COMPUTATION OF WATERSHEDS BASED ON PARALLEL
GRAPH ALGORITHMS *

A. MEIJSTER and J.B.T.M. ROERDINK
Unaversity of Groningen,

Institute for Mathematics and Computing Science
P.O. Boxz 800, 9700 AV Groningen, The Netherlands
Email: arnold@cs.rug.nl roe@cs.rug.nl

Tel. +31-50-8653931, Fax. +81-50-36338800

Abstract. In this paper the implementation of a parallel watershed algorithm is described. The
algorithm has been implemented on a Cray J932, which is a shared memory architecture with 32
processors. The watershed transform has generally been considered to be inherently sequential,
but recently a few research groups, see [5, 9, 10], have designed parallel algorithms for computing
watersheds. Most of these parallel algorithms are based on splitting the source image in blocks,
computing the watersheds of these blocks and merging the resulting images into the desired result.
A disadvantage of this approach is that a lot of communication is necessary at the boundaries of
the blocks. It is possible to formulate the computation of the watershed transform as a shortest
path searching problem that is commonly found in algorithmic graph theory. In this paper we use a
parallel adapted version of Dijkstra’s algorithm for computing shortest paths in undirected graphs.

Key words: watersheds, segmentation, shortest path algorithms, shared memory, parallelism

1. Introduction

Meyer gives in [7] a definition of the watershed of a digital gray scale image in terms
of shortest paths. In this section we will give a short summary of this definition.

A digital gray scale image is a function f : D — IN, where D C Z? is the domain
of the image and f(p) denotes the gray value of the pixel p € D. Let E denote the
underlying grid, i.e. E is a subset of Z® x Z*. A path P of length [between two
pixels p and ¢ is an (I 4+ 1)-tuple (po, p1, ..., Pi—1, 1) such that po = p, py = ¢ and
Vi € 10,1) : (pi,pit1) € E. The length of a path P is denoted by [(P). For a pixel
p € D the set of neighboring pixels of p is defined as Ng(p) = {¢ € D | (p,q) € E}.

The lower slope, which is the maximal slope linking a pixel p to any of its neigh-
bors of lower altitude, is defined as

LS(p) = e Iax (p)(f(p) — f(9))

The cost for walking from one position p to a neighboring position ¢ is defined as

LS(p) if f(p) > f(q)

cost(p,q) =X LS(q) if f(p) < f(q)
LSRIELS() i f(p) = f(g)

* In: Mathematical Morphology and its Applications to Image and Signal Processing, P. Mara-
gos, R.W. Shafer, M.A. Butt (eds.), Kluwer, 1996, pp. 305-312. Postscript version obtainable at
http://www.cs.rug.nl/froe/

2 A. MEIJSTER AND J.B. T.M. ROERDINK

We denote the set of all paths from p to ¢ by p ~ ¢q. The topographical distance
between two pixels p and ¢ along a path P = (po, ..., pip)) is defined as

v

I
T (pq) = cost(pi, piy1)

)—1

-
I
=)

The topographical distance between points p and ¢ is defined as the minimum of the
topographical distances along all paths between p and ¢:

T = MIN 7F
t(p,q) MIN T (p,q)
The topographical distance between a point p € D and a set A C D is defined as:

Ty (p, A) = MINT; (p, a)

Note that T¢(p,q) = 0 if p and ¢ are interior pixels of the same plateau. Now we
construct a function f* by replacing the values of f in all the local minima of f
by 0, i.e. f*(p) = 0 if p lies in a regional minimum, f*(p) = f(p) otherwise. Let
(m;)ier be the collection of minima of the function f*. Note that these minima are
sets, since a minimum can be a plateau instead of one single pixel. The catchment
basin of a minimum m;, denoted C'B(m;), is defined as the set of points p € D that
are topographically closer to m; than to any other minimum m;:

CB(mi) ={pe D|Vje I\{i}: Ty (p,mi) < Ty (p,m;)}

The watershed of a function f is the set of points of its domain which do-not belong
to any catchment basin:

Wsh(f) = DN (UserCB(m;))°

2. Dijkstra’s algorithm

In the previous section the definition of the watershed of a digital image is given.
However, although this definition is mathematically sound, it is not immediately
clear how to compute the watershed of a digital image, since the definition quantifies
over all topographical paths between each pixel p € D and all the minima m;.

In graph theory shortest path searching problems have been studied extensively.
In the rest of this section we will review the problem of computing the lengths of the
shortest paths in a given graph from a source node s to all the other nodes in this
graph. We assume we have an undirected graph G = (V| F), and a weight function
w: E — IN, that assigns a length to each edge of the graph. The goal is to find for
each v € V the length of the shortest path from the source node s to v.

A well known algorithm for solving this problem' was found by E.W. Dijkstra
in 1959 (see [1]). The algorithm is based on the fact that if P = (po, p1, .., pn), with

1 Actually, the general problem is to find the shortest path, instead of its length, but we are
only interested in the length of this path.

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 3

procedure Dijkstra (G=(V,E); s eV, w: EF - IN; var d : V — IN);

var u : V;
begin forall v € V do d[v] := oc;
d[s] := 0;

while V # §§ do
begin u := GetMinDist(V); (* find v € V with smallest d-value)
V= V{uls
forall v € V with (u,v) € F do
if d[u] + wlu, v] < d[v]
then d[v] := d[u] + wlu, v]
end
end;

Fig. 1. Dijkstra’s algorithm for an undirected graph G = (V, E)

(ps, pit1) € E, is the shortest path from a node py to another node p,, then the
shortest path from py to p;, with 0 < i < n, is given by (po,...,p;). This trivial
observation leads to a very elegant algorithm for solving the shortest path problem.
The basic idea is to initialize for each node v € V\{s} the distance between v and s
to infinity, while the distance between s and itself is set to zero. After initialization, a
wavefront starting in s is propagated through the graph along the edges of the graph.
During the propagation we keep track of the distance the wavefront has traveled so
far. When a node is reached by the wavefront and the distance traveled i1s smaller
than the current value stored in this node, the value of this node is updated. This
propagation process stops when all nodes of the graph have been reached by the
wavefront. The pseudo-code of this algorithm is given in Fig. 1.

From the code of the algorithm it is clear that, assuming that the time complexity
of the function GetMinDist is O(1), the time complexity of the entire algorithm is
O(]| E|), since each edge of the graph is traversed only twice?. Since E C V x V, the
time complexity can also be written as O(| V' |?).

3. Computation of the Watershed based on Dijkstra’s algorithm

If we compute the function cost of a digital gray scale image f, and use it as the
weight function associated with the edges of the grid E, then Dijkstra’s algorithm
can be used to compute the topographical distance between each pixel and a local
minimum ;. In the rest of this paper all distances are topographical distances
unless explicitly stated otherwise. Dijkstra’s algorithm appears to be a very time
consuming operation, since the number of nodes of the graph is the number of pixels
in the image. However, because the graph is a digital image there are only 4, 6 or
8 edges leaving each node, in the cases of 4, 6, or 8-connectivity, respectively. Thus
|E|= % | V|, where k denotes the connectivity we use. So, the time complexity of

2 In a directed graph each edge is traversed only once.

4 A. MEIJSTER AND J.B. T.M. ROERDINK

procedure SeqWshed (E : D x D; cost : E — IN; var d : D — (I U{Wsh}) x IN));
var u : D;
begin forall v € D do d[v] := (0, o0);
forall z € I do
forall v € m; do d[v] := (¢, 0);
while D # § do
begin u := Get MinDist(D);
D = D\{u};
forall v € D with (u,v) € F do
if snd(d[u]) + cost[u, v] < snd(d[v])
then d[v] := (fst(d[u]), snd(d[u]) + cost[u, v]);
else if snd(d[u]) + cost[u, v] = snd(d[v])
then d[v] .= (Wsh, snd(d[v]));
end
end;

Fig. 2. Sequential Watershed Algorithm

Dijkstra’s algorithm for this specific case 18 not quadratic in the number of pixels,
but linear.

For the computation of the watershed of f we need to know the distance of each
pixel p € D to each minimum (1m;);cr, so we could apply the algorithm | 7| times,
to compute the distances between each pixel p and each minimum in the image.
However, we will modify the function d in Dijkstra’s algorithm as follows. We store
for each p € D in the first coordinate of d[v] the index of the nearest minimum, and
in the second coordinate the distance to this minimum. The resulting algorithm is
given in Fig. 2. A wavefront is initiated in each minimum of the image. Each wave
is labeled with the index of the minimum it started in. If wavefront ¢ reaches a node
p after it has propagated over a distance !, and [is less then the value of the second
coordinate of d[p], the value [is placed in the second coordinate of d[p], while the
first coordinate is set to 7. If a node p is reached by another wavefront that has
propagated over the same distance, the first coordinate of p is set to the artificial
value Wsh, designating that p is a watershed pixel.

If, for the time being, we assume that Get MinDist has time complexity O(1),
the sequential watershed has time complexity O(| E |), which is the same as time
complexity O(| D |). Thus, if we are able to implement the function GetMinDist
such that it runs in constant time, we can compute the watershed of an 1image in an
amount of time which is linear in the number of pixels of the image.

4. Implementation of GetMinDist using queues

In this section we will show that it it possible to implement the function Get Min Dist
such that it has time complexity O(1). The function should return the pixel p, which
has not been reached by the wavefront yet, with the shortest distance to any of the

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 5

;‘> nil Legend:
[y S o N oy o By)
[| [| [
[P ——— ! ——= pointer to
; —— il queue-element
N ittt = pointer to last
- | i | i | i | ‘nil‘ queue position
\M‘ * iﬂ""***””””””""""""A nil empty queue
[il
i *************** ' current distance
o [T3 Inil
777777777777777777777777 i
py T
,,,,,,,,,,,,,,, i
s
[[] [] [i
S
Fig. 3. A sample queue data structure
minima.

This can be realized with a priority queue of fifo-queues. It is implemented as a
simple circular array. With each fifo-queue a distance is associated. This distance is
the distance that a wavefront still has to travel before it will reach the pixels in this
queue. The distances associated with the fifo-queues are used as the priority values
in the priority queue — a smaller distance means a higher priority. In the fifo-queue
with distance d associated with it, we store the pixels that will be reached by some
wavefront after it travels a distance d further than where it i1s now. The order in
which pixels of different plateaus are stored in these queues is irrelevant. The queues
are fifo-queues, such that pixels which are located in the interior of a plateau, are
ordered in this queue according to another distance function d*, which measures how
far pixels are away from the boundary of the plateau. For this function d* one may
take any of the standard metrics for binary images, such as the city-block distance
in the case of 4-connectivity. In this way the algorithm automatically computes a
skeleton by influence zones of such a plateau, if the plateau is reached by two or
more waves at the same time. The priority queue is initialized with a fifo-queue (at
index 0) containing all pixels that are located in the regional minima of the image.
It is clear that, using this data structure, GetMinDist runs in O(1) time, since it
simply returns (and removes) the pixel at the front of the fifo-queue which is the
first queue in the priority queue (queue with index 0 in fig. 3). This queue, and that
pixel, are directly accessible. Insertion in the queues can also be done in O(1) time,
if we keep track of the last position in each fifo-queue, as well as the first position.

5. Parallelization of the Sequential Watershed Algorithm

It is easy to compute the lower slope and the cost function of an image in parallel,
since the computation of the function value of a pixel is completely independent of
the computation of this value for some other pixel. On the Cray J932, a shared
memory computer, the speedup for computing these routines is almost linear with

6 A. MEIJSTER AND J.B. T.M. ROERDINK

the number of processors.

The detection of minima is not entirely trivial, since local minima can be huge
plateaus, and as a result we cannot decide whether a pixel is located in a regional
minimum by just inspecting its value and those of its neighbors. To solve this prob-
lem, we use the algorithm for detecting local minima as given in [9]3. The speedup
of this algorithm is approximately linear in the number of processors, although the
influence of concurrent references to the same memory locations starts to play a
major role if we use many processors?®.

The computation of the watershed on the graph can also easily be parallelized.
Given a shared memory computer with as many processors as there are minima,
each processor computes the catchment basin belonging to a single minimum. Each
processor has a private version of the queue data structures. The algorithm executed
by a single processor is almost the same as the sequential code. The only difference is
that the priority queue is initialized differently. Instead of placing all minima pixels
in the queue only the minima pixels corresponding to the processor’s minimum are
placed in the queue.

In practice we do not have as many processors as the number of minima. If this
number is M and the number of processors is P we assign to each processor the task
to compute the catchment basins of [M/P] minima. Of course the number M is in
general not divisible by P, so one processor will be assigned a slightly smaller task,
which may result in a slight load imbalance. Since we use shared memory, concurrent
references to the same memory locations are to be expected. Since this can result
in unpredictable behavior we have to synchronize these memory references using
critical sections. Critical sections are sections of the program that can be executed
by only one processor at the same time. These critical sections are implemented
using binary semaphores (see [2]).

6. Performance Results

In general it 1s impossible to predict the exact speed-up of the parallel algorithm,
since it 18 unknown a priori how many minima there are, and we do not know the size
of the corresponding catchment basins. If the number of minima is smaller than the
number of processors, we should not expect to gain speed by using more processors
since each extra processor will be idle. In practice however, most images contain
many more minima than the number of processors. Load imbalance as a result
of different sizes of the catchment basins is a much more serious cause of decrease
in speedup. In theory it is even possible that an image has catchment basins of
only a few pixels, while some other catchment basin contains most of the pixels.
In this case, the runtime performance of the parallel algorithm will be close to, or
even worse than, the sequential algorithm running on a single processor, since the
task to compute the large catchment basin is (almost) as expensive as computing
the watershed of the entire image. However, if all the catchment basins are of
approximately the same size, then the load balancing should be relatively even.

We tested the algorithm on a series of 6 images of 512 x 512 pixels. While running

3 In [9] a MIMD algorithm is given, but it can easily be adapted for a shared memory system.
4 For most images, we usually see a decrease in performance if we use more than 16 cpu’s.

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS

Fig. 4. (a) blobs (b) chess board (c) harmonic waves (d) peppers (e) gold particles (f) aircraft

TABLE I

Timings and speedups for the 6 test images

image #minima T Sy Sy Sg Sie

blobs 4 88 1.7 25 3.0 3.0
chess 67 101 16 23 3.6 4.0
waves 20 115 1.7 24 3.6 8.5
peppers 44426 111 1.7 2.1 3.0 5.0
gold 359 115 1.7 25 3.7 104
aircraft 19053 114 16 2.1 29 4.8

these tests we soon discovered that we do not gain significant speedup if we use more
than 16 processors, since the tasks which are assigned to one processor are too small
if we use more than 16 processors. For larger images it might very well be profitable
to use more processors. For our test images we have decided to use not more than 16
processors. The results are given in table I. The column T3 is the time (in seconds)
for the computation of 100 watersheds on a single processor. In the column S, the
speedup is given if we use p processors.

We see that the speedup in the case of the blobs image remains the same if we
keep adding more processors. The image contains only 4 regional minima, and thus
each extra processor will remain idle. The poor speedup in the case of the chess

7

8 A. MEIJSTER AND J.B. T.M. ROERDINK

board image is caused by the fact that it contains a widespread regional minimum —
the boundaries of the squares. This minimum reaches over the entire image, causing
a big load imbalance. The peppers image and the aircraft image contain many
regional minima, most of them are noise resulting in many very small tasks causing
a lot of overhead. The waves image and the gold image contain a reasonable number
of uniformly distributed regional minima, resulting in a fairly good speedup.

7. Conclusions and further research

Computing watersheds in parallel is difficult. The original watershed algorithm pro-
posed by Vincent and Soille (see [11]) is very hard to parallelize since this definition
is an inherently sequential recursion. The definition given by Meyer (see [7]) used in
this paper, offers some possibilities to compute watersheds in parallel using Dijkstra’s
shortest path algorithm.

Since we do not know a priori the size of a catchment basin associated with each
minimum, load imbalance may occur. This will be the subject of study for future
implementations. One solution is to reduce the number of minima using standard
techniques to reduce over-segmentation. In practice we see that a lot of computing
time is wasted on noise minima.

Another possible solution for the load imbalance is a better allocation of minima
to the processors. If we allocate minima which are close to each other to the same
processor wavefronts will get pruned earlier.

References

1. E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs, In Numerische Math-
ematik 1, pp.269-271, 1959

2. E.W. Dijkstra. Co-operating Sequential Processes. In F. Genuys (ed.), Programming Lan-
guages, Academic Press, London, 1968, pp.43-112

3. S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed
transformation. In E.R. Dougherty, editor, Mathematical Morphology in Image Processing.
Marcel Dekker, New York, 1993. Chapter 12, pp. 433—481.

4. J.A. McHugh. Algorithmic Graph Theory, Prentice-Hall, 1990.

5. A. Meijster and J.B.T.M. Roerdink. A Proposal for the Implementation of a Parallel Wa-
tershed Algorithm. In Proceedings Computer Analysis of Images and Patterns (CAIP'95),
Springer Verlag, 1995, pp. 790-795.

6. F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communications
and Image Representation, 1(1):21-45, 1990.

7. F. Meyer. Integrals, gradients and watershed lines. In J. Serra and P. Salembier (Eds.), Proc.
Workshop on Mathematical Morphology and its Applications to Signal Processing, Barcelona,
1993, pp. 70-75.

8. F. Meyer. Minimum spanning forests for morphological segmentation. In Mathematical Mor-
phology and its Applications to Image Processing, J. Serra, P. Soille (eds.), Kluwer, 1994, pp.
77-84.

9. A.N. Moga, T. Viero, B.P. Dobrin, M. Gabbouj. Implementation of a distributed watershed
algorithm. In J. Serra and P. Soille (Eds.), Mathematical Morphology and Its Applications to
Image Processing, Kluwer, 1994, pp. 281-288.

10. A.N. Moga, T. Viero, M. Gabbouj. Parallel Watershed Algorithm Based on Sequential Scan-
ning. In L. Pitas (Ed.), 1995 IEEE Workshop on Nonlinear Signal and Image Processing,
June 20-22, Neos Marmaras, Halkidiki, Greece, pp. 991-994.

COMPUTATION OF WATERSHEDS BASED ON PARALLEL GRAPH ALGORITHMS 9

11. L. Vincent and P. Soille, Watersheds in Digital Spaces: An Efficient Algorithm Based on
Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13, no. 6, pp 583-598, June 1991.

