane and the z-axis, see Fig. 4. The rotation r,, can be expressed

z

X

Fig. 4. Geometry of rotation by an angle o about an axis with spherical angles

(0,9).
as a product of 5 rotations:
/rzaa = ’rza¢ T:‘/’a TZ,Q r:‘/’*a /rz77¢'

First the rotation axis ¢ is made to coincide with the z-axis through rotation
about the z-axis by an angle —¢, followed by rotation about the y-axis by an
angle —f. Then the rotation by « is performed about the z-axis. Finally, the
axis / is rotated back to its original position.

The required matrices of these transformations are given by:

cos¢ —sing 0 cos 0 sinf
R,s=1|sing cos¢g 0|, Ry o= 0o 1 0 |- (23)
0 0 1 —sinf 0 cosf

Alternatively, the rotation ry, can be decomposed as a product of 3 rotations
about the coordinate axes using Euler angles.

The slope diagram representation (SDR) of polyhedron P is assumed to have
the same center as the SDR of () by definition, that is, they are considered
to be defined on the same unit sphere. Moreover the SDR of P is fixed and
the SDR of () can be rotated about any axis passing through the origin.
It is easy to formulate the rotation of a polyhedron in terms of its SDR:
SDR(r(Q)) =r(SDR(Q)), for every rotation 7.
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Given a fixed axis ¢, (15) can be used to compute V(P,7(Q),7¢4(Q)) for
a € [0,27):

V(P rea(Q)rea(@) = =3 (P, rea(v;))a(vy).

=1

The problem to be considered is the minimization of one of the functionals
V(P,P,r¢,o(Q)), V(P,10,0(Q), 70,4(Q)), and V(P @1¢,(Q)). Below we refer to
these functionals as objective functionals.

(b) Cube Q W= Vs

(c) SDR of P and @

Fig. 5. Critical rotations of two cubes. In (c), spherical points uj-ug belong to
SDR(P) and v1-vg to SDR(Q). Not all spherical arcs are indicated.

5.2  Critical rotations

While rotating the slope diagram of polyhedron @, situations arise when spher-
ical points of the rotated SDR of () intersect spherical arcs or points of the
SDR of P. Such relative configurations of () w.r.t. P are critical in the sense
that they may correspond to (local) minima of the objective functionals to be
minimized.

First some definitions are needed distinguishing several situations. Instead of
¢, We will also write (¢, o) to denote a rotation about the axis £ by an angle
Q.

Definition 5.1 Let / be a fixed rotation axis. Polyhedron @ is called ¢-critical
w.r.t. P when there exists at least one spherical point v; in the SDR of ) which
is on the boundary of a spherical polygon in the SDR of P, i.e., for every € > 0
the points r,,_.(v;) and 7¢(v;) belong to different spherical polygons in the
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SDR of polyhedron P. Polyhedron @ is called critical w.r.t. P when Q is
{-critical w.r.t. P for at least one rotation axis /.

Definition 5.2 Let ¢ be a fixed rotation axis. Polyhedra P and ) are called
mutually £-critical when @) is /-critical w.r.t. P or P is {-critical w.r.t. Q).

Notice that if @ is ¢-critical w.r.t P (or vice versa), P and ) are mutually
{-critical.

Definition 5.3 Let £ be a fixed rotation axis. The £-critical angles of @ w.r.t.
P for mized volume are the angles o,

0<a]<adh<...<ady<2rm

such that Q' := T’g,ag(Q) is £-critical w.r.t. P. The rotation h := 7y is called
a critical rotation of QQ w.r.t. P for mized volume.

Let us emphasize here that the /-critical angles of () w.r.t. P for mixed volume
are defined only by spherical points in the SDR of the rotating polyhedron @)
and not by spherical points in the SDR of P. The /-critical angles of ) w.r.t.
P will in general be different from the /-critical angles of P w.r.t. Q.

This motivates the following definition.

Definition 5.4 Let ¢ be a fixed rotation axis. The ¢-critical angles of () w.r.t.
P for volume are the angles o],

0<ao]<a;<...<aj <2, (24)
such that P and Q' := rg 4 (Q) are mutually £-critical.

Note that the angles o are obtained by merging into one ordered sequence
the angles o; such that Q' is f-critical w.r.t. P and the angles o such that
P':=r,L,/(Q) is l-critical w.r.t. Q.

v}

Also, a classification of critical angles is needed. To this end, we introduce the
index of criticality of two polyhedra.

Definition 5.5 The index of criticality n(Q, P) of @ w.r.t. P is the number
of spherical points v; in the SDR of () which are on the boundary of spherical
polygons in the SDR of P.

Definition 5.6 Polyhedron Q is called simply (doubly, multiply) critical w.r.t.
P when n(Q, P) equals one (two, more than two). Polyhedra P and @ are
called simply (doubly, multiply) mutually critical when n(P,Q) + n(Q, P)
equals one (two, more than two).
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Definition 5.7 When P and () are doubly mutually critical, and at least
one spherical point of P coincides with a spherical point of (), this critical
configuration is called point-double.

Definition 5.8 Polyhedron @ is called strongly critical w.r.t. P if @) is mul-
tiply critical w.r.t. P, or doubly critical of type point-double. Polyhedra P
and @ are called strongly mutually critical if P and ) are multiply mutually
critical, or doubly critical of type point-double.

We will also say that (¢,«) is a simply (doubly, multiply, strongly) critical
rotation of @ w.r.t. P for mized volume if Q' := 144(Q) is simply (doubly,
multiply, strongly) critical w.r.t. P. Similarly, (¢, ) is called a simply (doubly,
multiply, strongly) critical rotation of Q) w.r.t. P for volume if Q' := r;4(Q)
and P are simply (doubly, multiply, strongly) mutually critical.

Example 5.9 Take for P a cube, whose sides are parallel to the coordinate
axes, and for ) a cube identical to P except for a rotation of 7/4 w.r.t. the
vertical axis, so that the spherical points of P and () on the equator are
distinct, cf. Fig. 5. @) is multiply critical w.r.t. P because all spherical points
of @) are on arcs of P. () is not z-critical w.r.t. P, where z is the vertical
axis, because an infinitesimal rotation about this axis does not move points
from one spherical region to another. However, the angle /4 is z-critical,
because after rotating @) by /4 spherical points of @) hit spherical points
of P; continuing the rotation, they move along arcs of P from one spherical
region of P to another (remember that spherical arcs are included in spherical
regions by definition, cf. Section 2.2).

5.3  Minimization for fized rotation axis

Let £ be a fixed rotation axis and a € (o, oy, ) for some k, where {a’;} are the
{-critical angles of @@ w.r.t. P for mixed volume, cf. Definition 5.3. Then, for
every spherical point v; of @, the value of the support function A(P, 74(v;))
is defined by some vertex of polyhedron P, say by vertex C' as in Fig. 6. (The
support plane of P with normal ry,(v;) may also hit P in an edge; in that
case one takes for C' a vertex adjacent to this edge.) Let v;(«) be the angle
between the vector r,,(v;) (translated to the point C) and the vector OC.
Then h(P,14(v;)) = dj cos(¢;(e)), where d; = |OC|. Thus

V(P,r1a(Q), rea(Q)) = % fjldja(uj) cos(d;(a)).

If the origin is chosen inside polyhedron P, then [1;(a)| < §. Now cos(¢;(a))
is a concave function of a for every j, as follows from Lemma A.1 which is
proven in Appendix A. Hence one gets that V (P, 7y, (Q),7¢,.(Q)) is a concave
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Fig. 6. The value |OH | of the support function equals |OC| cos()j(c)) for the normal
vector 7y (vj).

function of o € (v, o 1), since it is the sum of concave functions. Thus we
arrive at the following result.

Proposition 5.10 Given an azis of rotation ¢, the mized volume of the conver
polyhedra P and Q, i.e. V(P,704(Q),700(Q)), is a function of o which is
piecewise concave on [0,27), i.e., concave on every interval (o, oy ), for
k=1,2,...,N and oy,; = o). Here 0 < o] < oy < ... < oy < 27 are the
L-critical angles of @ with respect to P for mized volume.

It is clear that the proposition is true for the mixed volume V (P, P, r4(Q)) =
V(Q,Q,7y4(P)) as well, provided the (-critical angles of P with respect to
Q@ are used, i.e., polyhedron @ is considered to be fixed and polyhedron P is
rotated about the axis £ in a clockwise direction.

Next consider the volume V(P @ 74,(Q)). Now the ¢-critical angles of poly-
hedron ) w.r.t. P for volume, as introduced in Definition 5.4, play a decisive
role. From (6) and Proposition 5.10 one derives the following result.

Proposition 5.11 Given an azis of rotation ¢, the volume V(P ®1,4(Q)) of
the convex polyhedra P and @ 1is a function of o which is piecewise concave
on [0,27), i.e., concave on every interval (o, of, ), for k = 1,2,... K and
iy =af. Here 0 < of <o <... < aj <27 are the {-critical angles of Q
w.r.t. P for volume.

It follows from Propositions 5.10 and 5.11 that in order to minimize one of
the functionals V(P, 70,4(Q), 70,a(Q)), V(P, P,104(Q)) and V(P & r.4(Q)) for
any fized axis of rotation £ it is enough to compute this functional only at a
finite number of /-critical angles.
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5.4 Minimization for varying rotation axis

Since our interest is to find the minimum of objective functionals for all pos-
sible axes of rotation, we have to know which axes have to be checked. If for
a fixed position of polyhedron Q' = 7y, o, (Q) there exists an axis ¢ such that
@’ is not ¢'-critical w.r.t. P, then the mixed volume V (P, Q’, Q') is not a mini-
mum of the mixed volume functional V (P, 7,,(Q),7¢4(Q)), because a smaller
value of the functional can be found by rotating polyhedron @)’ about the axis
¢'. This property, which is true for other objective functionals as well, will be
used to reduce the set of axes to be checked.

Whenever we speak of critical rotations of () w.r.t. P below, we mean critical
rotations of @) w.r.t. P for mized volume or volume, respectively, depending
on the objective functional under consideration.

[~
\

Fig. 7. Polyhedron Q' = 7y, o,(Q) is ¢i-critical, but not ¢'-critical, w.r.t. P, where
the axis ¢’ passes through the point v’ on the spherical arc (u,us).

5.4.1 Simply critical rotations

Lemma 5.12 If ({1, ) is a simply critical rotation of @ w.r.t. P, then the
objective functionals do not have a minimum at the relative configuration of
polyhedra P and @ determined by (41, o).

Proof:

Let a spherical point v = 7y, o, (v) in the SDR of 74, 4,(Q) intersect an arc
(u1,u9) in the SDR of P for a simple ¢;-critical angle «;. Denote the poly-
hedron ry, 4, (Q) by @' and the axis which passes through the point v’ by ¢,
cf. Fig. 7. Then rotation of @' about the axis ¢ allows us to find a smaller
functional value, since @’ is not '-critical w.r.t. P. 1
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Therefore the conclusion is that only doubly or multiply critical rotations have
to be checked.

9.4.2  Doubly critical rotations

For the case of doubly critical rotations, we next show that only the ones of
type point-double may correspond to minima of the objective functionals.

Lemma 5.13 If ({1, ) is a doubly critical rotation then the objective func-
tionals may have a minimum at the relative configuration of polyhedra P and
Q determined by (¢1, 1) only if the critical rotation is of type point-double.

Proof:

We only consider the case, appropriate for V (P, 7,,(Q),7¢4(Q)), when two
spherical points of polyhedron 7y, ,,(Q) intersect two spherical arcs of poly-
hedron P. For other possible functionals the proof goes along the same lines.
We show that this relative configuration does not correspond to a minimum
of the objective functional.

Let two spherical points vy’ = 74, o, (v1) and vy’ = 74 o, (v2) in the SDR of
polyhedron Q' = 7y, 4, (Q) intersect spherical arcs (uy, uz) and (us,u4) in the
SDR of P, respectively, see Fig. 8. Denote by s; and s, the lines through
the origin which are orthogonal to the planes of the great circles containing
spherical arcs (ui,us) and (us, us), respectively. First assume s; # so. Con-
sider now two planes through v}, s; and v5, sq, respectively, intersecting the
sphere in two great circles. These circles either intersect in two points or co-
incide. Let s be a point of their intersection and ¢ be the axis through the
coordinate origin and s. Rotating polyhedron @' about the axis ¢ allows us
find a smaller value of the objective functional since @' is not #'-critical w.r.t.
P. The trajectories of spherical points v} and v} under this rotation are small
circles which, although touching the arcs (uy, uy) and (us, u4), do not intersect
them. If s; = sq, then (uy,uy) and (us,u4) are on the same great circle; taking
¢ = s = s9, the trajectories under rotation about ¢ are on this great circle,
so that also in this case @' is not #'-critical w.r.t. P. [

Remark 5.14 In the doubly critical case of type point-double, there are two
further situations where objective functionals, say mixed volume, will not have
a minimum. The first case occurs when the two spherical points v] and v, are
antipodes on the sphere, because rotation about the axis through these two
spherical points allows one to find a smaller value of the functionals, cf. the
proof of Lemma 5.12. The second case requires that one of the points, say v},
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coincides with a spherical point of P and the other point v} is in the interior
of a spherical arc (uy,us) of P, with the additional condition that the axis ¢
through the origin and the point v} lies in the plane through the origin and
vy which is orthogonal to the plane of the great circle containing the spherical
arc (uy, ug) on which v} is located. Looking back at the proof of Lemma 5.13
it is clear that Q' = 7y, o, (Q) is not #'-critical w.r.t. P in this case as well.

Fig. 8. The line s1, c.q. sg, is orthogonal to the plane of the great circle containing
(u1,u2), c.q. (u3,us). Axis £ is the intersection of the planes through v}, s; and
vh, 89, respectively.

5.4.8 Strongly critical rotations

The results so far imply that candidate minima of objective functionals only
have to be searched among the strongly critical rotations of Definition 5.8
(note however the exceptions for doubly critical rotations in Remark 5.14;
similar exceptions for the multiply critical case can easily be constructed).

Let us examine the problem of minimization of V(P,744(Q),70,(Q)). Let
u;,V;, © = 1,2,... be spherical points in the SDR of polyhedra P and Q,
respectively. To find all strongly critical rotations the following procedure can
be applied.

Let v’ be a spherical point belonging to the boundary of a spherical polygon
in the SDR of P, i.e., ¢’ is either a spherical point corresponding to a facet of
P or an internal point of a spherical arc in the SDR of P. Let £ be the axis
through the origin and u'. There exists a rotation A’ of polyhedron @, such that
u' = h'(v;) for a chosen spherical point v; of the SDR of ). Now one can find
all f-critical angles of A'(Q) w.r.t. P. If u' is a spherical point corresponding
to a facet of P then every /-critical angle will be at least point-double. So by
performing the above procedure for all spherical points of () and P we find
all critical rotations where at least one spherical point of () coincides with a
spherical point of P.
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What remains is to find those multiply critical rotations where three spherical
points intersect the interior of three spherical arcs. That corresponds to the
case that the point u' defined above is an internal point of an arc, and we
have to find /-critical rotations with two spherical points different from v;
intersecting spherical arcs of P. This also has to be performed for all points
u' from the boundary of spherical polygons in the SDR of P, and all spherical
points v; in the SDR of Q.

Remark 5.15 Note that if the objective functional is the volume V(P &
7¢,0(Q)), then the strongly critical rotations of @@ w.r.t. P for volume have to
be considered, which implies that the set of critical rotations to be checked is
larger than when minimizing mixed volume.

5.5 Finiteness of the set of critical rotations

There remains the question of how many critical rotations exist: is their num-
ber finite or infinite? The number of critical rotations of type point-double is
certainly finite: for the number of axes to be checked and the number of critical
angles per axis ¢, a bound can be given depending on the number of vertices
of P and (). Every critical rotation of type point-double can be represented as
a composition 7y 7, where 7 is a rotation such that some faces of polyhedra P
and Q' = r(Q) have the same orientation, say the same normal vector u. Axis
£ is chosen along the vector u and o is an /-critical angle of Q" w.r.t. P. Since
finding /-critical angles is reduced to solving quadratic equations, checking all
point-double rotations can be done efficiently.

For the multiply critical rotations the answer depends on the question in how
many ways a given triple of spherical points in the SDR of ) can be made
to coincide with three edges of the SDR of P by rotation: that is, how many
solutions exist for the system of conditions

Te.a(v1) € (U1, u2), Tea(v2) € (us,us), Tr.a(vs) € (us, ug), (25)

for given spherical points vy, v9, v3 in the SDR of @) and spherical arcs (uy, us),
(us,u4), (us, ug) in the SDR of P. It is clear that the system of conditions (25)
may have no solutions at all, only one solution, or two solutions (it is easy to
find an example).

The question can be formulated in an equivalent way as follows. Suppose that
a spherical triangle A vy vov3 is inscribed in a spherical triangle A wuy us us.
The question is how many other positions of the triangle A v vy vs (denoted
by A v} vhvj, see Fig. 9) exist, such that it is inscribed into A wu; usu3 and
v] € (u1,us), v € (ug,uz), vh € (us,uy) .
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For the case of planar triangles there exists no more than one other posi-
tion [27]. It is natural to suppose that the same should be true for the case
of spherical triangles, although we have no proof of this at the moment. How-
ever, what we can show is that, given A wu; uy usg and A vy vy v3, there is only
a finite number of axes of rotations through the center of the sphere, carrying
A v1 v9 v3 to another inscribed triangle A v} v} v§ of A uy ug us, cf. Theorem B.1
in Appendix B. Clearly, when A u; us u3, A v vy vs and a rotation axis £ are
given, A v] v} v} is uniquely determined. Therefore the number of triangles,
obtained from A vy vy v3 by rotation and inscribed in A wuq us us, is finite as
well 1.

Hence, the following result has been established.

Theorem 5.16 The number of strongly critical rotations, to be checked in
computing the minimum of the objective functionals, is finite.

Fig. 9. Different positions of the inscribed spherical triangle.

Suppose, for example, one wants to compute o3 for H = S, the group com-
prising all rotations and multiplications. One easily derives that

2 1 1

03(P.O) = * sup (V(P)V(Q) V(P)5V(Q) |
(P, Q) P (V<P, P, h(Q)> + V(P,h,(Q),h(Q)>>

2 herr

where R* are the strongly critical rotations.

6 Discussion

In this paper, we have discussed similarity measures for convex polyhedra
based on Minkowski addition and the Brunn-Minkowski inequality, using the
slope diagram representation of convex polyhedra. All measures considered

! Recently it was shown that this number is at most 8 [28].
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are invariant under translations; furthermore, some of them are also invariant
under rotations, multiplications, reflections, or the class of all affine transfor-
mations. For the case of rotation invariance, we proved that to obtain the
measures bases on (mixed) volumes it is sufficient to compute objective func-
tionals only for a finite number of critical rotations.

Numerical implementations of the proposed approach have not been discussed
in this paper. Recent results of Bekker show that the rotation axes are deter-
mined by the roots of a polynomial equation of degree eight, which can be
easily computed numerically [28]. Therefore the subject of current research
is to develop (numerical) methods for the efficient computation of all critical
rotations.
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A Appendix: Concavity property

Consider two unit vectors
a = (a1, as,a3) = (sin 6 cos ¢, sin f sin ¢, cos 9)

b= (bl,bg,bg) = (Sin 91,0,COS 91)

in R, with0< <, 0<6, <, 0<¢ < 2m. Here the projection of vector
b on the zy-plane is directed along the z-axis. Denote by b(«) the rotation of
vector b about the z-axis by an angle a, 0 < o < oy, i.e., b() =7, 4(b). Here
b(0) = b. Denote by () the angle between vectors a and b(«); see Fig. A.1.

4
B(a)
b 3 a=(a;,a,,a,)
| Zb(a)
6,0 |
y

Fig. A.1. Definition of the angle () between the vector b(a) =, o(b) and an axis
a with spherical angles (0, ¢).
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Lemma A.1 Suppose that [(«)| < § for all o, 0 < oo < aq. Then cos(tp(cv))
is a concave function of a € [0, aq].

Proof:

The vector b(a) equals 7, ,(b), i.e.,
bla) = (sin 0: cos a, sin #; sin «, cos 01) .
S0
cos(y(a)) = (a,b(a))

= sin f sin 6, (cos ¢ cos a + sin ¢ sin a) + cos 6 cos 6,

= sin 6 sin 0 cos(¢ — a) + cos @ cos 6.

Now, the angle between the projection of two vectors is not larger than the

angle between the original vectors, so |¢ — a < [¢(a)| < 5. Since also

sinfsinf; > 0, we get that cos(¢)(«)) is a concave function of a. |

B Appendix: Inscribed spherical triangles

Consider the following problem. On a sphere, a triangle with vertices A, B, C
is given. In this triangle are inscribed two spherical triangles with vertices
D, FE,F and Dy, F,, F}, respectively, which can be transformed into one an-
other by rotation about an axis through the center of the sphere. The question
is in how many ways this can be achieved.

We prove the following theorem.

Theorem B.1 Let two spherical triangles AN D EF and A Dy Ey F; be in-
scribed in a spherical triangle AN A BC, such that D1 and D are on the arc
AC, FE and E; are on the arc AB, F' and F\ are on the arc BC'. Let ADEF
be fized and assume A\ Dy Ey Fy is the result of a 3D rotation of ADEF
about an axis through the center of the sphere. Then the number of possible
orientations of the rotation axis is finite.

Proof:

In the proof we make use of the following result for planar triangles [27, Ch.
1, §6]. When two planar triangles A D' E' F' and A Dj E} F] are inscribed in
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a triangle A A’ B' C', such that D} and D' are on the side A'C’, E' and Ej are
on the side A'B’, F' and F| are on the side B'C', with A D} E] F] resulting
from a 2D rotation of A D" E' F', then the center of rotation O must be the
similarity point of A D' E' F' with respect to A A"’ B'C'. That is, O is the
intersection of the circumscribed circles of the triangles A A"’ D' E', AC' D' F'
and A B'E' F'. The limiting case when the circles are tangent to one another
corresponds to the situation that A D' E' F' and A D} E{ F] are identical.

Now consider the case of spherical triangles. If A, B, C' are on a great circle,
then all involved triangles are in the same plane, so that the result for planar
triangles applies. Therefore assume that A, B,C' are not on a great circle,
meaning that A, B,C are all on one side of some equatorial plane of the
sphere.

Let n be the axis of the 3D rotation carrying A D E' F to A\ Dy E; Fy. Let O
be a point on this axis, not equal to the center T of the sphere. Consider the
plane V' through O orthogonal to the axis n. Now from the center 7" of the
sphere carry out a central projection of the spherical triangles on the plane
V, resulting in planar triangles A A' B'C', A D' E' F' and A D' E} F|. Then,
since V is orthogonal to the axis n, A D} E] F] is the result of a rotation of
A D'"E'F'" around the point O. Hence, from the case of planar triangles we
know that O is the intersection of the circumscribed circles of the triangles
ANA'D'E', AC'D'F" and AB'E'"F', cf. Fig. B.1. (We may assume that
A D'E'F" and A D) E} F| are distinct.)

So we know that the points A, D, E are on a cone K pr whose axis n is or-
thogonal to the plane of its base circle. Similarly, the sets C, D, F and B, E, F’
are on cones Kcpr and Kpggp, respectively, with the same axis n, orthogonal
to the planes of the base circles of opr and Kggpr. The question now is in
how many ways the axis n can be chosen.

First we consider a single cone K4pc through three points A, B,C (not on
the same great circle) on a sphere with radius 1. The axis of the cone is
defined by a unit vector n, and the ray through the center of the base circle
by m, satisfying the orthogonality relation (n, m) = 1, see Fig. B.2. If r is an
arbitrary point on the cone, it has to satisfy the equation
2 2
Ir = (r, n)ym|" = [[(r, n)m — (r,m)n|",
which after some simplification reduces to
I]l* = 2(r, n){r, m) + ((r,n))* = 0 (B.1)

This equation is subject to the conditions

(n,m) =1, (n,n) = 1. (B.2)
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Let a, b, c be the three linearly independent unit vectors corresponding to the
three points A, B,C on the sphere. Then these satisfy (B.1), yielding three
equations linear in m. In matrix form this system of equations reads:

(n,a)a’ ) 1+ ({n,a))?
(n, )b [m =3 | 1+ ((n,b))?
(n,c)c’ 1+ ({n,c))?

The solution for m is:

L e(ma)? | 1@ 1 (me)?
~ 2(a,bxc) {b (n, a) * (n,b) axb (n, c) }’

assuming that (n, a), (n, b}, (n, c) are not zero. Imposing the condition (n, m) =
1 yields

2(a, bxc) = (n, bxc) %’:‘W + (n,cxa) %’1{);’))2
+ (n,axb) %12;»2 (B.3)

By construction, the system of three vectors vi = a, vo = b, v3 = c is
biorthogonal to the system w; = (bxc)/{a,bxc), wo = (cxa)/(a,bxc),
ws = (axb)/(a, bxc): (v;, w;) = 6; ;. Therefore any vector r has the expansion
1
r= (@, bxc) {(bxc)(r,a) + (cxa)(r,b) + (axb)(r,c)}
Applying this formula to the vector n, and using the normalization condition
(n,n) = 1, one finds the identity
1

1= abxc) {{n,bxc){(n,a) + (n,cxa)(n,b) + (n,axb)(n,c)} (B.4)

Combining (B.3) with (B.4) gives

B 1 (n,bxc) (n,cxa) (n,axb)
1_<a,b><c){ ma) T mb) T (nc) }

or,

(n,a)(n,b)(n,c)(a,bxc) = (n,bxc)(n,b)(n, c)+ (n,cxa)(n, c)(n,a)
+ (n,axb)(n,a)(n,b) (B.5)

Note that if n is a solution of (B.5), then An is also a solution for any A.
Therefore Eq. B.5 represents a cubic cone. The cross section of this cone with
any plane not through the origin will be a polynomial curve of degree three.
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Returning now to the original problem, we have to find three cones K4pg,
Kepr and Kgpp with a common axis n orthogonal to the planes of their
base circles. The axis has to satisfy three equations of the form (B.5). For
completeness we give them here explicitly:

(n,a)(n,d)(n,e)(a,dxe) = (n,dxe

£

,d)(n,e) + (n,exa)(n,e)(n,a)

+ (n,axd)(n, a)(n, d)
(n,c){(n,d)(n, f){(c,dxf) = (n,dxf)(n,d)(n,f) + (n,fxc)(n, f)(n,c)
+ (n,cxd)(n, c)(n,d)

Also, the normalization condition ||n|| = 1 has to be imposed. If solutions exist,
they can be found by intersecting the algebraic surfaces corresponding to the
three cubic cones with a unit sphere, and looking for common intersection
points of the resulting three (non-identical) algebraic curves. The number of
such intersections is finite, therefore the number of solutions for the axis n is
finite as well. 1

Fig. B.1. Spherical triangle A A B C with inscribed triangle A D E F centrally pro-
jected from T on a plane orthogonal to the rotation axis T'O.
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(r.n)n

Fig. B.2. Cone with axis n orthogonal to the plane of its base circle with center m.
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