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Abstract—The Discrete Wavelet Transform (DWT) has a wide
range of applications from signal processing to video and image
compression. We show that this transform, by means of the lifting
scheme, can be performed in a memory and computation efficient
way on modern, programmable GPUs, which can be regarded
as massively parallel co-processors through NVidia’s CUDA
compute paradigm. The three main hardware architectures for
the 2D DWT (row-column, line-based, block-based) are shown
to be unsuitable for a CUDA implementation. Our CUDA-
specific design can be regarded as a hybrid method between the
row-column and block-based methods. We achieve considerable
speedups compared to an optimized CPU implementation and
earlier non-CUDA based GPU DWT methods, both for 2D images
and 3D volume data. Additionally, memory usage can be reduced
significantly compared to previous GPU DWT methods. The
method is scalable and the fastest GPU implementation among
the methods considered. A performance analysis shows that the
results of our CUDA-specific design are in close agreement with
our theoretical complexity analysis.

Index Terms—Discrete wavelet transform, wavelet lifting,
graphics hardware, CUDA.

I. INTRODUCTION

The wavelet transform, originally developed as a tool for the
analysis of seismic data, has been applied in areas as diverse
as signal processing, video and image coding, compression,
data mining and seismic analysis. The theory of wavelets
bears a large similarity to Fourier analysis, where a signal
is approximated by superposition of sinusoidal functions.
A problem, however, is that the sinusoids have an infinite
support, which makes Fourier analysis less suitable to ap-
proximate sharp transitions in the function or signal. Wavelet
analysis overcomes this problem by using small waves, called
wavelets, which have a compact support. One starts with a
wavelet prototype function, called a basic wavelet or mother
wavelet. Then a wavelet basis is constructed by translated
and dilated (i.e., rescaled) versions of the basic wavelet. The
fundamental idea is to decompose a signal into components
with respect to this wavelet basis, and to reconstruct the
original signal as a superposition of wavelet basis functions;
therefore we speak a multiresolution analysis. If the shape
of the wavelets resembles that of the data, the wavelet anal-
ysis results in a sparse representation of the signal, making
wavelets an interesting tool for data compression. This also
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allows a client-server model of data exchange, where data
is first decomposed into different levels of resolution on the
server, then progressively transmitted to the client, where the
data can be incrementally restored as it arrives (‘progressive
refinement’). This is especially useful when the data sets are
very large, as in the case of 3D data visualization [1]. For
some general background on wavelets, the reader is referred
to the books by Daubechies [2] or Mallat [3].

In the theory of wavelet analysis both continuous and
discrete wavelet transforms are defined. If discrete and finite
data are used it is appropriate to consider the Discrete Wavelet
Transform (DWT). Like the discrete Fourier transform (DFT),
the DWT is a linear and invertible transform that operates
on a data vector whose length is (usually) an integer power
of two. The elements of the transformed vector are called
wavelet coefficients, in analogy of Fourier coefficients in case
of the DFT. The DWT and its inverse can be computed by
an efficient filter bank algorithm, called Mallat’s pyramid
algorithm [3]. This algorithm involves repeated downsampling
(forward transform) or upsampling (inverse transform) and
convolution filtering by the application of high and low pass
filters. Its complexity is linear in the number of data elements.

In the construction of so-called first generation wavelet
bases, which are translates and dilates of a single basic
function, Fourier transform techniques played a major role [2].
To deal with situations where the Fourier transform is not
applicable, such as wavelets on curves or surfaces, or wavelets
for irregularly sampled data, second generation wavelets
were proposed by Sweldens, based on the so-called lifting
scheme [4]. This provides a flexible and efficient frame-
work for building wavelets. It works entirely in the original
time/space domain, and does not involve Fourier transforms.

The basic idea behind the lifting scheme is as follows.
It starts with a simple wavelet, and then gradually builds a
new wavelet, with improved properties, by adding new basis
functions. So the simple wavelet is lifted to a new wavelet,
and this can be done repeatedly. Alternatively, one can say
that a complex wavelet transform is factored into a sequence
of simple lifting steps [5]. More details on lifting are provided
in section III.

Also for first generation wavelets, constructing them by
the lifting scheme has a number of advantages [4]. First, it
results in a faster implementation of the wavelet transform than
the straightforward convolution-based approach by reducing
the number of arithmetic operations. Asymptotically for long
filters, lifting is twice as fast as the standard algorithm. Second,
given the forward transform, the inverse transform can be



found in a trivial way. Third, no Fourier transforms are needed.
Lastly, it allows a fully in-place calculation of the wavelet
transform, so no auxiliary memory is needed. With the gener-
ally limited amount of high-speed memory available, and the
large quantities of data that have to be processed in multimedia
or visualization applications, this is a great advantage. Finally,
the lifting scheme represents a universal discrete wavelet
transform which involves only integer coefficients instead of
the usual floating point coefficients [6]. Therefore we based
our DWT implementation on the lifting scheme.

Custom hardware implementations of the DWT have been
developed to meet the computational demands for systems
that handle the enormous throughputs in, for example, real-
time multimedia processing. However, cost and availability
concerns, and the inherent inflexibility of this kind of solutions
make it preferable to use a more widespread and general
platform. NVidia’s G80 architecture [7], introduced in 2006
with the GeForce 8800 GPU, provides such a platform. It
is a highly parallel computing architecture available for sys-
tems ranging from laptops or desktop computers to high-end
compute servers. In this paper, we will present a hardware-
accelerated DWT algorithm that makes use of the Compute
Unified Device Architecture (CUDA) parallel programming
model to fully exploit the new features offered by the G80
architecture when compared to traditional GPU programming.

The three main hardware architectures for the 2D DWT,
i.e., row-column, line-based, or block-based, turn out to be
unsuitable for a CUDA implementation (see Section II). The
biggest challenge of fitting wavelet lifting in the SIMD model
is that data sharing is, in principle, needed after every lifting
step. This makes the division into independent computational
blocks difficult, and means that a compromise has to be
made between minimizing the amount of data shared with
neighbouring blocks (implying more synchronization over-
head) and allowing larger data overlap in the computation at
the borders (more computation overhead). This challenge is
specifically difficult with CUDA, as blocks cannot exchange
data at all without returning execution flow to the CPU.
Our solution is a sliding window approach which enables
us (in the case of separable wavelets) to keep intermediate
results longer in shared memory, instead of being written to
global memory. Our CUDA-specific design can be regarded
as a hybrid method between the row-column and block-based
methods. We implemented our methods both for 2D and 3D
data, and obtained considerable speedups compared to an opti-
mized CPU implementation and earlier non-CUDA based GPU
DWT methods. Additionally, memory usage can be reduced
significantly compared to previous GPU DWT methods. The
method is scalable and the fastest GPU implementation among
the methods considered. A performance analysis shows that
the results of our CUDA-specific design are in close agreement
with our theoretical complexity analysis.

The paper is organized as follows. Section II gives a
brief overview of GPU wavelet lifting methods, and previous
work on GPU wavelet transforms. In Section III we present
the basic theory of wavelet lifting. Section IV first presents
an overview of the CUDA programming environment and
execution model, introduces some performance considerations

for parallel CUDA programs, and gives the details of our
wavelet lifting implementation on GPU hardware. Section V
presents benchmark results and analyzes the performance of
our method. Finally, in Section VI we draw conclusions and
discuss future avenues of research.

II. PREVIOUS AND RELATED WORK

In [8] a method was first proposed that makes use
of OpenGL extensions on early non-programmable graph-
ics hardware to perform the convolution and downsam-
pling/upsampling for a 2-D DWT. Later, in [9] this was
generalized to 3-D using a technique called tileboarding.

Wong et al. [10] implemented the DWT on programmable
graphics hardware with the goal of speeding up JPEG2000
compression. They made the decision not to use wavelet
lifting, based on the rationale that, although lifting requires
less memory and less computations, it imposes an order of
execution which is not fully parallelizable. They assumed that
lifting would require more rendering passes, and therefore
in the end be slower than the standard approach based on
convolution.

However, Tenllado et al. [11] performed wavelet lifting on
conventional graphics hardware by splitting the computation
into four passes using fragment shaders. They concluded
that a gain of 10-20% could be obtained by using lifting
instead of the standard approach based on convolution. Similar
to [10], Tenllado et al. [12] also found that the lifting scheme
implemented using shaders requires more rendering steps, due
to increased data dependencies. They showed that for shorter
wavelets the convolution-based approach yields a speedup of
50-100% compared to lifting. However, for larger wavelets,
on large images, the lifting scheme becomes 10-20% faster. A
limitation of both [11] and [12] is that the methods are strictly
focused on 2-D. It is uncertain whether, and if so, how they
extend to three or more dimensions.

All previous methods are limited by the need to map the
algorithms to graphics operations, constraining the kind of
computations and memory accesses they could make use of.
As we will show below, new advances in GPU programming
allow us to do in-place transforms in a single pass, using
intermediate fast shared memory.

Wavelet lifting on general parallel architectures was studied
extensively in [13] for processor networks with large com-
munications latencies. A technique called boundary postpro-
cessing was introduced that limits the amount of data sharing
between processors working on individual blocks of data.
This is similar to the technique we will use. More than
in previous generations of graphics cards, general parallel
programming paradigms can now be applied when designing
GPU algorithms.

The three main hardware architectures for the 2D DWT
are row-column (RC), line-based (LB) and block-based (BB),
see for example [14]-[17], and all three schemes are based
on wavelet lifting. The simplest one is RC, which applies a
separate 1D DWT in both the horizontal and vertical directions
for a given number of lifting levels. Although this architecture
provides the simplest control path (thus being the cheapest



for a hardware realization), its major disadvantage is the lack
of locality due to the use of large off-chip memory (i.e., the
image memory), thus decreasing performance. Contrary to RC,
both LB and BB involve a local memory that operates as a
cache, thus increasing bandwidth utilization (throughput). On
FPGA architectures, it was found [14] that the best instruction
throughput is obtained by the LB method, followed by the RC
and BB schemes which show comparable performances. As
expected, both the LB and BB schemes have similar bandwidth
requirements, which are at least two times smaller than that
of RC. Theoretical results [15], [16] show that this holds as
well for ASIC architectures. Thus, LB is the best choice with
respect to overall performance, for a hardware implementation.

Unfortunately, a CUDA realization of LB is impossible for
all but the shortest wavelets (e.g., the Haar wavelet), due
to the relatively large cache memory required. For example,
the cache memory for the Deslauriers-Dubuc (13,7) wavelet
should accommodate six rows of the original image (i.e.,
22.5 KB for two-byte word data and HD resolutions), well
in excess of the maximum amount of 16 KB of shared
memory available per multi-processor, see Section IV-C. As
an efficient implementation of BB requires similar amounts of
cache memory, this choice is again not possible. Thus, the only
feasible strategy remains RC. However, we show in Section V
that even an improved (using cache memory) RC strategy is
not optimal for a CUDA implementation. Nevertheless, our
CUDA-specific design can be regarded as a hybrid method
between RC and BB, which also has an optimal access pattern
to the slow global memory (see Section IV-A2).

III. WAVELET LIFTING

As explained in the introduction, lifting is a very flexible
framework to construct wavelets with desired properties. When
applied to first generation wavelets, lifting can be considered
as a reorganization of the computations leading to increased
speed and more efficient memory usage. In this section we
explain in more detail how this process works. First we discuss
the traditional wavelet transform computation by subband
filtering and then outline the idea of wavelet lifting.

A. Wavelet transform by subband filtering

The main idea of (first generation) wavelet decomposi-
tion for finite 1-D signals is to start from a signal ¥ =
(8,0, ..., 1), with N samples (we assume that N is a
power of 2). Then we apply convolution filtering of ¢ by a
low pass analysis filter H and downsample the result by a
factor of 2 to get an “approximation” signal (or “band”) c!
of length N/2, i.e., half the initial length. Similarly, we apply
convolution filtering of ¢ by a high pass analysis filter G,
followed by downsampling, to get a detail signal (or “band”)
d1. Then we continue with ¢! and repeat the same steps, to get
further approximation and detail signals ¢ and d? of length
N/4. This process is continued a number of times, say J. Here
J is called the number of levels or stages of the decomposition.
The explicit decomposition equations for the individual signal
coefficients are:
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where {h,} and {g,,} are the coefficients of the filters H and
G. Note that only the approximation bands are successively
filtered, the detail bands are left “as is”.

This process is presented graphically in Fig. 1, where the
symbol |5 (enclosed by a circle) indicates downsampling by a
factor of 2. This means that after the decomposition the initial

Figure 1. Structure of the forward wavelet transform with J stages:
recursively split a signal c® into approximation bands ¢/ and detail bands
.

data vector ¥ is represented by one approximation band ¢’
and J detail bands d*, d2, ..., d’. The total length of these
approximation and detail bands is equal to the length of the
input signal c°.

Signal reconstruction is performed by the inverse wavelet
transform: first upsample the approximation and detail bands
at the coarsest level J, then apply synthesis filters H and
G to these, and add the resulting bands. (In the case of
orthonormal filters, such as the Haar basis, the synthesis filters
are essentially equal to the analysis filters.) Again this is done
recursively. This process is presented graphically in Fig. 2,
where the symbol T9 indicates upsampling by a factor of 2.

Figure 2. Structure of the inverse wavelet transform with .J stages: recursively
upsample, filter and add approximation signals ¢’ and detail signals d”.

B. Wavelet transform by lifting

Lifting consists of four steps: split, predict, update, and
scale, see Fig. 3 (left).

1) Split: this step splits a signal (of even length) into two
sets of coefficients, those with even and those with odd
index, indicated by even’*! and odd?™*. This is called
the lazy wavelet transform.

2) Predict lifting step: as the even and odd coefficients
are correlated, we can predict one from the other. More
specifically, a prediction operator P is applied to the
even coefficients and the result is subtracted from the
odd coefficients to get the detail signal d/*+!:

&t = odd’! — P(even’t?) (1)

3) Update lifting step: similarly, an update operator U is
applied to the odd coefficients and added to the even
coefficients to define ¢/*!:

dT = evend T 4 U(d’T) (2)

4) Scale: to ensure normalization, the approximation band
c/*1 is scaled by a factor of K, and the detail band /!
by a factor of 1/K.



Figure 3. Classical lifting scheme (one stage only). Left part: forward lifting. Right part: inverse lifting. Here “split” is the trivial wavelet transform, “merge’
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is the opposite operation, P is the prediction step, U the update step, and K the scaling factor.

Sometimes the scaling step is omitted; in that case we speak
of an unnormalized transform.

A remarkable feature of the lifting technique is that the
inverse transform can be found trivially. This is done by
“inverting” the wiring diagram, see Fig. 3 (right): undo the
scaling, undo the update step (even’™! = ¢/+1 — U(di+1)),
undo the predict step (odd’™' = d/+! 4+ P(eveniT!)), and
merge the even and odd samples. Note that this scheme does
not require the operators P and U to be invertible: nowhere
does the inverse of P or U occur, only the roles of addition
and subtraction are interchanged. For a multistage transform
the process is repeatedly applied to the approximation bands,
until a desired number of decomposition levels is reached. In
the same way as discussed in section III-A, the total length of
the decomposition bands equals that of the initial signal. As an
illustration, we give in Table I the explicit equations for one
stage of the forward wavelet transform by the (unnormalized)
Le Gall (5, 3) filter, both by subband filtering and lifting (in-
place computation). It is easily verified that both schemes give
identical results for the computed approximation and detail
coefficients.

The process above can be extended by including more
predict and/or update steps in the wiring diagram [4]. In fact,
any wavelet transform with finite filters can be decomposed
into a sequence of lifting steps [5]. In practice, lifting steps
are chosen to improve the decomposition, for example, by pro-
ducing a lifted transform with better decorrelation properties
or higher smoothness of the resulting wavelet basis functions.

Wavelet lifting has two properties which are very important
for a GPU implementation. First, it allows a fully in-place
calculation of the wavelet transform, so no auxiliary memory
is needed. Second, the lifting scheme can be modified to a
transform that maps integers to integers [6]. This is achieved
by rounding the result of the P and U functions. This makes
the predict and update operations nonlinear, but this does
not affect the invertibility of the lifting transform. Integer-to-
integer wavelet transforms are especially useful when the input
data consists of integer samples. These schemes can avoid
quantization, which is an attractive property for lossless data
compression.

For many wavelets of interest, the coefficients of the predict
and update steps (before truncation) are of the form z/2",
with z integer and m a positive integer. In that case one
can implement all lifting steps (apart from normalization) by
integer operations: integer addition and multiplication, and
integer division by powers of 2 (bit-shifting).

Table 1
FORWARD WAVELET TRANSFORM (ONE STAGE ONLY) BY THE
(UNNORMALIZED) LE GALL (5, 3) FILTER.
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IV. WAVELET LIFTING ON GPUs USING CUDA
A. CUDA overview

In recent years, GPUs have become increasingly powerful
and more programmable. This combination has led to the
use of the GPU as the main computation device for diverse
applications, such as physics simulations, neural networks,
image compression and even database sorting. The GPU has
moved from being used solely for graphical tasks to a fully-
fledged parallel co-processor. Until recently, General Purpose
GPU (GPGPU) applications, even though not concerned with
graphics rendering, did use the rendering paradigm. In the
most common scenario, textured quadrilaterals were rendered
to a texture, with a fragment shader performing the computa-
tion for each fragment.

With their G80 series of graphics processors, NVidia in-
troduced a programming environment called CUDA [7]. It
is an API that allows the GPU to be programmed through
more traditional means: a C-like language (with some C++-
features such as templates) and compiler. The GPU programs,
now called kernels instead of shaders, are invoked through
procedure calls instead of rendering commands. This allows
the programmer to focus on the main program structure,
instead of details like color clamping, vertex coordinates and
pixel offsets.

In addition to this generalization, CUDA also adds some
features that are missing in shader languages: random access to
memory, fast integer arithmetic, bitwise operations, and shared
memory. The usage of CUDA does not add any overhead, as
it is a native interface to the hardware, and not an abstraction
layer.

1) Execution model: The CUDA execution model is quite
different from that of CPUs, and also different from that of



older GPUs. CUDA broadly follows the data-parallel model
of computation [7]. The CPU invokes the GPU by calling a
kernel, which is a special C-function.

The lowest level of parallelism is formed by threads. A
thread is a single scalar execution unit, and a large number of
threads can run in parallel. The thread can be compared to a
fragment in traditional GPU programming. These threads are
organized in blocks, and the threads of each block can coop-
erate efficiently by sharing data through fast shared memory.
It is also possible to place synchronization points (barriers)
to coordinate operations closely, as these will synchronize the
control flow between all threads within a block. The Single
Instruction Multiple Data (SIMD) aspect of CUDA is that the
highest performance is realized if all threads within a warp
of 32 consecutive threads take the same execution path. If
flow control is used within such a warp, and the threads take
different paths, they have to wait for each other. This is called
divergence.

The highest level, which encompasses the entire kernel
invocation, is called the grid. The grid consists of blocks
that execute in parallel, if multiprocessors are available, or
sequentially if this condition is not met. A limitation of CUDA
is that blocks within a grid cannot communicate with each
other, and this is unlikely to change as independent blocks are
a means to scalability.

2) Memory layout: The CUDA architecture gives access to
several kinds of memory, each tuned for a specific purpose.
The largest chunk of memory consists of the global memory,
also known as device memory. This memory is linearly
addressable, and can be read and written at any position in
any order (random access) from the device. No caching is
done in G80, however there is limited caching in the newest
generation (GT200) as part of the shared memory can be
configured as automatic cache. This means that optimizing
access patterns is up to the programmer. Global memory is
also used for communication with the CPU, which can read
and write using API calls. Registers are limited per-thread
memory locations with very fast access, which are used for
local storage. Shared memory is a limited per-block chunk of
memory which is used for communication between threads in
a block. Variables are marked to be in shared memory using
a specifier. Shared memory can be almost as fast as registers,
provided that bank conflicts are avoided. Texture memory is a
special case of device memory which is cached for locality.
Textures in CUDA work the same as in traditional rendering,
and support several addressing modes and filtering methods.
Constant memory is cached memory that can be written by the
CPU and read by the GPU. Once a constant is in the constant
cache, subsequent reads are as fast as register access.

The device is capable of reading 32-bit, 64-bit, or 128-bit
words from global memory into registers in a single instruc-
tion. When access to device memory is properly distributed
over threads, it is compiled into 128-bit load instructions
instead of 32-bit load instructions. The consecutive memory
locations must be simultaneously accessed by the threads. This
is called memory access coalescing [7], and it represents one
of the most important optimizations in CUDA. We will confirm
the huge difference in memory throughput between coalesced

and non-coalesced access in our results.

B. Performance considerations for parallel CUDA programs
(kernels)

Let us first define some metrics which we use later to
analyze our results in Section V-C below.

1) Total execution time: Assume that a CUDA kernel
performs computations on N data values, and organizes the
CUDA ‘execution model’ as follows. Let T denote the number
of threads in a block, WW the number of threads in a warp, i.e.,
W = 32 for G80 GPUs, and B denote the number of thread
blocks. Further, assume that the number of multiprocessors
(device specific) is M, and that NVidia’s occupancy calculator
[18] indicates that k blocks can be assigned to one multipro-
cessor (MP); k is program specific and represents the total
number of threads for which (re)scheduling costs are zero,
i.e., context switching is done with no extra overhead. Given
that the amount of resources per MP is fixed (and small), &
simply indicates the occupancy of the resources for the given
kernel. With this notation, the number of blocks assigned to
one MP is given by b = B/M. Since in general k is smaller
than b, it follows that the number o of times k blocks are
rescheduled is o = [2.].

Since each MP has 8 stream processors, a warp has 32
threads and there is no overhead when switching among the
warp threads, it follows that each warp thread can execute one
(arithmetic) instruction in four clock cycles. Thus, an estimate
of the asymptotic time required by a CUDA kernel to execute
n instructions over all available resources of a GPU, which
also includes scheduling overhead, is given by

4n T
TE_?Waklsv (3)

where K is the clock frequency and [ is the latency introduced
by the scheduler of each MP.

The second component of the total execution time is given
by the time 7, required to transfer N bytes from global
memory to fast registers and shared memory. If thread transfers
of m bytes can be coalesced, given that a memory transaction
is done per half-warp, it follows that the transfer time 7, is

2N
Wm M b, @
where [, is the latency (in clock cycles) of a memory access.
As indicated by NVidia [19], reported by others [20] and
confirmed by us, the latency of a non-cached access can be as
large as 400 — 600 clock cycles. Compared to 24 cycle latency
for accessing the shared memory, it means that transfers from
global memory should be minimized. Note that for cached
accesses the latency becomes about 250 — 350 cycles.

One way to effectively address the relatively expensive
memory-transfer operations is by using fine-grained thread
parallelism. For instance, 24 cycle latency can be hidden
by running 6 warps (192 threads) per MP. To hide even
larger latencies, the number of threads should be raised (thus,
increasing the degree of parallelism) up to a maximum of 768
threads per MP supported by the G80 architecture. However,
increasing the number of threads while maintaining the size

Tm =



N of the problem fixed, implies that each thread has to
perform less work. In doing so, one should still recall (i)
the paramount importance of coalescing memory transactions
and (ii) the Flops/word ratio, i.e., peak Gflop/s rate divided
by global memory bandwidth in words [20], for a specific
GPU. Thus, threads should not execute too few operations nor
transfer too little data, such that memory transfers cannot be
coalesced. To summarize, a tradeoff should be found between
increased thread parallelism, suggesting more threads to hide
memory-transfer latencies on the one hand, and on the other,
memory coalescing and maintaining a specific Flops/word
ratio, indicating fewer threads.

Let us assume that for a given kernel, one MP has an
occupancy of kT threads. Further, if the kernel has a ratio
r € (0,1) of arithmetic to arithmetic-and-memory-transfer
instructions, and assuming a round-robin scheduling policy,
then the reduction of memory-transfer latency due to latency

hiding is
KT
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For example, assume that » = 0.5, i.e., there are as many
arithmetic instructions (flops) as memory transfers, and assume
that kT = 768, i.e., each MP is fully occupied. The scheduler
starts by assigning 8 threads to a MP. Since r = 0.5 chances
are that 4 threads execute each a memory transfer instruction
while the others execute one arithmetic operation. After one
cycle, those 4 threads executing memory transfers are still
asleep for at least 350 cycles, while the others just finished
executing the flop and are put to sleep too. The scheduler
assigns now another 8 threads, which again can execute either
a memory transfer or a flop, with the same probability, and
repeats the whole process. Counting the number of cycles
in which 4 threads executed flops, reveals a number of 190
cycles, so that the latency is decreased in this way to just
lm = 350 —190 = 160 cycles. In the general case, for a given
r and occupancy, we postulate that formula (5) applies.

The remaining component of the total GPU time for a
kernel is given by the synchronization time. To estimate this
component, we proceed as follows. Assume all active threads
(i.e., kT < 768) are about to execute a flop, after which they
have to wait on a synchronization point (i.e., on a barrier).
Then, assuming again a round-robin scheduling policy and
reasoning similar as for Eq. (3), the idle time spent waiting
on the barrier is

T,=2% =~ akl,. (6)

This agrees with NVidia’s remark that, if within a warp thread
divergence is minimal, then waiting on a synchronization
barrier requires only four cycles [19]. Note that the expression
for T from Eq. (6) represents the minimum synchronization
time, as threads were assumed to execute (fast) flops. In
the worst case scenario — at least one active thread has
just started before the synchronization point, a slow global-
memory transaction — this estimate has to be multiplied by
a factor of about 500/4 = 125 (the latency of a non-cached
access divided by 4 threads).

To summarize, we estimate the total execution time 7} as
T, =T, + T, +Ts.

2) Instruction throughput: Assuming that a CUDA kernel
performs n flops in a number c of cycles, then the estimate
of the asymptotic Gflop/s rate is G, = 32MnK " yhereas the
measured Gflop/s rate is G,, = ”T]fv ; here K is the clock
rate and T; the (measured) total execution time. For the 8800
GTX GPU the peak instruction throughput using register-to-
register MAD instructions is about 338 Gflop/s and drops to
230 Gflop/s when using transfers in/from shared memory [20].

3) Memory bandwidth: Another factor which should be
taken into account when developing CUDA kernels is the
memory bandwidth, M, = % For example, parallel reduction
has very low arithmetic intensity, i.e., 1 flop per loaded
element, which makes it bandwidth-optimal. Thus, when im-
plementing a parallel reduction in CUDA, one should strive
for attaining peak bandwidth. On the contrary, if the problem
at hand is matrix multiplication (a trivial parallel computation,
with little synchronization overhead), one should optimize for
peak throughput. For the 8800 GTX GPU the pin-bandwidth
is 86 GB/s.

4) Complexity: With coalesced accesses the number of
bytes retrieved with one memory request (and thus one
latency) is maximized. In particular, coalescing reduces [,
(through [;, from Eq. 5) by a factor of about two. Hence one
can safely assume that [,,, /(2 W) — 0. It follows that the total
execution time satisfies

N
WMD’
where n is the number of instructions of a given CUDA kernel,
N is the problem size, D is the problem size per thread, and
~ means that both left and right-hand side quantities have the
same order of magnitude.

The efficiency of a parallel algorithm is defined as

Ts Ts

E_C_Mﬂ’ ®
where T is the execution time of the (fastest) sequential
algorithm, and C' = M T; is the cost of the parallel algorithm.
A parallel algorithm is called cost efficient (or cost optimal)
if its cost is proportional to T's. Let us assume Ts ~ ng N,
where n, is the number of instructions for computing one data
element and N denotes the problem size. Then, the efficiency
becomes

ns W D
4n

Thus, according to our metric above, for a given problem,
any CUDA kernel which (i) uses coalesced memory transfers
(i.e., l;m/(2W) — 0 is enforced), (ii) avoids thread divergence
(so that our T estimate from Eq. 6 applies), (iii) minimizes
transfers from global memory, and (iv) has an instruction count
n proportional to (ns W D) is cost efficient. Of course, the
smaller n is, the more efficient the kernel becomes.

E~ 9)

C. Parallel wavelet lifting

Earlier parallel methods for wavelet lifting [13] assumed an
MPI architecture with processors that have their own memory



space. However, the CUDA architecture is different. Each pro-
cessor has its own shared memory area of 16 KB, which is not
enough to store a significant part of the dataset. As explained
above, each processor is allocated a number of threads that
run in parallel and can synchronize. The processors have no
way to synchronize with each other, beyond their invocation
by the host.

This means that data parallelism has to be used, and
moreover, the dataset has to be split into parts that can be
processed as independently as possible, so that each chunk of
data can be allocated to a processor. For wavelet lifting, except
for the Haar [4] transform, this task is not trivial, as the implied
data re-use in lifting also requires the coefficients just outside
the delimited block to be updated. This could be solved by
duplicating part of the data in each processor. Wavelet bases
with a large support will however need more data duplication.
If we want to do a multilevel transform, each level of lifting
doubles the amount of duplicated work and data. With the
limited amount of shared memory available in CUDA, this is
not a feasible solution.

As kernel invocations introduce some overhead each time,
we should also try to do as much work within one kernel as
possible, so that the occupancy of the GPU is maximized.
The sliding window approach enables us (in the case of
separable wavelets) to keep intermediate results longer in
shared memory, instead of being written to global memory.

D. Separable wavelets

For separable wavelet bases in 2-D it is possible to split the
operation into a horizontal and a vertical filtering step. For
each filter level, a horizontal pass performs a 1-D transform
on each row, while a vertical pass computes a 1-D transform on
each column. This lends itself to easy parallelization: each row
can be handled in parallel during the horizontal pass, and then
each column can be handled in parallel during the vertical pass.
In CUDA this implies the use of two kernels, one for each pass.
The simple solution would be to have each block process a row
with the horizontal kernel, while in the vertical step each block
processes a column. Each thread within these blocks can then
filter an element. We will discuss better, specific algorithms
for both passes in the upcoming subsections.

E. Horizontal pass

The simple approach mentioned in the previous subsection
works very well for the horizontal pass. Each block starts by
reading a line into shared memory using so-called coalesced
reads from device memory, executes the lifting steps in-
place in fast shared memory, and writes back the result using
coalesced writes. This amounts to the following steps:

1) Read a row from device memory into shared memory.

2) Duplicate border elements (implement boundary condi-
tion).

3) Do a 1-D lifting step on the elements in shared memory.

4) Repeat steps 2 and 3 for each lifting step of the trans-
form.

5) Write back the row to device memory.

Interleaved

Thread 0
De-interleaved

Figure 4. Horizontal lifting step. h thread blocks are created, each containing
T threads; each thread performs computations on N/(hT) = w/T data.
Black quads illustrate input for the thread with id 0. Here w and h are the
the dimensions of the input and N = w - h.
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Figure 5.  Wavelet lifting for a row of data, representing the result in
interleaved (top) and de-interleaved (bottom) form. Here z; and y; are the
approximation and detail bands at level <.

As each step is dependent on the output in shared memory
of the previous step, the threads within the block have to be
synchronized every time before the next step can start. This
ensures that the previous step did finish and wrote back its
work.

Fig. 4 shows the configuration of the CUDA execution
model for the horizontal step. Without loss of generality,
assume that N = w-h integers are lifted at level <. Note that, if
the lifting level ¢ = 0, then w and h are the dimensions of the
input image. For this step, a number B = h of thread blocks
are used, with 7" threads per block. Thus, each thread performs
computations on w/T integers. In the figure, black quads
illustrate locations which are processed by the thread with id
0. Neither the number nor the positions of these quads need
to correspond to the actual number and positions of locations
where computations are performed, i.e., they are solely used
for illustration purposes.

By reorganizing the coefficients [21] we can achieve higher
efficiency for successive levels after the first transformation.
If the approximation and detail coefficients are written back
in interleaved form, as is usually the case with wavelet
lifting, the reading step for the next level will have to read
the approximation coefficients of the previous level in in-
terleaved form. These reads cannot be coalesced, resulting
in low memory performance. To still be able to coalesce,
one writes the approximation and detail coefficients back to
separate halves of the memory. This will result in a somewhat
different memory layout for subbands (Fig. 5) but this could be
reorganized if needed. Many compression algorithms require
the coefficients stored per subband anyhow, in which case this
organization is advantageous.

FE. Vertical pass

The vertical pass is more involved. Of course it is possible to
use the same strategy as for the horizontal pass, substituting
rows for columns. But this is far from efficient. Reading a
column from the data would amount to reading one value
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Figure 6.  Vertical lifting step. w/S blocks are created, each containing
T = V, -V, threads; each thread performs computations on S/Vy X h/Vj,
data. Black quads illustrate input for the thread with id (0, 0), whereas vertical
lines depict boundaries between image-high slabs.

per row. As only consecutive reads can be coalesced into one
read, these are all performed individually. The processing steps
would be the same as for the horizontal pass, after which
writing back is again very inefficient.

We can gain a 10 times speedup by using coalesced memory
access. Instead of having each block process a column, we
make each block process multiple columns by dividing the
image into vertical “slabs”, see Fig. 6. Within a block, threads
are organized into a 2D grid of size V,, x V,, , instead of a 1D
one, as in the horizontal step. The number S of columns in
each slab is a multiple of V, such that the resulting number
of slab rows can still be coalesced, and has the height of
the image. Each thread block processes one of the slabs, i.e.,
S/Vy x h/V, data. Using this organization, a thread can do
a coalesced read from each row within a slab, do filtering in
shared memory, and do a coalesced write to each slab row.

Another problem arises here, namely that the shared mem-
ory in CUDA is not large enough to store all columns for any
sizable dataset. This means that we cannot read and process
the entire slab at once. The solution that we found is to use a
sliding window within each slab, see Fig. 7(a). This window
needs to have dimensions so that each thread in the block can
transform a signal element, and additional space to make sure
that the support of the wavelet does not exceed the top or
bottom of the window. To determine the size of the window
needed, how much to advance, and at which offset to start, we
need to look at the support of each of the lifting steps.

In Fig. 7(a), height is the height of the working area. As
each step updates either odd or even rows within a slab, each
row of threads updates one row in each lifting step. Therefore,
a good choice is to set it to two times the number of threads in
the vertical direction. Similarly, width should be a multiple
of the number of threads in the horizontal direction, and the
size of a row should be a multiple of the coalescable size. In
the figure, rows in the top area have been fully computed,
while rows in the overlap area still need to go through at
least one lifting step. The rows in the working area need to
go through all lifting steps, whilst rows in the bottom area are
untouched except as border extension. The sizes of overlap,
top and bottom depend on the chosen wavelet. We will
elaborate on this later.

1) The algorithm: Algorithm 1 shows the steps for the
vertical lifting pass. Three basic operations are used: read
copies rows from device memory into shared memory, write
copies rows from shared memory back to device memory, and
copy transfers rows from shared memory to another place
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Figure 7. (a): The sliding window used during the vertical pass for separable
wavelets. (b): Advancing the sliding window: the next window is aligned at
the bottom of the previous one, taking the overlap area into account.

in shared memory. The shared memory window is used as a
cache, and to manage this we keep a read and a write pointer.
The read pointer inrow indicates where to read from, the write
pointer outrow indicates where to write back. After reading,
we advance the read pointer, after writing we advance the
write pointer. Both are initialized to the top of the slab at the
beginning of the kernel (line 1 and 2 of Algorithm 1).

The first block has to be handled differently because we
need to take the boundary conditions into account. So initially,
rows are copied from the beginning of the slab to shared
memory, filling it from a certain offset to the end (line 5). Next
we apply a vertical wavelet lifting transform (transformTop,
line 7) to the rows in shared memory (it may be required
to leave some rows at the end untouched for some of the
lifting steps, depending on their support; we will elaborate
on this in the next section). After this we write back the fully
transformed rows from shared memory to device memory (line
8). Then, for each block, the bottom part of the shared memory
is copied to the top part (Fig. 7(b)), in order to align the next
window at the bottom of the previous one, taking the overlap
area into account (line 11). The rest of the shared memory is
filled again by copying rows from the current read pointer of
the slab (line 12).

Further, we apply a vertical wavelet lifting transform
(transformBlock, line 14) to the rows in the working area.
This does not need to take boundary conditions into account
as the top and bottom are handled specifically with transform-
Top and transformBottom. Then, height rows are copied
from shared memory row t op to the current write pointer (line
15). This process is repeated until we have written back the
entire slab, except for the last leftover part. When finishing up
(line 20), we have to be careful to satisfy the bottom boundary
condition.

2) Example: We will discuss the Deslauriers-Dubuc (13, 7)
wavelet as an example [22]. This example was chosen because
it represents a non-trivial, but still compact enough case of
the algorithm, that we can go through step by step. The filter
weights for the two lifting steps of this transform are shown in
Table II. Both the prediction and update steps depend on two
coefficients before and after the signal element to be computed.
Fig. 8 shows an example of the performed computations.
For this example, we choose top = 3, overlap = 2,
height = 8 and bottom = 3. This is a toy example, as



Algorithm 1 The sliding window algorithm for the verti-
cal wavelet lifting transform (see section IV-F). Here top,
overlap, height, bottom are the length parameters of
the sliding window (see Fig. 7), and h is the number of rows
of the dataset. The pointer inrow indicates where to read from,
the pointer outrow indicates where to write back.

I: inrow « 0 {initialize read pointer}

2: outrow <« 0 {initialize write pointer}

3: windows « (h — height — bottom)/height {number of
times window fits in slab}

4: leftover <« (h — height — bottom)%height
{remainder}

5: read(height + bottom from row inrow to row top +
overlap) {copy from global to shared memory}

6: inrow < inrow+height+bottom {advance read pointer}

7: transformTop() {apply vertical wavelet lifting to rows in shared
memory}

8: write(height —overlap from row top+overlap to row
outrow) {wrife transformed rows back to global memory}

9: outrow « outrow + height — overlap {advance write
pointer}

10: for i = 1 to windows do {advance sliding window through
slab and repeat above steps}

11: copy(top+overlap+bottom from row height to row

0)

12:  read(height from row inrow to row top + overlap +
bottom)

13: inrow <« inrow + height

14:  transformBlock() {vertical wavelet lifting}

15:  write(height from row top to row outrow)

16: outrow < outrow + height

17: end for

18: copy(top + overlap + bottom from row height to row
0)

19: read(leftover from row inrow to row top + overlap +
bottom)

20: transformBottom() {satisfy bottom boundary condition}

21: write(leftover+overlap+bottom from row top to row
outrow)

in practice height will be much larger when compared to
the other parameters.

Starting with the first window at the start of the dataset,
step 1 (first column), the odd rows of the working area (offset
1,3,5,7) are lifted. The lifted rows are marked with a cross,
and the rows they depend on are marked with a bullet. In
step 2 (second column) the even rows are lifted. Again, the
lifted rows are marked with a cross, and the dependencies are
marked with a bullet. As the second step is dependent on the
first, we cannot lift any rows that are dependent on values that
were not yet calculated in the last step. In Fig. 8, this would
be the case for row 6: this row requires data in rows 3, 5, 7
and 9, but row 9 is not yet available.

Here the overlap region of rows comes in. As row 6 of
the window is not yet fully transformed, we cannot write it
back to device memory yet. So we write everything up to this
row back, copy the overlapping area to the top, and proceed
with the second window. In the second window, we again start
with step 1. The odd rows are lifted, except for the first one
(offset 7) which was already computed, i.e., rows 9, 11, 13
and 15 are lifted. Then, in step 2 we start at row 6, i.e., three
rows before the first step (row 9), but we do lift four rows.

Table 11
FILTER WEIGHTS OF THE TWO LIFTING STEPS FOR THE
DESLAURIERS-DUBUC (13,7) [22] WAVELET. THE CURRENT ELEMENT
BEING UPDATED IS MARKED WITH e.
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After this we can write the top 8 rows back to device
memory, and begin with the next window in exactly the same
way. We repeat this until the entire dataset is transformed. By
letting the second lifting step lag behind the first, one can do
the same number of operations in each, making optimal use
of the thread matrix (which should have a height of 4 in this
case).

All separable wavelet lifting transforms, even those with
more than two lifting steps, or with differently sized supports,
can be computed in the same way. The transform can be
inverted by running the steps in reverse order, and flipping
the signs of the filter weights.
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Figure 8. The vertical pass for the Deslauriers-Dubuc (13,7) [22] wavelet.
Lifted rows in each step are marked with a cross, dependent rows are marked
with a bullet.

G. 3-D and higher dimensions

The reason that the horizontal and vertical passes are
asymmetric is because of the coalescing requirement for reads
and writes. In the horizontal case, an entire line of the data-set
could be processed at a time. In the vertical case the data-
set was horizontally split into image-high slabs. This allowed
the slabs to be treated independently and processed using a
sliding window algorithm that uses coalesced reads and writes
to access lines of the slab. A consecutive, horizontal span of



values is stored at consecutive addresses in memory. This does
not extend similarly to vertical spans of values, these will be
separated by an offset at least the width of the image, known
as the row pitch. As a slab is a rectangular region of the image
of a certain width that spans the height of the image, it will
be represented in memory by an array of consecutive spans of
values, each separated by the row pitch.

When adding an extra dimension, let us say z, the volume is
stored as an array of slices. In a span of values oriented along
this dimension, each value is separated in memory by an offset
that we call the slice pitch. By orienting the slabs in the xz-
plane instead of the xy-plane, and thus using the slice pitch
instead of the row pitch as offset between consecutive spans
of values, the same algorithm as in the vertical case can be
used to do a lifting transform along this dimension. To verify
our claim, we implemented the method just described, and
report results in section V-B7. More than three dimensions
can be handled similarly, by orienting the slabs in the D;x
plane (where D; is dimension %) and using the pitch in that
dimension instead of the row pitch.

V. RESULTS

We first present a broad collection of experimental results.
This is followed by a performance analysis which provides
insight in the results obtained, and also shows that the design
choices we made closely match our theoretical predictions.

The benchmarks in this section were run on a machine
with a AMD Athlon 64 X2 Dual Core Processor 5200+ and
a NVidia GeForce 8800 GTX 768MB graphics card, using
CUDA version 2.1 for the CUDA programs. All reported
timings exclude the time needed for reading and writing
images or volumes from and to disc (both for the CPU and
GPU versions).

A. Wavelet filters used for benchmarking

The wavelet filters that we used in our benchmarks are
integer-to-integer versions (unnormalized) of the Haar [4],
Deslauriers-Dubuc (9, 7) [22], Deslauriers-Dubuc (13, 7) [22],
Le Gall (5,3) [23], (integer approximation of) Daubechies
(9,7) [2] and the Fidelity wavelet — a custom wavelet with
a large support [24]. In the filter naming convention (m,n),
m refers to the length of the analysis low-pass and n to the
analysis high-pass filters in the conventional wavelet subband
filtering model, in which a convolution is applied before
subsampling. They do not reflect the length of the filters
used in the lifting steps, which operate in the subsampled
domain. The implementation only involves integer addition
and multiplication, and integer division by powers of 2 (bit-
shifting), cf. section III-B. The coefficients of the lifting filters
can be found in [24].

B. Experimental results and comparison to other methods

1) Comparison of 2D wavelet lifting, GPU versus CPU:
First, we emphasize that the accuracies of the GPU and CPU
implementations are the same. Because only integer operations
are used (cf. section V-A) the results are identical.

We compared the speed of performing various wavelet
transforms using our optimized GPU implementation, to an
optimized wavelet lifting implementation on the CPU, called
Schrodinger [24]. The latter implementation makes use of vec-
torization using the MMX and SSE instruction set extensions,
thus can be considered close to the maximum that can be
achieved on the CPU with one core.

Table III shows the timings of both our GPU accelerated
implementation and the Schrodinger implementation when
computing a three-level transform with various wavelets of
a 1920 x 1080 image consisting of 16-bit samples. As it is
better from an optimization point of view to have a tailored
kernel for each wavelet type, than to have a single kernel
that handles everything, we used a code generation approach
to create specific kernels for the horizontal and vertical pass
for each of the wavelets. Both the analysis (forward) and
synthesis (inverse) transform are benchmarked. We observe
that speedups by a factor of 10 to 14 are reached, depending
on the type of wavelet and the direction of the transform.
The speedup factor appears to be roughly proportional to the
length of the filters. The Haar wavelet is an exception, since
the overlap problem does not arise in this case (the filter length
being just 2), which explains the larger speedup factor.

To demonstrate the importance of coalesced memory access
in CUDA, we also performed timings using a trivial CUDA
implementation of the Haar wavelet, that uses the same
algorithm for the vertical step as for the horizontal step, instead
of our sliding window algorithm. Note that this method can be
considered an improved (using cache) row-column, hardware-
based strategy, see Section II. Whilst our algorithm processes
an image in 0.80 milliseconds, the trivial algorithm takes
15.23, which is almost 20 times slower. This is even slower
than performing the transformation on the CPU.

Note that the timings in Table III do not include the time
required to copy the data from (2.4 ms) or to (1.6 ms) the
GPU.

2) Vertical step via transpose method: Another method that
we have benchmarked consists in reusing the horizontal step
as vertical step by using a “transpose” method. Here, the
matrix of wavelet coefficients is transposed after the horizontal
pass, the algorithm for the horizontal step is applied, and the
results are transposed back. The results are shown in columns
3 and 4 of Table III. Even though the transpose operation in
CUDA is efficient and coalescable, and this approach is much
easier to implement, the additional passes over the data reduce
performance quite severely. Another drawback of this method
is that transposition cannot be done in-place efficiently (in the
general case), which doubles the required memory, so that the
advantage of using the lifting strategy is lost.

3) Comparison of horizontal and vertical steps: Table IV
shows separate benchmarks for the horizontal and vertical
steps, using various wavelet filters. From these results one
can conclude that the vertical pass is not significantly slower
(and in some cases even faster) than the horizontal pass, even
though it performs more elaborate cache management, see
Algorithm 1.

4) Timings for 16-bit versus 32-bit integers: We also
benchmarked an implementation that uses 32-bit integers, see



Table IIT

PERFORMANCE OF OUR CUDA GPU IMPLEMENTATION OF 2D WAVELET LIFTING (COLUMN 5) COMPARED TO AN OPTIMIZED CPU IMPLEMENTATION
(COLUMN 2) AND A CUDA GPU TRANSPOSE METHOD (COLUMN 3, SEE TEXT), COMPUTING A THREE-LEVEL DECOMPOSITION OF A 1920 x 1080

IMAGE FOR BOTH ANALYSIS AND SYNTHESIS STEPS.

Wavelet (analysis) CPU (ms) GPU transpose (ms) Speed-up  GPU our method (ms)  Speed-up
Haar 10.31 5.58 1.9 0.80 12.9
Deslauriers-Dubuc (9, 7) 16.84 6.01 2.8 1.50 11.2
Le Gall (5,3) 14.03 5.89 2.4 1.34 10.5
Deslauriers-Dubuc (13, 7) 19.52 6.08 32 1.62 12.0
Daubechies (9, 7) 22.66 6.54 35 2.05 11.1
Fidelity 28.82 6.45 4.5 2.11 13.7
Wavelet (synthesis) CPU (ms) GPU transpose (ms) Speed-up  GPU our method (ms)  Speed-up
Haar 9.11 6.33 14 0.83 11.0
Deslauriers-Dubuc (9, 7) 15.93 6.40 2.5 1.45 11.0
Le Gall (5,3) 13.02 6.29 2.1 1.28 10.2
Deslauriers-Dubuc (13, 7) 18.22 6.48 2.8 1.55 11.8
Daubechies (9, 7) 21.73 7.03 3.1 2.04 10.7
Fidelity 27.21 6.86 4.0 2.18 12.5

Table IV

ONE-LEVEL DECOMPOSITION OF A 1920 x 1080 IMAGE.

PERFORMANCE OF OUR GPU IMPLEMENTATION ON 16-BIT INTEGERS,
SEPARATE TIMINGS OF HORIZONTAL AND VERTICAL STEPS ON A

Wavelet (analysis)

Horizontal (ms)

Vertical (ms)

Haar

Deslauriers-Dubuc (9, 7)
Le Gall (5,3)
Deslauriers-Dubuc (13, 7)
Daubechies (9, 7)
Fidelity

0.26
0.44
0.39
0.47
0.62
0.63

0.19
0.42
0.34
0.47
0.62
0.76

Wavelet (synthesis)

Horizontal (ms)

Vertical (ms)

Haar

Deslauriers-Dubuc (9, 7)
Le Gall (5,3)
Deslauriers-Dubuc (13,7)
Daubechies (9, 7)
Fidelity

0.29
0.39
0.35
0.42
0.58
0.59

0.19
0.44
0.36
0.48
0.79
0.64

Table V

INTEGERS (3 LEVEL TRANSFORM, 1920 X 1080 IMAGE).

Wavelet (analysis) 16-bit (ms)  32-bit (ms)
Haar 0.80 1.09
Deslauriers-Dubuc (9, 7) 1.50 1.64
Le Gall (5,3) 1.34 1.45
Deslauriers-Dubuc (13, 7) 1.62 1.75
Daubechies (9, 7) 2.05 2.13
Fidelity 2.11 2.72
Wavelet (synthesis) 16-bit (ms)  32-bit (ms)
Haar 0.83 1.15
Deslauriers-Dubuc (9, 7) 1.45 1.81
Le Gall (5,3) 1.28 1.66
Deslauriers-Dubuc (13, 7) 1.55 1.90
Daubechies (9, 7) 2.04 2.35
Fidelity 2.18 2.80

PERFORMANCE OF OUR GPU IMPLEMENTATION ON 16 VERSUS 32-BIT

Table V. For small wavelets like Haar, the timings for 16-
and 32-bit differ by a factor of around 1.5, whereas for large
wavelets the two are quite close. This is probably because the
smaller wavelet transforms are more memory-bound and the
larger wavelets are more compute-bound, hence the increased
memory bandwidth does not affect the performance signifi-
cantly.

5) Comparison of 2D wavelet lifting on GPU, CUDA versus
fragment shaders: We also implemented the algorithm of Ten-
llado et al. [12] for wavelet lifting using conventional fragment
shaders and performed timings on the same hardware. A three-
level Daubechies (9, 7) forward wavelet transform was applied
to a 1920 x 1080 image, which took 5.99 milliseconds. In com-
parison, our CUDA-based implementation (see Table III) does
the same in 2.05 milliseconds, which is about 2.9 times faster.
This speedup probably occurs because our method effectively
makes use of CUDA shared memory to compute intermediate
lifting steps, conserving GPU memory bandwidth, which is the
bottleneck in the Tenllado method. Another drawback that we
noticed while implementing the method is that an important
advantage of wavelet lifting, i.e., that it can be done in place,
appears to have been ignored. This is possibly due to an
OpenGL restriction by which it is not allowed to use the source
buffer as destination, the same result is achieved by alternating
between two halves of a buffer, resulting in a doubling of
memory usage.

Figure 9 further compares the performance of the
Schrodinger CPU implementation, Tenllado ef al. [12] and our
CUDA accelerated method. A three-level Daubechies (9,7)
forward wavelet decomposition was applied to images of
different sizes, and the computation time was plotted versus
image size in a log-log graph. This shows that our method is
faster by a constant factor, regardless of the image size. Even
for smaller images, our CUDA accelerated implementation is
faster than the CPU implementation, whereas the shader-based
method of Tenllado is slower for 256 x 256 images, due to
OpenGL rendering and state set-up overhead. CUDA kernel
calls are relatively lightweight, so this problem does not arise
in our approach. For larger images the overhead averages out,
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Figure 9. Computation time versus image size for various lifting implemen-
tations; 3-level Daubechies (9,7) forward transform. Top: the Schrodinger
CPU implementation, Tenllado et al. [12] and our CUDA accelerated method
in a log-log plot. Bottom: just the two GPU methods in a linear plot.

but as the method is less bandwidth efficient it remains behind
by a significant factor.

Table VI
PERFORMANCE OF OUR GPU LIFTING IMPLEMENTATION IN 3D,
COMPARED TO AN OPTIMIZED CPU IMPLEMENTATION; A THREE-LEVEL
DECOMPOSITION FOR BOTH ANALYSIS AND SYNTHESIS IS PERFORMED,
ON A 5123 VOLUME.

Wavelet (analysis) CPU (ms) GPU (ms) Speed-up
Haar 1037.4 147.2 7.0
Deslauriers-Dubuc (9, 7) 2333.1 192.0 12.2
Le Gall (5,3) 1636.2 179.3 9.1
Deslauriers-Dubuc (13, 7) 3056.1 200.5 15.2
Daubechies (9, 7) 3041.3 234.6 13.0
Fidelity 5918.4 239.2 24.7
Wavelet (synthesis) CPU (ms) GPU (ms) Speed-up
Haar 926.5 150.9 6.1
Deslauriers-Dubuc (9, 7) 2289.9 184.7 12.4
Le Gall (5,3) 1631.1 1737 9.4
Deslauriers-Dubuc (13, 7) 2983.9 192.1 15.5
Daubechies (9, 7) 2943.5 232.0 12.7
Fidelity 5830.7 230.9 253

6) Comparison of lifting versus convolution in CUDA:
Additionally, we compared our method to a convolution-based
wavelet transform implemented in CUDA, one that uses shared
memory to perform the convolution plus downsampling (anal-
ysis), or upsampling plus convolution (synthesis) efficiently.
On a 1920 x 1080 image, for a three-level transform with the
Daubechies (9, 7) wavelet, the following timings are observed:

3.4 ms for analysis and 5.0 ms for synthesis. The analysis is
faster than the synthesis because it requires less computations
— only half of the coefficients have to be computed, while the
other half is discarded in the downsampling step. Compared
to the 2.0 ms of our own method for both transforms, this
is significantly slower. This matches the expectation that a
speedup factor of 1.5 to 2 can be achieved when using
lifting [4].

7) Timings for 3D wavelet lifting in CUDA: Timings for the
3-D approach outlined in Section IV-G are given in Table VL.
A three-level transform was applied to a 5123 volume, using
various wavelets. The timings are compared to the same CPU
implementation as before, extended to 3-D. The numbers show
that the speed-ups that can be achieved for higher dimensional
transforms are considerable, especially for the larger wavelets
such as Deslauriers-Dubuc (13,7) or Fidelity.

8) Summary of experimental results: Compared to an opti-
mized CPU implementation, we have seen performance gains
of up to nearly 14 times for 2D and up to 25 times for 3D
images by using our CUDA based wavelet lifting method. Es-
pecially for the larger wavelets, the gains are substantial. When
compared to the trivial transpose-based method our method
came out about two times faster over the entire spectrum of
wavelets. When regarding computation time versus image size,
our GPU based wavelet lifting method was measured to be the
fastest of three methods for all image sizes, with the factor
mostly independent of the image size.

C. Performance Analysis

We analyze the performance of our GPU implementation,
according to the metrics from Section IV-B, for performing
one lifting (analysis) step. Without loss of generality, we dis-
cuss the Deslauriers-Dubuc (13,7) wavelet, cf. Section IV-F.
Our systematic approach consists first in explaining the total
execution time, throughput and bandwidth of our method, and
then in discussing the design decisions we made. The overhead
of data transfer between CPU and GPU was excluded, since
the wavelet transform is usually part of a larger processing
pipeline (such as a video codec), of which multiple steps can
be carried out on the GPU.

1) Horizontal step: The size of the input data set is
N = w-h = 1920 - 1080 two-byte words. We set T' = 256
threads per block, and given the number of registers and
the size of the shared memory used by our kernel, NVidia’s
occupancy calculator indicates that £ = 3 blocks are active
per MP, such that each MP is fully occupied (i.e., kT = 768
threads will be scheduled); the number of thread blocks for the
horizontal step is B = 1080. Given that the 8800 GTX GPU
has M = 16 MPs it follows that @ = 23, see Section IV-B.
Further, we used decuda (a disassembler of GPU binaries; see
http://wiki.github.com/laanwj/decuda) to count the number and
type of instructions performed. After unrolling the loops, we
found that the kernel has 309 instructions, 182 of which are
arithmetic operations in local memory and registers, 15 in-
structions are half-width (i.e., instruction code is 32-bit wide),
82 are memory transfers and 30 are other instructions (mostly
type conversions). Assuming that half-width instructions have



a throughput of 2 cycles, and others take 4 cycles per warp,
and since the clock rate of this device is K = 1.35 GHz, the
asymptotic execution time is 7, = 0.48 ms. Here we assumed
that the extra overhead due to rescheduling is negligible, as
was confirmed by our experiments.

For the transfer time, we first computed the ratio of
arithmetic to arithmetic-and-transfers instructions, which is
r = 0.67. Thus, from Eq. (5) it follows that as many as 301
cycles can be spared due to latency hiding. As the amount
of shared memory used by the kernel is relatively small (i.e.,
3x3.75 KB used out of 16 KB per MP) and the size of the L2
cache is about 12 KB per MP [20], we can safely assume that
the latency of a global memory access is about 350 cycles, so
that [, = 49 cycles. Since m = 4 (i.e., two two-byte words
are coalesced), the transfer time is 7, = 0.15 ms. Note that
as two MPs also share a small but faster L1 cache of 1.5 KB,
the real transfer time could be even smaller than our estimate.
Moreover, as we included also in our counting shared-memory
transfers (whose latency is at least 10 times smaller than that of
global memory), the real transfer time should be much smaller
than its estimate.

According to our discussion in Section IV-E, five syn-
chronization points are needed to ensure data consistency
between individual steps. For one barrier, in the ideal case,
the estimated waiting time is 75 = 1.65 ps, thus the total
time is about 8.25 us. In the worst case Ts = 0.2 ms, so that
the total time can be as large as 1 ms.

To summarize, the estimated execution time for the horizon-
tal step is about 7; = 0.63 ms, neglecting the synchronization
time. Comparing this result with the measured one from Ta-
ble IV, one sees that the estimated total time is 0.16 ms larger
than the measured one. Probably this is due to L1 caching
contributing to a further decrease of 7,,. However, essential
is that the total time is dominated by the execution time,
indicating a compute-bound kernel. As the timing remains
essentially the same (cf. Tables IIl and V) when switching
from two-byte words to four-byte words data, this further
strengthens our finding.

The measured throughput is G,,, = 98 Gflop/s, whereas the
estimated one is G, = 104 Gflop/s, indicating on average an
instruction throughput of about 100 Gflop/s. Note that with
some abuse of terminology we refer to flops, when in fact
we mean arithmetic instructions on integers. The measured
bandwidth is M, = 8.8 GB/s, i.e., we are quite far from
the pin-bandwidth (86 GB/s) of the GPU, thus one can
conclude again that our kernel is indeed compute-bound. This
conclusion is further supported by the fact that the flop-to-byte
ratio of the GPU is 5, while in our case this ratio is about
11. The fact that the kernel does not achieve the maximum
throughput (using shared memory) of about 230 Gflop/s is
most likely due to the fact that the synchronization time cannot
simply be neglected and seems to play an important role in
the overall performance.

Let us now focus on the design choices we have made.
Using T = 256 threads per block amounts to optimal time
slicing (latency hiding), see discussion above and in Sec-
tion I'V-B, while we are still able to coalesce memory transfers.
To decrease the synchronization time, lighter threads are

suggested implying that their number should increase, while
maintaining a fixed size of the problem. NVidia’s performance
guidelines [19] suggest that the optimal number of threads
per block should be a multiple of 64. The next higher than
256 multiple of 64 is 320. Unfortunately, using 320 threads
per block means that at most two blocks can be allocated to
one MP, and thus the MP will not be fully occupied. This in
turn implies that an important amount of idle cycles spent on
memory transfers cannot be saved, rendering the method less
optimal with respect to time slicing. Accordingly, our choice
of T' = 256 threads per block is optimal. Further, our choice
on the number of blocks also fulfills NVidia’s guidelines with
respect to current and future GPUs, see [19].

2) Vertical step: While conceptually more involved than
the horizontal step, the overall performance figure for the
vertical step is rather similar to the horizontal one. The CUDA
configuration for this kernel is as follows. Each 2D thread
block contains a number of 16 x 8 = 128 threads, while the
number of columns within each slab is S = 32, see Figure 6.
Thus, since the input consists of two-byte words, each thread
performs coalesced memory transfers of m = 4 bytes, similar
to the horizontal step. As the number of blocks is w/S = 60,
k =4 (i.e., four blocks are scheduled per MP), and the kernel
takes 39240 cycles per warp to execute, the execution time for
the vertical step is 7, = 0.46.

Unlike the horizontal step, now r = 0.83 so that no less
than 352 cycles can be spared in global-memory transaction.
Note that when computing r» we only counted global-memory
transfers, as in this case more, much faster shared-memory
transfers take place, see Algorithm 1. As the shared-memory
usage is only 4 x 1.8 KB, this suggests that the overhead due
to slow accesses to global memory can be neglected, so that
the transfer time 7),, can be neglected. The waiting time is
Ty = 0.047 ps, and there are 344 synchronization points for
the vertical-step kernel, so that the total time is about 15.6 pus.
In the worst case, this time can be as large as 1.9 ms. Thus, as
T, = 0.46 (without waiting time), our estimate is very close
to the measured execution time from Table IV — this being in
turn the same as that of the horizontal step. Finally, both the
measured and estimated throughputs are comparable to their
counterparts of the horizontal step.

Note that compared to the manually-tuned, optimally-
designed matrix-multiplication algorithm of [20] which is able
to achieve a maximum throughput of 186 Gflop/s, the perfor-
mance of 100 Gflop/s of our lifting algorithms may not seem
impressive. However, one should keep in mind that matrix-
multiplication is much easier to parallelize efficiently, as it
requires little synchronization. Unlike matrix-multiplication,
the lifting algorithm requires a lot more synchronization points
to ensure data consistency between steps, as the transformation
is done in-place.

The configuration we chose for this kernel is 16 x 8 = 128
threads per block and w/S = 60 thread blocks. This results
in an occupancy of 512 threads per MP, which may seem less
optimal. However, to increase the number of threads per block
to 192 (next larger multiple of 64, see above), would mean
that either we cannot perform essential, coalesced memory
accesses, or that extra overhead due to the requirements of the



moving-window algorithm would have to be accommodated.
Note that we verified this possibility, but the results were
unsatisfactory.

3) Complexity: Based on the formulae from Section IV-B
we can analyze the complexity of our problem. For any of
the lifting steps using the Deslauriers-Dubuc (13,7) wavelet,
considering that the number of flops per data element is
ns = 22 (20 multiply or additions and 2 register-shifts to
increase accuracy), the numerator of (9) becomes about 700 D.
For the horizontal step, D = w/T = 7.5, so that the numerator
becomes about 5000. In this case the number of cycles is about
1250, so that one can conclude that the horizontal step is in-
deed cost efficient. For the vertical step, D = (S h)/T = 270,
so that the numerator in (9) becomes about 190000, while
the denominator is 39240. Thus, the vertical step is also cost
efficient, and actually its performance is similar to that of the
horizontal step (because 5000/1250 ~ 190000/39240 ~ 5).
Of course, this result was already obtained experimentally,
see Table IV. Note that using vectorized MMX and SSE
instructions, the optimized CPU implementation (see Table III)
can be up to four times faster than our T's estimate above.
However, even in this case, both our CUDA kernels are still
cost-efficient. Obviously both steps are also work efficient, as
their CUDA realizations do not perform asymptotically more
operations than the sequential algorithm.

VI. CONCLUSION

We presented a novel, fast wavelet lifting implementation
on graphics hardware using CUDA, which extends to any
number of dimensions. The method tries to maximize coa-
lesced memory access. We compared our method to an opti-
mized CPU implementation of the lifting scheme, to another
(non-CUDA based) GPU wavelet lifting method, and also to
an implementation of the wavelet transform in CUDA via
convolution. We implemented our method both for 2D and
3D data. The method is scalable and was shown to be the
fastest GPU implementation among the methods considered.
Our theoretical performance estimates turned out to be in
fairly close agreement with the experimental observations. The
complexity analysis revealed that our CUDA kernels are cost-
and work-efficient.

Our proposed GPU algorithm can be applied in all cases
were the Discrete Wavelet Transform based on the lifting
scheme is part of a pipeline for processing large amounts of
data. Examples are the encoding of static images, such as the
wavelet-based successor to JPEG, JPEG2000 [25], or video
coding schemes [24], which we already considered in [26].
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