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Abstract

We present a review of the mathematical principles of computerized tomography. Topics treated include
the role of the Radon transform and related transforms, inversion formulas, uniqueness, ill-posedness
and stability, practical reconstruction algorithms, and various generalizations such as diffraction tomog-
raphy. References to the most relevant literature are cited. Several applications are briefly discussed;
in particular, we present a case study of a mathematical problem arising in cardiac magnetic resonance
imaging.
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1 Introduction

The word tomography means ‘reconstruction from projections’, i.e. the recovery of a function from its line
or (hyper)plane integrals (from the Greek τ óµoσ—slice and γράϕϵιν—to write). In the applied sense, it
is a method to reconstruct cross sections of the interior structure of an object without having to cut or
damage the object. The term often occurs in the combination computerized (computed) tomography (CT)
or computer-assisted tomography (CAT), since for performing the reconstructions in practice one needs
the use of a digital computer. Important issues in tomography are existence, uniqueness and stability of
inversion procedures, as well as the development of efficient numerical algorithms.

The internal property of the object to be reconstructed, such as a density, space-dependent attenuation
coefficient, and so on, is generally referred to as the internal distribution. The physical agens or probe
by which to act on this internal distribution may vary from X-rays, gamma rays, visible light, electrons
or neutrons to ultrasound waves or nuclear magnetic resonance signals. When the probe is outside the
object one speaks of transmission computerized tomography (TCT). In contrast with this stands emission
computerized tomography (ECT), where the probe, such as a radioactive material, is inside the object.
This occurs in two variants: SPECT (single particle ECT) where radiation along a half line is detected,
and PET (positron emission tomography) where radiation emitted in opposite directions is detected in
coincidence. Finally we mention reflection tomography, where the object is ‘illuminated’ by sound waves
and the reflected waves are recorded to obtain line integrals of the object’s reflectivity function [51, Ch.
8].

Other forms of tomography exist, such as electric impedance tomography [81, Pidcock’s paper] (a
nonlinear inverse problem: recovering the conductivity inside a body from electric potential measurements
on the surface), biomagnetic imaging (recovering the position of electric currents from magnetic fields
induced outside the body, see the paper by Louis in [42], or diffraction tomography, see [34,39,40] and also
Section 2.9 below.

The emergence of the Radon transform in these practical problems can be explained by the following
simplified model (in practice, many complications arise [39,44]). If a beam of X-rays with initial intensity

∗Original version in: Nieuw Archief voor Wiskunde 10 (3), November 1992, pp. 277-308.
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I0 passes through an object along a straight line L, then the intensity I1 after having passed the object
satisfies

I1
I0

= exp
{
−
∫
L

f(x) dx
}
, (1)

where f(x) denotes the X-ray attenuation coefficient of the object at the point x. Hence by measuring the
ratio I1/I0 line integrals of the unknown distribution f are obtained; these line integrals are samples of
the 2D Radon transform of f , see Section 2.

Different modes are used in practice to sample the line integrals of the internal distribution: in parallel
beam scanning parallel line integrals are determined for a fixed direction and the process is repeated for
a number of different directions; in fan-beam scanning line integrals emanating from a given source point
are computed for different directions, which is repeated for a certain number of source points, see Fig. 1.
Instances of the use of the Radon transform in three dimensions are found in radar theory and magnetic
resonance imaging, [20,44].

One of the most prominent applications of computerized tomography occurs in diagnostic medicine,
where the method is used to produce images of the interior of human organs [72]. In 1979 the Nobelprize in
physiology or medicine was awarded to G.N. Hounsfield and A.M. Cormack for their fundamental work in
the field. Other applications arise in radio astronomy, 3D electron microscopy, soil science, aerodynamics
and geophysics, to name a few. In industry the method is used for non-destructive testing. For extensive
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Figure 1: Scanning modes in 2D tomography: (a) parallel beam (b) fan-beam.

bibliographies on applications of computerized tomography the reader is referred to Deans [20] or Herman
[39].

The organization of this paper is as follows. The first part is devoted to an overview of the mathematical
principles of CT (Section 2). We present the Radon transform, related transforms, inversion formulas,
uniqueness, the ranges, ill-posedness, sampling, reconstruction algorithms and diffraction tomography;
then a number of generalizations are mentioned and we finish with some historical remarks. The second
part (Section 3) contains a case study of magnetic resonance imaging, a field in which we have gained some
personal experience over the last years.

2 The Mathematics

In this section a brief overview of the mathematics of computerized tomography is given. We restrict
ourselves to an outline of the essential points. As a standard reference Natterer’s book is recommended [62].
Also, the proceedings of the Oberwolfach conferences on CT [42, 44], the AMS proceedings [71] or the
volume on tomography and inverse problems by Herman et al. [70] may be consulted.

2.1 The Radon Transform

Let f(x1, x2, ..., xn) be a continouous function of n real variables that is decreasing sufficiently fast at
infinity. Let θ = (θ1, ..., θn) be a unit vector in Rn, s a real number, and Γ the hyperplane defined by

Γ = {x ∈ Rn : ⟨x, θ⟩ = s}, (2)
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where ⟨ , ⟩ denotes the Euclidean inner product. The integral of f over the hyperplane Γ,

Rf(θ, s) :=
∫
Γ

f(x) dm(x), (3)

where dm is the Euclidean measure on Γ, is called the Radon transform of the function f , see Fig. 2.
The Radon operator R maps the Schwartz space S(Rn) of rapidly decreasing C∞ functions on Rn to the
Schwartz space S(Zn) of rapidly decreasing C∞ functions on Zn, where Zn = Sn−1 × R = {(θ, s) : θ ∈
Sn−1, s ∈ R} is the unit cylinder in Rn+1 and Sn−1 = {θ ∈ Rn : |θ| = 1} the unit sphere in Rn. The
integral Rf(θ, s), with θ and s fixed, is called a projection and the function Rθ : s 7→ Rf(θ, s) a profile,
cf. Fig. 1.

Γ = {x: <x.θ> = s }

θ = (cos φ, sin φ) s 

φ
x 1 

2 x 

Figure 2: Parameters θ, s of the 2D Radon transform.

The Radon transform is connected to the Fourier transform through the Central Slice Theorem or
Projection Theorem:

f̃(αθ) =

∫ ∞

−∞
Rf(θ, s)e−iαs ds, α ∈ R, (4)

where f̃(ξ) :=
∫
Rn e

−i⟨x,ξ⟩f(x) dx denotes the n-dimensional Fourier transform of f . This formula says
that the one-dimensional Fourier transform of the Radon transform of f with respect to the radial variable
s equals the n-dimensional Fourier transform of f along rays through the origin in Rn.

To the Radon operator is associated a dual or backprojection operator R# : S(Zn) → S(Rn) by

R#g(x) =

∫
Sn−1

g(θ, ⟨x, θ⟩) dθ, g ∈ S(Zn). (5)

Whereas R integrates over all points in a hyperplane, R# integrates over all hyperplanes through a point.
Thus R,R# form a dual pair in the sense of integral geometry [37, 38]. If f ∈ S(Rn) and g ∈ S(Zn), the
following identity holds,

(R#g) ∗ f = R#(g ∗ Rf), (6)

where ∗ denotes convolution on Rn and R, respectively (the second convolution is with respect to the
last argument of g). This formula forms the basis of the ‘filtered backprojection’ method of inverting the
Radon transform, see Section 2.8.

The Radon and other transforms can be extended to Lp spaces [70]. For example, if Ωn is the unit ball
in Rn, the Radon transform is continuous as an operator from L2(Ω

n) to the weighted space L2(Z
n, (1−

s2)(1−n)/2). However, as a consequence of the smoothing property of the Radon transform, its inverse
is not continuous as an operator between L2-spaces. To restore continuity one may introduce Sobolev
spaces [62].
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2.2 Related Transforms

For three (or higher)-dimensional reconstruction of objects from line integrals the appropriate transform
is the X-ray transform:

Pf(θ, x) =
∫ ∞

−∞
f(x+ tθ) dt, (7)

which is the line integral of f along a line through the point x ∈ Rn in the direction of θ ∈ Sn−1 [76]. In
two dimensions the Radon and X-ray transform coincide. When using divergent beams (in two dimensions
also called fan-beams) the appropriate transform is defined by

Df(a, θ) =
∫ ∞

0

f(a+ tθ) dt, (8)

which is the integral of f along the half-line with endpoint a ∈ Rn and direction θ ∈ Sn−1 [36].
Relevant for SPECT is the attenuated Radon transform, which differs from the standard Radon trans-

form by the presence of an exponential weighting factor under the integral sign. In R2, the attenuated
Radon transform is defined for functions with compact support by

Rµf(θ, s) =

∫
⟨x,θ⟩=s

e−Dµ(x,θ⊥)f(x) dx, (9)

where θ⊥ is the unit vector perpendicular to θ ∈ S1 for which det(θ, θ⊥) = 1, µ is the attenuation function
and D the divergent beam transform. An inversion formula exists for the case of constant attenuation µ,
cf. [62].

2.3 Inversion formulas

The inversion formula of the Radon transform takes two different forms, depending on whether the dimen-
sion is even or odd [48,67]:

f(x) =
1

2
(2π)1−n

(−1)n−2/2
∫
Sn−1 HF (n−1)(θ, ⟨x, θ⟩) dθ (n even)

(−1)(n−1)/2
∫
Sn−1 F

(n−1)(θ, ⟨x, θ⟩) dθ (n odd)
(10)

Here F = Rf , H is the Hilbert transform

Hh(s) := 1

π

∫
R

h(t)

s− t
dt,

and F (n−1) denotes the (n−1)-st derivative of F with respect to its last (scalar) argument. An alternative
form of formula (10) for n even is

f(x) =
1

2
(2π)1−n(−1)n/2

1

π

∫
R

1

q

∫
Sn−1

F (n−1)(θ, ⟨x, θ⟩+ q) dθ dq (n even)

So for n odd only local information in the neighbourhood of the point x is needed (computation of
derivatives), whereas for even n the integrals along all hyperplanes meeting the support of the function
are required. The same phenomenon occurs in the solution to the Cauchy problem for the wave equation
in Rn, see Helgason (in [9]). In R2 the inversion formula can be rewritten in the following form, which was
derived by Radon in his 1917 paper [67] 1 2

f(x) = − 1

π

∫ ∞

0

dF x(q)

q
(n = 2) (11)

a formula which adorns the cover of the Journal for Computer Assisted Tomography, and in R3,

f(x) = − 1

8π2
∆x

∫
S2

F (θ, ⟨x, θ⟩) dθ (n = 3) (12)

1Reprinted in [71]; for an English translation, see [20] or [37].
2For an elementary derivation see [64].
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Here ∆x is the Laplacian (acting on x) and

F x(q) =
1

ωn

∫
Sn−1

F (θ, ⟨x, θ⟩+ q) dθ, (13)

is the mean value of F = Rf over the tangent hyperplanes of the sphere with radius q and center x, where
ωn = 2πn/2/Γ(n/2) is the volume of the unit hypersphere in Rn (Γ(·) denoting the Gamma-function). The
function x 7→ F (x, ⟨x, θ⟩) occurring in (12) is a plane wave with normal θ (i.e. a function constant on each
plane perpendicular to θ) [37]. So (ignoring the Laplacian) formula (12) gives a continuous decomposition
into plane waves. Since a plane wave is a function of one variable, such decompositions can be used to
reduce problems in Rn to one-dimensional problems, a fact which has applications in the area of partial
differential equations [37,49,59].

A unified form of the inversion formula for odd and even n is given by [37],

f = c−1 ∆(n−1)/2
x (R#F ), F = Rf, (14)

c = (−4π)(n−1)/2Γ(n/2)

Γ(1/2)
. (15)

The fractional powers of the Laplacian for even n can be most easily defined by means of the Riesz potential
Iα, which is most easily defined in Fourier space:

(IαF ) (̂θ, σ) = |s|−α
F̂ (θ, σ), α < n,

where the hat denotes Fourier transformation with respect to the second argument. Then an even more
general inversion formula can be written as

f =
1

2
(2π)1−nI−αR#Iα−n+1F, F = Rf. (16)

The formulas above arise as special cases by taking α = 0 or α = n−1. Inversion formulas for the divergent
beam transform D [43] and the X-ray transform P [75] are analogous to those for R. Similar inversion
formulas for the dual transforms exist [37].

Series expansion methods

Other inversion formulas for the Radon transform are obtained by analytic series expansion methods. For
example, when f and F = Rf are expanded in spherical harmonics,

f(x) =

∞∑
ℓ=0

N(n,ℓ)∑
k=0

fℓk(|x|)Yℓk(x/ |x|), (17)

F (θ, s) =

∞∑
ℓ=0

N(n,ℓ)∑
k=0

Fℓk(s)Yℓk(θ), (18)

where N(n, ℓ) denotes the number of linearly independent spherical harmonics of degree ℓ, the following
inversion formula holds for the coefficients:

fℓk(r) = c(n)r2−n

∫ ∞

r

(s2 − r2)(n−3)/2C
(n−2)/2
ℓ (s/r)F

(n−1)
ℓk (s) ds, (19)

c(n) =
(−1)n−1

2πn/2

Γ((n− 2)/2)

Γ(n− 2)
, (20)

where C
(n−2)/2
ℓ is the Gegenbauer polynomial of degree ℓ [14, 15, 19]. Various other polynomials can be

used as well [20].
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2.4 Uniqueness

From the inversion formulas it follows that f ∈ S(Rn) is uniquely determined by Rf or Pf . If the
transform is only known on a subset of the domain, as is always the case in practice, this is no longer true.
Artefacts in the reconstruction are most pronounced in the vicinity of lines or planes which are tangent to
curves or surfaces of discontinuity of f and for which the value of Rf is missing. Some of these incomplete
data problems are3:

Exterior problem

This is the recovery a function in the exterior of some ball from integrals over lines or planes outside
that ball. This problem is uniquely solvable provided f is decaying fast enough at infinity, in view of the
following ‘hole theorem’ [62], which is an immediate consequence of formula (19).

Theorem 1 ( [62]) Let f ∈ S(Rn) and let K be a compact set (the ‘hole’) in Rn. If Rf(θ, s) = 0 for
every plane ⟨x, θ⟩ = s not meeting K, then f = 0 outside K.

However, the problem is severely ill-posed, see Section 2.6 below.

Interior problem

This is the problem of determining f inside some ball from integrals inside that ball. This problem is
uniquely solvable for odd dimension, due to the local character of Radon’s inversion formula (10). In even
dimension this is no longer true. However, the function I−1f is still uniquely determined by F = Rf :
using formula (16) for n = 2, α = −1 one finds

I−1f =
1

4π
R#I−2F = − 1

4π
R#F ′′,

that is, I−1f can be found by applying the dual R# to the second derivative of F . This is a local
operation which makes the interior problem for I−1f uniquely solvable in any dimension. It turns out that
the function f or its derivatives have discontinuities precisely where I−1f or its derivatives have, a fact
which is exploited in local tomography [25].

Limited angle problem

Here Rθf is only given for θ in a subset of a half-sphere. Uniqueness holds as long as the set of directions
is such that no non-trivial homogeneous polynomial vanishes on it. The relevant theorem is the following,
which is a consequence of the analyticity of the Fourier transform of functions with compact support (for
the X-ray transform a similar result holds). Here C∞

0 (Rn) is the space of infinitely differentiable functions
on Rn with compact support.

Theorem 2 ( [75]) Let A be a set of directions such that no non-trivial homogeneous polynomial vanishes
on it. If f ∈ C∞

0 (Rn) and Rθf = 0 for θ ∈ A, then f = 0.

Finite number of directions

When the set of directions is finite, the solution is non-unique to a very large extent, a fact first put forward
with particular force in a famous paper by Smith, Solmon and Wagner in 1977 [75]. They formulated a
no-go theorem which seemed to obviate the possibility of any practical reconstruction whatsoever.

Theorem 3 ( [75]) Let θ1, . . . , θp ∈ Sn−1 be a finite set of directions, K a compact set in Rn and f an
arbitrary function in C∞

0 (K). Then, for each compact set K0 in the interior of K one can find a function
f0 ∈ C∞

0 (K) which coincides with f on K0 and for which all the line integrals Pθkf0, k = 1, . . . , p along
the given directions are identically zero.

Here Pθ is the operator defined by Pθf(x) = Pf(θ, x) where P is the X-ray transform (7), and C∞
0 (K) is

the space of infinitely differentiable functions with support in the compact set K. With unusual poignancy
they reformulated their theorem in the following way:

3A similar classification exists for inverse problems in Potential Theory.
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Theorem3′ A finite set of directions tells nothing at all.

This statement is a little paradoxical, to say the least, in view of the preceding twenty years or so of succesful
tomographic reconstructions. The question is how serious the indeterminacy really is. The functions f0 in
Theorem 3, sometimes called ‘ghosts’, form the null-space of the transform for finitely many projections.
It turns out that these functions are highly oscillatory. Hence, to resolve the indeterminacy one has to put
restrictions on the variation of the function f (see [36,52]). On the other hand, by increasing the number
of projections, arbitrarily good approximations to the unknown function can be found [36].

Homogeneous objects An alternative way to avoid indeterminacy is to limit oneself to the class of
homogeneous objects (e.g. convex sets), which are uniquely determined by a finite number of projections,
thus arriving at a generalized moment problem [24,26,28,54]. A typical result is the following.

Theorem 4 ( [28]) There are four directions θ1, . . . , θ4 such that for each convex set A ∈ R2, its charac-
teristic function f is uniquely determined by Rθf, j = 1, . . . , 4.

The related question whether a probability distribution can be inferred from its marginal distributions,
was studied by Cramér and Wold [18], who discovered the Fourier method of solving Radon’s problem, see
below.

2.5 The Ranges

The range Ran(T ) of an operator T is defined by Ran(T ) := {Tg : g ∈ Dom(T )} with Dom(T ) the domain
of T . The ranges of the Radon and X-ray transforms are governed by the Helgason-Ludwig consistency
conditions. If f ∈ S(Rn), then for m = 0, 1, . . . , the following equations hold,∫

R
smRf(θ, s) ds = pm(θ), (21)∫

θ⊥
⟨x, y⟩mPf(θ, x) dx = qm(y), y ⊥ θ (22)

with pm, qm homogeneous polynomials of degree m, and qm independent of θ (θ⊥ is the subspace perpen-
dicular to θ). As an illustration of the way in which these conditions characterize the ranges, we quote the
following theorem for the Radon transform:

Theorem 5 ( [37]) Let g ∈ S(Zn) be even (g(θ, s) = g(−θ,−s)), and assume that for m = 0, 1, . . .∫
R
smg(θ, s) ds = pm(θ)

is a homogeneous polynomial of degree m in θ. Then there is f ∈ S(Rn) such that g = Rf . If in addition
g(θ, s) = 0 for |s| ≥ a, then f(x) = 0 for |x| ≥ a.

In cases where the data (i.e. the values of the transform) are only partly specified, these conditions can
often be exploited to restore the missing values (’data-completion’).

2.6 Ill-Posedness

Problems in computerized tomography are (in varying degrees) ill-posed. The problem, given a bounded
linear operator A : H → K with H and K Hilbert spaces, to find an f ∈ H such that

Af = g, g ∈ K

may not have a solution if the data vector g is not in the range of the transform (as is often the case in
practice because of noise influences), or the solution may be non-unique. These problems can be overcome
by taking as solution the element f† which is defined as the minimizer of ∥Af − g∥ of minimal norm. The
linear operator A† : Dom(A†) → H, where Dom(A†) := Ran(A)⊕ Ran(A)⊥, which maps g to f† is known
as the generalized inverse of A [35]. It is well known that f† = A†g is the unique element of H which (i)
is a solution of the normal equations

A∗Af = A∗g
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and (ii) lies in Ker(A)⊥, where Ker(A) := {f ∈ Dom(A) : Af = 0} is the null space of A.
More seriously, stability may fail, which happens if the operator A† is not continuous. To deal with

this problem one introduces the notion of a regularization of A†, which is a family {Tγ}γ > 0 of linear
continuous operators Tγ : K → H such that

lim
γ→0

Tγg = A†g

on the domain of A†. Here γ is called the regularization parameter. Determining the numerical value of
γ which gives good practical results is a difficult problem, although various (statistical) methods to do so
have been proposed, see [66,78]. Examples of regularizations are

• Tikhonov-Phillips regularization, where

Tγ = (A∗A+ γI)−1A∗

with I the identity operator. This formula also has a statistical interpretation as the BLUE (Best
Linear Unbiased Estimator) in the presence of noise, see e.g. [58].

• Iterative methods with appropriate stopping criteria, with the number of iteration steps playing the
role of the regularization parameter, see below (Section 2.8).

• Truncated singular value decompositions (SVD) [23,58,63].

The SVD is a representation of the form

Af =

∞∑
k=1

σk⟨f, fk⟩ gk,

where {fk}, {gk} are systems of orthonormal eigenvectors in H,K, respectively, and {σk} the singular
values. Then

A†g =

∞∑
k=1

σ−1
k ⟨g, gk⟩ fk. (23)

If σk → 0 as k → ∞, a regularization of A† is required, for example by taking

Tγg =

∞∑
k=1

Fγ(σk)⟨g, gk⟩ fk

where Fγ(σ) tends to zero as σ → 0 and to σ−1 as σ becomes large. This procedure is known as digital
filtering. For example one may take k ≤ 1

γ in (23), that is, simply truncate the expansion after a finite
number of terms.

The degree of ill-posedness can be inferred from the speed with which the singular values approach
zero. Features in the solution for which the corresponding singular values are close to zero cannot be
recovered reliably. The decay of the singular values of the Radon transform is rather slow, but limited
data problems in particular can be severely ill-posed [63].

2.7 Sampling

In practice one has to perform reconstructions given a finite number of data. The first issue is to develop
correct sampling procedures, based on Shannon’s sampling theorem for equidistant sampling and its exten-
sion to arbitrary grids. The standard parallel scanning procedure is to sample Rf(θ, s) on a polar grid, i.e.
taking p directions uniformly distributed over the half-circle and 2q + 1 equally spaced values of s, where
p ≥ b and q ≥ b/π. Here b is the essential bandwidth of the function f , meaning that the Fourier transform
f̃(ξ) of f is negligible for |xi| > b. Insufficiency of the data, either by undersampling a projection or by
taking the number of projections too small, causes aliasing artefacts such as Gibbs phenomena, streaks (q
too small) and Moiré patterns (display resolution too small) [51]. Other scanning geometries are used as
well, for example in fan-beam scanning (see Fig. 1) which is used in positron emission tomography (PET).
Even arbitrary directions can be used, cf. Grünbaum (in [44]) or [46]. Still more generally, tomography
with unknown directions has been proposed [31,32] in the case of identical particles with random location
and orientation.
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2.8 Reconstruction Algorithms

Methods for numerical reconstruction fall into four categories: convolution methods, Fourier methods,
analytic series expansion methods and iterative algebraic methods (sometimes called ‘finite series-expansion
methods’ [11]). The first three methods are based on analytic inversion formulas. Discretizations of
equivalent inversion formulas may display very different behaviour with regard to stability, accuracy etc.
This accounts for the large number of different algorithms proposed, of which only the main representatives
are discussed here.

Filtered Backprojection

The identity (6) is the basis of ‘filtered backprojection’. One chooses g in such a way that R#g is a
low-pass filter approaching a delta distribution. The algorithm then becomes

f = R#(g ∗ F ), F = Rf, (24)

that is, a convolution followed by backprojection (both operations properly discretized). Several of such
windowing functions g have been proposed. The general form for the Fourier transform of g is

ĝ(σ) =
1

2
(2π)

1
2−n |σ|n−1

Φ̂(|σ| /b)

where Φ is a low-pass filter with cut-off frequency b, that is, 0 ≤ Φ̂ ≤ 1 and Φ̂(σ) = 0 for σ ≥ 1 (for

example, the ideal low-pass filter has Φ̂(σ) = 1 for σ ≤ 1). Variants exist where the backprojection is
performed before the filtering procedure, cf. [20].

Fourier reconstruction

The Central Slice Theorem (4)

f̃(αθ) =

∫ ∞

−∞
Rf(θ, s)e−iαs ds, α ∈ R, (25)

is the basis of Fourier reconstruction [62]. Here the projections Rf(θ, s) are Fourier transformed with
respect to the last variable, which is followed by the inverse n-dimensional Fourier transform. To make
use of the fast Fourier transform [65], one first has to interpolate from a polar grid to a Cartesian grid, a
step which has a rather decisive influence on the numerical accuracy of the final reconstruction. If this is
done appropriately one achieves a reconstruction quality comparable to that of filtered backprojection.

Series expansion methods

Analytic series expansion methods are based upon discretization of the inversion formula (19) or related
formulas for the individual expansion coefficients of the unknown function, see e.g. Deans [20].

Discrete reconstruction methods

Here one starts from a full discretization of Radon’s integral equation, usually followed by an iterative solu-
tion method 4. Introduce a set of basis functions (pictures) bj(x), j = 1, . . . , N , such that an approximation

f̃ to the function to be reconstructed can be written as a linear combination

f̃(x) =

N∑
j=1

fkbj(x). (26)

The set of equations to be solved is ∫
Li

f(x) dx = gi, i = 1, . . . ,M (27)

4This is the method employed by the earliest CT scanners developed by Hounsfield [47].
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where the Li are straight lines (in fact, the method is easily adapted to the case where the lines are replaced
by strips of finite width). Inserting (26) in this equation, one finds

N∑
j=1

Aijfj = gi, i = 1, . . . ,M, (28)

where

Aij =

∫
Li

bj(x) dx (29)

Since the discretization process involves many sources of inaccuracy (measurement errors, picture dis-
cretization, discrete approximation of the integrals (29)), it is appropriate to replace (28) by the matrix
equation

Af + r = g, (30)

where g is the data vector, r a residual vector —both of dimension M—f an N -dimensional object vector
and A a M ×N projection matrix.

The residual vector is required to be orthogonal to the column space of A, that is,

AT r = 0 (31)

By introducing the notation

x =

(
f
r

)
, x =

(
g
0

)
, B =

(
A I
0 AT

)
,

the pair of equations (30) - (31) can be written in the form

Bx = y. (32)

An often used basis set is the pixel basis, that is, the domain D of the function f to be reconstructed is
covered by little squares Sj , j = 1, . . . , N called pixels (picture elements), and f is assumed to be constant
in each pixel so that it can be represented by a N -dimensional vector f . In that case

Aij = length of (Li ∩ Sj)

that is, Aij is the weight factor measuring the contribution of pixel Sj to the i-th line integral, see Fig. 3.

Figure 3: In the discrete reconstruction method one superimposes a square grid over the unknown image, where

image values are assumed to be constant within each grid cell.

Special problems arise because of the fact that
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1. The number of equations is very large (A may have as many as 1010 elements), and usually overde-
termined (M > N).

2. The matrix A is sparse since a line hits only a small fraction (≤ 1%) of all pixels. However, no special
structure of non-zero entries can be employed. Also, the rank of A will in general be smaller than
the number of columns N .

To overcome these problems one constructs regularized least squares solutions of (30), e.g. by Tikhonov-
Phillips regularization, see Section 2.6.

Iterative algorithms

The standard way to implement these solution methods is to use iterative methods from numerical linear
algebra. There are a number of variants which are known by the acronyms ART (algebraic reconstruction
technique) [33], SIRT (simultaneous iterative reconstruction technique) and SART (simultaneous algebraic
reconstruction technique). ART is a form of Gauss-Seidel iteration, and can be viewed as a generalization
of the method of Kaczmarz [50]. SIRT is known as the Richardson iteration in numerical linear algebra.

Kaczmarz’s method has a simple geometrical interpretation: in the 2D case, each equation in (27)
defines a line in the plane and starting from an initial point one successively projects upon the one-
dimensional subspaces defined by these lines, see Fig. 4. Applied to the system (32), ART yields an
iterative scheme of the form

x(i+1) = x(i) + λ(i)
(yk −Bkx

(i))BT
k

∥Bk∥2
, k = imod(K) + 1 (33)

Here K = M +N , Bk is the k-th row of the matrix B, and λ(i) are relaxation parameters introduced to

x (0) 

x (1) x (2) 

Figure 4: Kaczmarz’s method consists of successive orthogonal projections on the subspaces defined by the model

equations (28).

speed up convergence. It is clear from this that ART is a row action method (in a single iterative step
only one row of the matrix B is accessed). It has been shown that the iteration (33) converges to the
minimum norm solution of (32) if (i) the system is consistent, (ii) the initial vector x(0) lies in range(AT )
and (iii) the relaxation parameters satisfy 0 < limλ(i) ≤ limλ(i) < 2. Because of the ill-posedness of the
reconstruction problem one has in practice to stop the iteration after a finite number of steps (a form of
regularization). The convergence behaviour of ART may be affected by reordering the equations. In the
case of an inconsistent system, variants of ART have been constructed which converge to the regularized
solution.

Kaczmarz’s method is very versatile. For example, instead of equalities one may use inequalities in the
projection process. This may be generalized even further by going to a Hilbert space formulation where
the measurements and other a priori information (nonnegavity, upper and lower bounds, measurement
accuracy, etc.) are modelled as convex sets in a Hilbert space and an iterative procedure is developed by
successively projecting onto these sets, a method known by its acronym POCS (Projection Onto Convex
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Sets), see e.g. various chapters in Stark’s book [77] and references quoted therein. One also can use
statistical solution concepts, see below.

In SIRT, all the equations are simultaneously processed in every iteration step. One also uses interme-
diate variants like block-ART, where the equations are processed in blocks before updating the values; the
blocks may even vary during iteration, see Censor’s contribution in [42]. Also, the CG (conjugate gradient)
method has become popular in this context, see e.g. van der Sluis et al. (in [13]) or the thesis [22].

Besides additive also multiplicative algorithms have been proposed, see [10, 11, 33, 41, 47]. For a recent
review, see for example the special issue [13] or the section on ‘Inverse Problems and Optimization’ in [42].
Efficient implementations on parallel computers exist [1, 12].

Statistical approaches

A final class of methods, e.g. as used in emission tomography, comprises statistical approaches to image
reconstruction. Especially in the context of ill-posedness and regularization, various statistical estimation
procedures have been proposed with or without the use of a-priori information, often resulting in iterative
algorithms [66,77]. Examples are the use of the maximum likelihood estimator (ML) which is computed by
the EM (expectation-maximization) algorithm [73,80], or the MAP (maximum a posteriori) estimator [30].

2.9 Diffraction tomography

Diffraction tomography is a special inverse scattering problem [74]. Here one starts from the Helmholtz
wave equation for a plane wave u(x) with varying refractive index n(x) =

√
1 + f(x),

∆u+ k2(1 + f)u = 0. (34)

The aim is to recover f from measurements of the (scattered) wave u. Applying the Rytov approximation
to (34), one finds

f̂((a(σ)− k)θ + σθ⊥) = − 2

π

1
2

i
a(σ)

k
eir(k−a(σ))ĝ(θ, σ), (35)

where a(σ) =
√
k2 − σ2 and ĝ is the Fourier transform with respect to the second argument. This formula,

known as the Fourier Diffraction Theorem, is the generalization of the Fourier Slice Theorem, (4). If the
frequency σ runs over [−k, k] then (a(σ)− k)θ+σθ⊥) =

√
(k2 − σ2)θ+σθ⊥ − kθ runs over the semi-circle

through the origin with center −kθ. Hence f can be recovered from data on semi-circles through the
origin [5, 6, 77], [51, Ch.6], see Fig. 5. CT is a limiting case of this as the radiation frequency k goes to
infinity.

θ

scattered wave profile 

Fourier transform 

. - kθ

x 

y 

ξ

ξ

x 

y 

Figure 5: In diffraction tomography a function is recovered from the values of its Fourier transform on semi-

circles through the origin.

Reconstruction algorithms for diffraction tomography are divided in two classes, just as for the standard
CT case: one, analogous to direct Fourier inversion, consists in frequency domain interpolation of the data
on the semi-circles to a uniform rectangular grid, followed by Fourier inversion. Also, an analogue to
filtered backprojection, called filtered backpropagation, has been developed [21].

The Rytov and Born approximations used in diffraction tomography are of limited validity. In many
cases one has to go back to the original wave equation and do the reconstruction by discretizing the full
forward operator and using an iterative solution method.
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Applications of diffraction tomography are found in acoustic imaging, e.g. ultrasonic tomography (see
Greenleaf’s paper in [40] or Devaney [21]) and seismology [2]. In oceanography the method has been
proposed for large scale environmental monitoring of temperature profiles in the oceans [53].

2.10 Generalizations

The Radon transform can be defined for generalized functions (distributions) and measures. Also, gen-
eralized transforms can be defined, where the integration is over k-dimensional subspaces (k-plane trans-
form or k-dimensional Radon transform, [37, 76]), families of curves [16] or, more generally, over mani-
folds [5, 6, 29, 37, 48]. Examples are two-point homogeneous spaces such as spaces of constant curvature,
where the planes are replaced by totally geodesic submanifolds [37]. A related problem for such spaces is the
Orbital integral problem, i.e. recovering a function from its integrals over (generalized) spheres [17,37,49].
Some inverse problems for hyperbolic partial differential equations can be reduced to a problem in in-
tegral geometry [69]. For the use of the Radon transform in the area of partial differential equations,
see [37,49,59].

Another generalization of Radon’s problem is the reconstruction of a measure from its projections, i.e.
lower-dimensional measures induced by some measurable mapping (generalization of the Cramér and Wold
problem) [29, 37], Fritz & Oppel (in [44]). For the Radon transform in the complex domain, see [29] or
Quinto (in [9]). Finite Radon transforms are used in various areas such as the theory of error-correcting
codes (see Beth, in [44]) and in (algebraic) lattice theory, cf. [9] (Bolker’s paper) or [55,56].

2.11 Historical Remarks

Radon derived his inversion formulas by reducing the problem to an Abel type integral equation —according
to his own remarks, he first found the inversion formula by relating the inversion problem to that of the
Newtonian potential [67] and using a method due to Herglotz. Previously, a similar method had been used
by P. Funk (following earlier work of Minkowski who used expansions in terms of spherical functions [61])
for the elliptic case of reconstructing an even function on the sphere from the integrals along the great
circles [27, Ch. 2]. In his 1917 paper, Radon also discussed the problem of determining a function on the
hyperbolic plane from its integrals over all geodesics, see also [29,37].

The Dutch physicist H.A. Lorentz apparently knew the inversion formula for the 3D Radon problem
at least as early as 1906, as is clear from remarks by his students Bockwinkel [7] (in a paper about light
propagation in biaxial crystals) and Uhlenbeck [79] (who, on the instigation of Ehrenfest, generalized
Lorentz’s result to n dimensions). For more information on the early history, see Cormack’s paper in [71].

3 A case study: magnetic resonance imaging

Magnetic resonance imaging (MRI) can be used as a diagnostic technique to display cross sections of the
beating heart. For diagnostic purposes a movie of the heart based upon several reconstructed heart phases
will give useful information not easily obtained from static pictures. The general problem in dynamic MRI
is that, because of physical limitations, the standard measurement technique is not fast enough to acquire
all the data, necessary for the reconstruction of a single heart phase, in a time which is short enough that
the motion of the heart is negligible.

To solve this problem a method by the name of retrospective gating was developed [8,57], which makes
use of the (approximate) periodicity of the motion. That is, data corresponding to the same relative heart
phase may be recorded in different heartbeats. This presupposes exact reproducability of the heart motion
in successive cycles, a condition which will be violated in practice. To deal with this one assumes that
there is a simple rule to map heart intervals of different duration to a standard heart interval of unit
length in such a way that data are assigned to the correct heart phase. The electrocardiogram (ECG)—
more precisely, the times of occurrence of the so-called R-waves—is simultaneously recorded and used as a
reference signal to perform synchronization of the data retrospectively, i.e. after data acquisition has been
completed, this in contrast to ordinary gating or triggering, where the ECG is used for synchronization
during data acquisition.

In this second part of the paper a mathematical formulation of this reconstruction problem and a
corresponding solution method are sketched, as recently developed by Zwaan; see the thesis by Zwaan [84]
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and also [68,82,83]. In Section 3.1 we first review the data acquisition process of the retrospective gating
technique for cardiac imaging and explain how reconstructions at different heart phases can in principle be
obtained. In Section 3.2 a mathematical problem formulation is given and a solution method described.
Section 3.3 contains reconstructions from synthetic data as well as from real MRI data.

3.1 Cardiac magnetic resonance imaging

We start with a brief discussion of the principles of MRI for static objects [45,60].

Static MRI

In an MR imaging system, the object is placed in an external magnetic field with controllable field gradients
Gx, Gy, Gz. The magnetic dipoles (‘spins’) of the hydrogen atoms in the object are excited by external
radio pulses, after which the system is allowed to return to equilibrium. During this process the excited
spins give up energy in the form of radiofrequecy radiation, which is recorded (the FID—free induction
decay—signal). By turning on a slice selection gradient Gz during excitation by the radio pulse, a very
narrow slice perpendicular to the z-direction is excited, which is the reason why MRI is an tomographic
technique. To provide spatial encoding within the selected plane, one subsequently turns on a phase-
encoding gradient Gy in the y-direction during a time ty. Finally, one applies a readout gradient Gx in
the x-direction, during which the FID signal is recorded and sampled every δt seconds at times tkx

=
(− 1

2k
m
x + kx)δt, kx = 0, 1, ..., kmx − 1, where kmx (assumed to be even) is the number of sampling points.

Similarly, Gy is varied in steps of size ∆y: Gy = (− 1
2k

m
y + ky)∆y, ky = 0, 1, ..., kmy − 1, with ty fixed. The

FID signal S(kx, ky) which is recorded for a given value of kx and ky is approximately equal to the Fourier
transform of the spin density f :

S(kx, ky) =

∫
f(x, y)e

−2πi( kx
Lx

x+
ky
Ly

y
)dx dy, (36)

where Lx and Ly are the fields of view in the x- and y-direction, respectively. The sequence of measurements
{S(kx, ky) : kx = 0, .., kmx − 1}, with ky fixed, gives the Fourier transform for a discrete number of points
on a horizontal line in the Fourier plane; such a horizontal trajectory is called a profile. Note that it takes
a finite amount of time to measure a trajectory, since successive samples of the FID signal are taken at
intervals δt.

To avoid aliasing by undersampling, both δt and ∆y should be chosen in accordance with the Nyquist
relation for sampling bandlimited functions:

δt = 2π/(γGxLx) ∆y = 2π/(γtyLy). (37)

An estimate f̃(x, y) of the proton density f(x, y) of the selected slice is then constructed by performing
the discrete inverse Fourier transform:

f̃(x, y) = [LxLy]
−1

1
2k

m
x −1∑

kx=− 1
2k

m
x

1
2k

m
y −1∑

ky=− 1
2k

m
y

S(
2π

Lx
kx,

2π

Ly
ky)e

i( 2π
Lx

kxx+
2π
Ly

kyy), (38)

which can be efficiently computed by the Fast Fourier Transform.

Dynamic cardiac MRI by retrospective gating

The aim of cardiac MRI is to reconstruct images of a cross section of the beating heart at a number of
phases during the heart cycle. One therefore needs to measure a complete set of kmx ×kmy Fourier coefficients
for every phase at which a reconstruction is desired. However, as we have seen above, acquiring Fourier
data requires a certain amount of time. The measurement of a single profile—one line in Fourier space—at
a certain phase ϕ takes in the order of 10 ms, which is small enough for the heart motion to be negligible.
However, before the next profile (with the value of ky increased) can be measured, gradient fields have to
be altered and also the spin system has to relax to equilibrium. This implies that the next profile will be
measured at a different heart phase ϕ′. But clearly it is necessary to measure all lines in Fourier space at
phase ϕ before the proton density at that phase can be obtained by Fourier inversion. Here the periodicity
of the heart motion comes to the rescue: simply measure the second profile in the next heartbeat—with ky
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increased—at the same heart phase ϕ; the third profile in the heart beat after that, and so on. Of course
we want to obtain pictures at a number, say Npr, of heart phases. Therefore a whole series of profiles is
measured in a single heart cycle with a fixed interval time Trep between measurements and a fixed value
of ky, so that at all phases the same line in k-space is measured. To obtain the necessary data for all heart
phases one has to sample during a number of kmy heartbeats.

In reality the situation is more complicated, since heart beats are not all of the same duration. In
the retrospective gating method one assumes that all heart beats are again identical after they have been
rescaled to a common duration. Then the same acquisition procedure as above can be applied, that is, one
uses an uninterrupted sequence of profile measurements with a fixed repetition time Trep and stepping up
the value of ky after Npr profiles have been measured. Simultaneously, but independently of the profile
measurements, the ECG is recorded to enable a-posteriori assignment of the data to the correct heart
phase; see Fig. 6, where each small vertical bar represents a complete profile (i.e. kmx measurements).

=0 k y =1 k y =2 k y 

R-wave R-wave 

profiles time 

Figure 6: Acquisition method of retrospective gating. Large vertical bar: R-wave. Small vertical bar: a profile.

Summarizing, the data acquisition process contains the following steps:

1. Initialize the phase encoding gradient: ky = − 1
2k

m
y .

2. Measure profiles with a repetition time Trep until Npr profiles have been recorded. Each profile
consists of kmx measurements of the Fourier transform of the cross section, with ky fixed.

3. Increase the phase-encoding gradient: ky → ky + 1; go to (ii). If ky = 1
2k

m
y − 1, stop.

4. Simultaneously measure the times Rk of occurrence of the R-waves.

By the assumption made above there exists a fixed interval I := [0, 1], referred to as the standard heart
interval , on which data recorded during heartbeats of different duration are mapped. We refer to original
measurement time as ‘time’ τ , and to relative time on the standard heart interval as ‘phase’ t.

Let D denote a domain in the plane. The proton density is a function F : D × R → R. We want to
reconstruct the proton density f : D × I → R on the standard heart interval. Each measurement of F at
time τ corresponds to a measurement of f at a converted time t(τ):

F (x, y, τ) = f
(
x, y, t(τ)

)
, t ∈ [0, 1]. (39)

We use ‘linear stretching’ to relate τ and t:

t(τ) =
τ −Rk

Rk+1 −Rk
, τ ∈ [Rk, Rk+1), (40)

where Rk is the time at which the kth R-wave occurs, for k = 1, 2, ....
As a result of the time-to-phase conversion, the data are reordered, see Fig. 7. The converted time

t of the kxth sample of the ith profile at the kyth phase encoding step is a function of both kx and ky:
t = ti(kx, ky), i = 1, . . . , Npr. The collection of measured data thus consists of the numbers

gi(kx, ky) := f̂
(
kx, ky, ti(kx, ky)

)
,
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for kx = − 1
2k

m
x , ...,

1
2k

m
x − 1; ky = − 1

2k
m
y , ...,

1
2k

m
y − 1 and i = 0, ..., Npr − 1. The next problem is that

the reordered phases do not match with the wanted phases, which usually are a number of equally spaced
values on the standard heart interval. Also, for each value of ky the pattern of reordered phases will be
different.

k y k y k y 

R-wave 

time 

= k-1 = k = k+1 

phase 0 1 

Figure 7: Reordering of the time markers by the time-to-phase conversion.

3.2 The mixed Fourier-interpolation problem

Let

k := (kx, ky), gk,i := gi(kx, ky), tk,i := ti(kx, ky),

K := {(kx, ky) : kx = −1

2
kmx , ...,

1

2
kmx − 1; ky = −1

2
kmy , ...,

1

2
kmy − 1},

I := {i : i = 0, ..., Npr − 1}.

Then the problem to be solved reads as follows:

Problem formulation Given a sequence of real numbers {tk,i} and a sequence of complex numbers
{gk,i}, find a function f : D × I → R such that

f̂
(
k, tk,i

)
= gk,i, k ∈ K, i ∈ I. (41)

It is assumed that for each k the sequence {ti(k)}i∈I consists of distinct real numbers. The problem here
is both the ky-dependence and non-uniform sampling of the time points {ti}. Since the solution of this
problem involves Fourier inversion in the spatial domain and interpolation in the time domain, we will
refer to (41) as the mixed Fourier-interpolation problem.

The interpolation problem (41) has a natural decomposition into a space-dependent and a time-
dependent component. Assume that for each r := (x, y) ∈ D, the function f(r) : t → f(r, t) is an
element of a certain Hilbert space H. The inner product on H is denoted by angular brackets ⟨., .⟩H. The
function f itself is assumed to be an element of a larger Hilbert space W with inner product

⟨f, g⟩W :=

∫
D

⟨f(r), g(r)⟩Hdr. (42)

Let {hi}i∈I be an orthonormal basis for H and {ek}k∈K be the (orthonormal) Fourier basis for L2(D),
ek(r) = (2π)−1eik·r, where without loss of generality we have taken D = [−π, π]2. It is assumed that H
is a Reproducing Kernel Hilbert Space (RKHS) [3, 4]: for all t ∈ R, there exists an element Qt ∈ H such
that point evaluations can be written as inner products:

h(t) = ⟨h,Qt⟩H, for each h ∈ H.

The function Q : R2 → C with Q(t, s) := Qt(s) = ⟨Qt, Qs⟩H is called the reproducing kernel.
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Figure 8: Original chest phantom. From left to right, top to bottom: phases 0-7.

For the mixed problem we can perform a similar reformulation: define φk,i(t) = Q(tk,i, t),k ∈ K, i ∈ I.
Then

f̂
(
k, tk,i

)
= ⟨f̂(k), φk,i⟩H, (43)

where f̂(k) denotes the (generalized) Fourier transform of f . Since, for arbitrary h ∈ H, ⟨f, ekh⟩W =

⟨f̂(k), h⟩H, (41) can be reformulated as a moment problem:

⟨f, ekφk,i⟩W = gk,i, ∀k ∈ K,∀i ∈ I. (44)

In the case of a finite number of measurements (44) will not have a unique solution so that it is
appropriate to consider the minimum norm solution. We assume that, for all k ∈ K, the system {φk,i}i∈I
is linearly independent in H as long as the sequence {tk,i}i∈I consists of distinct real numbers. Then
the system {ekφk,i}i∈I,k∈K is a linearly independent system of vectors spanning a linear subspace of W,
denoted by Wn.

Reconstruction

The solution of minimal norm to problem (44) is unique, lies in Wn and is given by

f =
∑
k∈K

ckek, (45)

where ck is defined by

ck =
∑
i∈I

gk,iψk,i. (46)

Here ψk,i, which is orthogonal to φk,j , j ̸= i, is given by

ψk,i =
∑
j∈I

(G−1(k))ij φk,j , (47)

where, for each k ∈ K, G(k) is the Gram matrix, defined by

(G(k))ij = ⟨φk,j , φk,i⟩H = Q(tk,j , tk,i), ∀i, j ∈ I. (48)

So for each fixed frequency vector k, a solution ck to the interpolation problem (41) is computed and then
the inverse Fourier transform is taken:

f(r, t) =
∑
k∈K

ck(t)ek(r) =
∑
k∈K

ek(r)
∑
i,j∈I

gk,i(G−1(k))ij φj(k, t) . (49)

For H two cases are considered:
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• H is the Paley-Wiener space Pr of bandwidth r defined by Pr := {f ∈ L2(R) : supp f̂ ⊂ [−r, r]},
where ‘supp’ denotes the support of a function. The reproducing kernel for a given bandwidth r is
given by Q(t, s) =

√
r/π sincr(s − tπ/r). Here sincr denotes the sinc-function which is defined by

sincr(t) := [sin(rt)]/rt for t ̸= 0 and sincr(0) = 1.

• H is the space K2n−1 of splines of odd degree 2n− 1. The reproducing kernel is

Q(t, s) :=

n−1∑
k=0

(t− a)k(s− a)k

(k!)2
+

n−1∑
k=0

(−1)n+k+1 (t− a)2n−k−1(s− a)k

(2n− k − 1)!k!

+
(−1)n

(2n− 1)!
(t− s)2n−1

+ ,

where tk+ := tk for t ≥ 0 and zero for t < 0.

Stability By computing error estimates it turns out that problem (41) is stable for perturbation of the
data and time points [68,83]. However it is ill-conditioned when the norm of the Gram matrix comes close
to 1, which happens when the time points {tk,i}i∈I (for a certain k ∈ K) are lying close to each other. In
that case we use Tychonov-Phillips regularization, see Section 2.6, which for the mixed problem has the
form

(T γg) (r, t) =
∑
k∈K

ek(r)
∑
i,j∈I

gk,i((G(k) + γI)−1)ij φk,j(t), (50)

for g := {gk,i}k∈K,i∈I ∈ ℓ2(K× I), and (G(k))ij = ⟨φk,j , φk,i⟩H.
An important observation is that the regularized solution decomposes into a sum of solutions to smaller

moment problems, one for each wave vector k. For practical computer implementation this has the
advantage of reduced data storage requirements. Also it opens up the possibility of parallel computation.

3.3 Results

We have performed reconstructions of synthetic images (‘chest phantoms’), as well as of real MRI data.
The chest phantom is defined in terms of several (solid) ellipses, some of which are changing as a function
of time, see Fig. 8. In the case of synthetic images, we first generate times Rk of R-waves, measurement
times tk,i and corresponding Fourier coefficients gk,i, which then serve as input to the reconstruction
procedures (in the case of real data these numbers are produced by the MRI scanner). The times Rk of R-
waves are chosen as random samples from a uniform distribution on the interval [TRR(1− ϵ), TRR(1+ ϵ)].
Here ϵ is the crucial model parameter determining the relative variation of the interval times of the
‘phantom heart’. The case ϵ = 0 corresponds to a perfectly regular heartbeat. Measurement times are
defined as τi(kx, ky) = (kyNpr + i)Trep + kxδt, where (kx, ky) ∈ K, i ∈ I and where Npr is the number
of profiles, Trep the repetition time, and δt the time between successive samples in a profile. Finally,
Fourier coefficients are generated as follows. Let a single heartbeat of the chest phantom be denoted
by f(r, t), where r ∈ D, t ∈ [0, 1]. We extend this function to a larger interval [0, RJ) ⊂ operator by
‘inverting’ the time-to-phase conversion of Section 2.2. That is, given the sequence of times Rk of R-waves,
0 = R1 < R2 < R3 < ... < RJ , we define F : D × operator → operator by

F (r, τ) := f(r, t(τ)), for τ ∈ [Rj , Rj+1),

where

t(τ) =
τ −Rj

Rj+1 −Rj
.

From (3.3) the Fourier coefficients of this function F with respect to the spatial parameters r = (x, y),

are given by F̂ (k, τi(k)) = f̂(k, t(τi(k))). Since f is the known synthetic image, the corresponding Fourier
coefficient can be computed as soon as the rescaled times t(τi(k)) have been determined. This has to be
done for all k ∈ K, i ∈ I.

The reconstructions are performed by first interpolating in the time-domain for each fixed Fourier
frequency k, followed by Fourier inversion at a number Φm of equidistant phases ϕi = i/Φm, i =
0, 1, ..,Φm − 1. For the time-interpolation first or third order spline interpolation and sinc interpolation
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are used, referred to as order 1 reconstruction, sinc reconstruction etc. We also implemented the original
technique of Bohning [8], referred to as order 0 reconstruction. Here the interpolated value at phase ϕi
is taken to be the average of the data in the interval [ϕi, ϕi+1), where a value zero is assigned if no data
fall in this interval. This method leads to severe aliasing artefacts if the number of profiles is small. Also
regularized sinc-interpolation by the Tychonov-Phillips method was used (referred to as reg.sinc below)
with a value γ = 0.01 for the regularization parameter.

Synthetic data A relative variation of 25% in the length of the (simulated) heart beats was taken.
The reconstructed images are of size 128× 128 and whereas the value Φm = 8 was used.

To test stability the measurement times were perturbed by adding a uniform perturbation in the interval
[−0.08, 0.08]. The reconstructions corresponding to the perturbed measurement times are shown in Fig. 9
for Npr = 15. In each case the first row displays order 0 reconstruction, the second row order 1, the third
one order 3, the fourth one sinc-reconstruction and the fifth regularized sinc-reconstruction. In each row
we show phases 0,3 and 6 from left to right.

By comparing these reconstructions to the originals at the corresponding phases in Fig. 8, one observes
that the sinc, order 1 and order 3 reconstruction don’t behave well under perturbation of the measurement
times. Also small white ‘clouds’ appear in order 0-3 reconstruction. The sinc-reconstruction is very
bad, but (except for the initial phase) the regularized sinc-reconstruction is the best of all reconstruction
algorithms. For a quantitative comparison (using the L2 error norm), see [68], where similar comparisons
have been made for unperturbed data and for perturbations of the measured Fourier coefficients.

Real MRI data Reconstructions were made from real MRI data obtained from Philips Medical Systems
Division (Best, The Netherlands). The parameters in the reconstructions are: kmx = kmy = 128, Npr = 50.
Results, at phase 2 of the heart cycle, are shown in Fig. 10. The two ellipse-like structures on the left and
the right side are cross sections of the arms. The big circular part is the bone of the chest. In the picture
the heart is located at the top. The grey part of the heart is the muscle tissue and the lighter parts are
the heart-chambers.

Important is how well the heart muscle (in particular, its boundary) is reconstructed, and how little
noise is contained in those parts of the image which contain moving heart structures. In the order 0
reconstruction the contours of the heart muscle are somewhat vague. The regularized sinc-reconstruction
behaves better than sinc reconstruction, but in this case is not a real improvement compared to order 0
reconstruction. This may be due to the fairly large number of profiles used, which tends to diminish the
differences between the various interpolation methods. For a fuller discussion we refer to [68].
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Figure 9: Reconstructions from perturbed time markers at phases 0, 3 and 6, from left to right. (Npr = 15).

First row: order 0; second row: order 1; third row: order 3; fourth row: sinc; fifth row: reg.sinc.
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Figure 10: Reconstructions of MR images at phase 2. Top left: order 0; Top right: order 1; Middle left: order

3; Middle right: sinc; Bottom: reg.sinc.
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