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Frequency Domain Volume Rendering by the Wavelet
X-Ray Transform

Michel A. Westenberg, Student Member, IEEE,and Jos B. T. M. Roerdink, Member, IEEE

Abstract—We describe a wavelet-based X-ray rendering
method in the frequency domain with a smaller time complexity
than wavelet splatting. Standard Fourier volume rendering is
summarized and interpolation and accuracy issues are briefly
discussed. We review the implementation of the fast wavelet
transform in the frequency domain. The wavelet X-ray trans-
form is derived, and the corresponding Fourier-wavelet volume
rendering algorithm (FWVR) is introduced. FWVR uses Haar or
B-spline wavelets and linear or cubic spline interpolation. Various
combinations are tested and compared with wavelet splatting
(WS). We use medical MR and CT scan data, as well as a 3-D
analytical phantom to assess the accuracy, time complexity, and
memory cost of both FWVR and WS. The differences between
both methods are enumerated.

Index Terms—Fourier volume rendering, Fourier-wavelet
volume rendering, wavelet splatting, wavelet X-ray transform.

I. INTRODUCTION

V ISUALIZATION and exploration of large three-dimen-
sional (3-D) digital data volumes is becoming increasingly

popular. Volume rendering is prominent among the techniques
which have been developed for this purpose, using advanced
computer graphics techniques such as illumination, shading and
color. The desire to exchange volume data through systems such
as the Internet has created a need for fast and efficient methods
of transfer and display. To relieve the demand on the server ca-
pacity, volume data may be stored on a central server, while (part
of) the rendering is performed on client systems. Not all of these
clients will have a high-bandwidth network connection, so that
we need a mechanism to visualize data incrementally as it ar-
rives (“progressive refinement”). For this purpose multiresolu-
tion models are developed, allowing systematic decomposition
of the data into versions at different levels of resolution. An-
other benefit of such approaches is local level-of-detail (LOD),
i.e., using a lower resolution for small, distant or unimportant
parts of the data. Such a mechanism is provided by the wavelet
technique.

This paper is concerned with a direct volume rendering
method [1] calledX-ray volume rendering, which is based
upon integrating the 3-D data along the line of sight, yielding
a two-dimensional (2-D) image in the view plane. The method
supports shading and depth-cueing [2], [3], but no occlusion
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and perspective projection. However, it turns out to be one
of the preferred techniques for medical applications, because
physicians are well-trained in interpreting X-ray like images
for diagnosis. The corresponding mathematical concept is the
X-ray transform, well-known from computerized tomography
[4]. An efficient way to compute this transform makes use of
frequency domain techniques [5], [6]; in the following, this
method is referred to asFourier volume rendering, abbreviated
as FVR. After an initial 3-D Fourier transform of the data,
a view direction is chosen and the values of the Fourier
transform in a plane, called theslice plane, perpendicular to
are computed. Interpolation in frequency space is necessary to
obtain the values of the Fourier transform of the function to be
visualized at a regular pixel grid in the slice plane. A subsequent
inverse 2-D Fourier transform gives the desired image in the
view plane. The time complexity of FVR is dominated by the
2-D inverse Fourier transform from the slice plane to the view
plane, hence is for a volume data set of size

. Frequency domain volume rendering algorithms
have to deal with problems related to high interpolation cost
and high memory cost. However, since processing power has
increased and memory costs have dropped significantly, these
problems are less serious on modern hardware.

Another volume rendering method based on the X-ray trans-
form is splatting[7]. This is an object order method which re-
constructs a continuous function from discrete data by convolu-
tion with a reconstruction filter, followed by a mapping to the
image plane by superposition of building blocks called “splats”
or “footprints.” This method supports occlusion, shading, and
perspective projection, but suffers from color bleeding or “pop-
ping” [8] and aliasing [9]. Previously,wavelet splattinghas been
proposed by Lippert and Gross [10] as an extension of the splat-
ting method, see also [3], [11]. Wavelet splatting modifies the
splatting algorithm by using wavelets as reconstruction filters,
so that data can be visualized at different levels of detail. Just as
the original splatting method, the time complexity of this algo-
rithm is .

The purpose of this paper is the derivation of a wavelet-based
X-ray rendering method with a smaller time complexity than
wavelet splatting. Since in ordinary volume rendering this goal
can be achieved by frequency domain techniques, a similar ap-
proach is followed in this paper, resulting in an algorithm with
the same time complexity as ordinary FVR, i.e. .

To achieve this goal, we study thewavelet X-ray transform,
as introduced in [12], which combines integration along the line
of sight with a simultaneous 2-D wavelet transform in the plane
perpendicular to this line. A closely related transform was intro-
duced in [13], [14], and combines integration over a line with a

1057–7149/00$10.00 © 2000 IEEE
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simultaneous 1-D wavelet transform along this line. We derive
an efficient implementation of the wavelet X-ray transform by
using a frequency domain implementation of the wavelet trans-
form [15], [16]. This is particularly efficient when the length
of the wavelet decomposition and/or reconstruction filters is
large, as is the case for some of the basic wavelets (e.g. B-spline
wavelets) used in this paper. This results in an algorithm whose
initial step, i.e. computation of the Fourier transform in a slice
plane, is identical to that of ordinary FVR. The additional step is
a wavelet decomposition of the slice plane data in Fourier space
to a given level of detail. Approximation images are then ob-
tained by a partial wavelet reconstruction in Fourier space, fol-
lowed by a 2-D inverse Fourier transform. Since wavelet detail
coefficients are available in Fourier space, progressive refine-
ment is straightforward. The Fourier space representation does
not allow local level-of-detail.

The organization of this paper is as follows. Section II
summarizes standard Fourier volume rendering. Interpolation
and accuracy issues are briefly discussed. Section III introduces
some basic wavelet concepts, and reviews implementation of
the wavelet transform in the frequency domain. Section IV then
introduces the wavelet X-ray transform and the corresponding
Fourier-wavelet volume rendering (FWVR) algorithm. A com-
parison of the new method and wavelet splatting with respect
to accuracy, time complexity and memory cost is presented in
Section V. Section VI contains a summary and discussion of
future work.

II. FOURIER VOLUME RENDERING

Fourier domain volume rendering methods [5], [6] provide an
implementation of X-ray volume rendering, where the volume
data are integrated along the line of sight. The mathematical
basis is the X-ray transform, well-known from computerized
tomography [17].

A. X-Ray Transform

Consider the line integrals of a continuous function ,
, along a direction vector. Let and be two

mutually orthogonal vectors perpendicular to, cf. Fig. 1. The
X-ray transform of is defined by

(1)

where a dot denotes the inner product in.
The Fourier projection slice theorem [17] states that the 2-D

Fourier transform of the X-ray transform equals the 3-D
Fourier transform of along a slice plane through the origin
and perpendicular to

(2)

where denotes the -dimensional Fourier transform of a
function .

Fig. 1. View plane orthogonal to the direction vector���.

B. FVR Algorithm

The Fourier slice theorem is the key to Fourier volume ren-
dering. Assume that the volume data are samples on a uniform
grid of a band-limited function , whose highest frequency is
determined by the sampling rate of the volume data (nonuni-
form grids require resampling). The FVR algorithm consists of
the following steps.

• Preprocessing: Compute the 3-D discrete Fourier trans-
form of the volume data by FFT.

• Actual volume rendering: For each direction, do:

1) Interpolate the Fourier transformed data and re-
sample on a regular grid of points in the slice plane
orthogonal to (“slice extraction”).

2) Compute the 2-D inverse Fourier transform, again
by FFT. This yields a discrete approximation to

.
The first step is just preprocessing: the 3-D Fourier transform
is computed only once. The next two steps are repeated for
each viewing direction. The time complexity for computing
one view depends both on the complexity of the 2-D Fourier
transform and on the interpolation cost. If the extracted slice is
of size by , then the complexity of the Fourier transform
is . The complexity of 3-D interpolation is

, where is the linear size of the interpolation filter
with much smaller than . Although the Fourier transform
is asymptotically dominant, in practice most of the running
time is spent on interpolation.

C. Interpolation

Interpolation is the most critical step in Fourier rendering, and
good interpolation functions are needed to avoid artifacts such
as aliasing and dishing. Dishing is a hill-shaped weighting ar-
tifact due to the shape of the Fourier transform of the interpo-
lation function, resulting in reduced intensities away from the
center of the image. Aliasing is due to insufficient sampling. A
set of discrete samples in the frequency domain corresponds to
an infinitely periodic signal in the spatial domain. If the original
sampling step in frequency space is, one has to resample with
a step size of at least in order to prevent aliasing [5]. In
practice one usually takes a resampling step size of . A
way to reduce aliasing is to pad the data in the spatial domain
with zeros before the initial 3-D Fourier transform is taken. This
separates the replicas in the spatial domain, and decreases the
sampling distance in the frequency domain. A disadvantage of
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zero-padding is increased memory usage. In the case of volume
data, zero-padding by a factor of two increases the required
amount of memory by a factor of eight.

Frequency domain interpolation with a filter corre-
sponds to multiplication (windowing) of the original image
by the inverse Fourier transform of . Since ideally the
window function should be rectangular, the ideal resampling
filter in Fourier space is asinc-function. To reduce the compu-
tational demands, interpolation functions with smaller support
are used. Linear interpolation is computationally attractive, but
the side lobes of the linear interpolation function in the spatial
domain are the source of severe aliasing, requiring a large
amount of initial zero-padding of the volume data. The cubic
spline function is a better approximation of a rectangle than
the linear interpolation function; it has a higher computational
complexity, but requires less zero-padding [6]. The 2-D filters
needed for FVR are constructed as products of the 1-D filters.
Both interpolation functions have been compared by Napel
et al. [6] for Fourier domain volume rendering. Keys [18]
and Parkeret al. [19] give a more extensive comparison of
interpolation filters in general.

Malzbender [5] introducedspatial premultiplicationas a pre-
processing operation to reduce dishing. Spatial premultiplica-
tion entails point-wise multiplication of the data in the spatial
domain by the reciprocal of the inverse Fourier transform of
the interpolation function. Although spatial premultiplication
reduces dishing, it increases the aliasing error, because effec-
tively all periodic copies of the data in the spatial domain are
premultiplied by the reciprocal function.

D. Accuracy

In order to assess the quality of various volume rendering
algorithms we use a 3-D head phantom, as defined in Kak and
Slaney [17], consisting of a collection of ellipsoids of different
density values. Because of the linearity of the X-ray transform,
a projection of an object consisting of ellipsoids is the sum of
the projections of the individual ellipsoids. These projections
can be computed analytically. We have slightly adapted the
phantom, originally devised to test the accuracy of tomographic
reconstruction algorithms, so that the range of grey values is
better suited for visual inspection (see the Appendix). Besides
analytical projections, we generated a volume data set of
size from the mathematical description. To reduce high
frequencies in the phantom volume data, the ellipsoids are
smoothed by supersampling by a factor of two and by weighting
with a fourth-order B-spline filter. This makes the phantom
more realistic, since data originating from a CT-scanner, for
example, are low-pass filtered as well. Independent of the
amount of zero padding, we use a doubling of the original
sampling step in frequency space, so that volume data of size

give rise to rendered images of size . Fig. 2 shows
an analytical projection of the phantom.

Fig. 3 shows images of size of the phantom data
rendered by FVR without premultiplication, for both linear
and cubic spline interpolation, and with 20% and 100%
zero-padding. The images are displayed with the grey values
inverted, so that aliasing artifacts show up more clearly. For
20% zero-padding, linear interpolation still suffers from severe

Fig. 2. Analytical projection image of the 3-D head phantom for
��� = (1; 0; 0).

Fig. 3. Results of Fourier volume rendering with different interpolation
functions and amounts of zero-padding. The images are displayed with
inverted grey values. (a) Linear interpolation, 20% zero-padding. (b)
Linear interpolation, 100% zero-padding. (c) Cubic spline interpolation,
20% zero-padding. (d) Cubic spline interpolation, 100% zero-padding.
��� = (1; 0; 0).

aliasing. The first replica shows up clearly, and close inspection
reveals that the second replica is also visible, though very
faintly, between the image in the center and the first replica
near the edge. For cubic spline interpolation, aliasing is much
less prominent. For 100% zero-padding, no visible aliasing
occurs, but memory costs are increased by a factor of eight.

Fig. 4 shows intensity profiles corresponding to the line
of the images shown in Fig. 3. Without premultiplication

and 20% zero-padding, dishing is very severe for linear inter-
polation, but almost negligible for cubic spline interpolation.
Premultiplication reduces dishing, but amplifies aliasing. This
explains the large values around for 20% zero-padding
and linear interpolation in Fig. 4(b). For both interpolation func-
tions, dishing disappears completely with 100% zero-padding.

In conclusion, cubic spline interpolation with 20%
zero-padding appears to offer a good compromise for FVR,
resulting in small aliasing error and dishing artifact. Linear
interpolation with 100% zero-padding produces nearly the
same results as cubic spline interpolation, but memory costs
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Fig. 4. Profiles of FVR renderings of the head phantom along the linex =

122. (a) and (b) linear interpolation, (c) and (d) cubic spline interpolation. The
reference profiles are obtained by analytical computation.

are increased by a factor of eight. Premultiplication increases
the aliasing error, therefore, we do not use it in this paper.

E. Reducing Memory Costs

The 3-D Fourier transform requires complex arithmetic and
a floating point representation. Since the Fourier transform of a
real signal is hermitian, a factor of two can be saved by drop-
ping half of the Fourier transformed data. Whereas some authors
invoke the Hartley transform for this purpose, we accomplish
this by the use of a real-to-complex/complex-to-real FFT, such
as provided by the package FFTW [20]. Values of coefficients
which are not known directly can always be computed by com-
plex conjugation of the corresponding coefficients in the known
part of the Fourier transform. The slice extraction process makes
use of this fact to save a factor of two in the number of compu-
tations.

Secondly, the original data usually has only 2 bytes per voxel.
We experimentally found that, instead of using 8 bytes per
voxel, it is possible to save another factor of two by quantizing
the floating point values to 2-byte shorts, without seriously
affecting the accuracy. This is done by scaling the floating
point values linearly to the full range of shorts. During the slice
extraction process, the floating point value is reconstructed,
which requires one multiplication and one addition.

III. W AVELETS

In this section some basic facts about wavelet representations
are introduced. In particular, we discuss the fast wavelet trans-
form and its Fourier domain implementation.

A. Wavelet Representation

A 1-D biorthogonal wavelet basis can be constructed
from a scaling function with associated wavelet ,
and dual scaling function with dual wavelet . The

corresponding basis functions are and ,
, where and

; the dual basis functions are
defined similarly. The parameters and denote scale and
translation, respectively. From the 1-D basis, one constructs
a 2-D separable wavelet basis (of the so-called nonstandard
type) with four basis functions, i.e. one scaling function

and three wavelet basis functions ,
, defined as follows:

(3)

An analogous definition holds for the dual scaling function
and wavelet basis functions .

The -level wavelet representation of a 2-D functionis
then given by

(4)

Theapproximationcoefficients are and the
detail coefficients are , where denotes
the inner product in the space of square integrable func-
tions on .

In practice one deals with functionsof compact support. In
order to apply the wavelet representation,has to be extended
to a function on the real line. The simplest approach, and also
the one we use in this paper, is to extendby zero values out-
side the support. Note that, in the following, zero-padding is not
done explicitly, because the input to the wavelet transform has
already been padded with zeros for slice resampling (c.f. Sec-
tion II-D). The amount of zero-padding is usually large enough
to prevent artifacts due to circular convolution, provided that the
number of decomposition levels in the wavelet transform is kept
small, and that the associated filters have a not too large support.
We use this simple approach, because other methods adapt the
analysis and synthesis filters near the boundaries, and are there-
fore difficult to use in the frequency domain.

B. Fast Wavelet Transform

The fast wavelet transform computes the wavelet decomposi-
tion, i.e., the approximation and detail coefficients, with a sub-
band filtering scheme called the pyramid algorithm [21]. For
the 1-D case, the basis functionsand are represented by
discrete filters and , respectively.
Furthermore, there exist dual filtersand ; for the orthogonal
case these are defined by and (here de-
notes the complex conjugate of). The filters and are used
in the forward wavelet transform, and are therefore called de-
composition or analysis filters; the filtersand are used for
the inverse wavelet transform, and are called reconstruction or
synthesis filters.
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The 2-D basis (3) is represented by the four possible tensor
products, , , and , of the 1-D filters and . [For
example .] Let denote the 2-D sequence

, and similarly for . The wavelet decomposition
computes the sequences and from by convolu-
tion followed by downsampling, as follows:

(5)

for . Here denotes discrete 2-D convolu-
tion, and denotes downsampling by a factor of two in both
dimensions. The filters , , , and are the dual filters.
[For example .]

Wavelet reconstruction is performed recursively starting at
level by upsampling (denoted by ) followed by convo-
lution:

(6)

C. The Fast Wavelet Transform in the Fourier Domain

As motivated in the introduction, we need a way to com-
pute the fast wavelet transform (FWT) in the frequency domain.
Especially when the decomposition/reconstruction filters have
large support, such a Fourier domain implementation using the
fast Fourier transform (FFT) is more efficient than a direct com-
putation, as shown in [15], [16] for the 1-D case. We now con-
sider the extension of this method to 2-D signals.

1) Up- and Down-sampling:Upsampling and downsam-
pling can be expressed in the frequency domain using-trans-
forms. The -transform of a 2-D discrete signal

is
defined by

(7)
On the unit circle, the -transform
coincides with the element of the 2-D discrete Fourier
transform (DFT) of the signal of length by . We can
split this -transform into contributions of the samples with
even and odd index, a classical technique known asbiphase
decompositionin filter bank design [15], [16]. Downsampling
corresponds to taking the samples with even index in both di-
mensions, leading to a signal with-transform given by

The values ,
of the 2-D DFT of the downsampled signal are given by

(8)

So, for a DFT that stores the DC component in the first array po-
sition, downsampling is implemented by dividing the 2-D array
of DFT coefficients of into two in both dimensions, and aver-
aging the resulting four subarrays.

Conversely, upsampling by a factor of two in the spatial do-
main means inserting zeros between the samples in both dimen-
sions. The -transform of the upsampled signal is given by

So, if the array of DFT coefficients has dimensions by ,
the DFT of the upsampled signal is a array obtained
by replicating this array in both dimensions.

2) Wavelet Decomposition and Reconstruction:With the
above results, it is possible to represent the 2-D wavelet
transform in the frequency domain. Denote the-transforms
of the filters , , and by , , and ,
respectively. For example, , where

is the 1-D -transform of , etc. In the
same way, denote the-transform of by and
that of by . Since convolution in the spatial
domain is equivalent to multiplication in the Fourier domain,
we can rewrite (5) in terms of -transforms

(9)

where the dot denotes pointwise function multiplication.
The reconstruction (6) becomes

(10)

In practice, we deal with afinite2-D input sequence , repre-
sented by an array of size . In the frequency domain, the
result of an -level decomposition then yields an approxima-
tion array of size , and detail arrays ,

, of size . An
inverse FFT of and of yields the arrays of
the wavelet decomposition of in the original domain. How-
ever, since reconstruction also can be performed in frequency
space, it is not necessary to carry out these inverse FFT’s. In-
stead, a reconstruction at a desired levelis first computed in
the Fourier domain by (10) and the resulting approximation
is then inversely Fourier transformed to give the desired approx-
imation .

The DFT values of the filters , , , and are
computed from and as follows. The length of the signal
in the decomposition (9) decreases with increasing scale level
. At level , let the signal length in a given spatial direction be



1254 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 7, JULY 2000

, larger than the length of the filter . Then the required
DFT values of at level are

The DFT values of are obtained in the same way. Clearly, it
is sufficient to compute the DFT filters and . The filters
for the other scales are obtained by downsampling the filters for
the finest scale . The DFT values of the synthesis filters
are obtained in an analogous way. Again, it suffices to compute
the filters once for , the filters for the other scales being
obtained by downsampling. Based on the 1-D filter coefficients,
we define 2-D filter matrices and , , by

and similarly for the dual filters. Also, is the matrix with el-
ements , with defined
analogously. Then the wavelet decomposition (9) has the matrix
representation

(11)
where denotes pointwise multiplication of matrices
and , and, for a matrix with an even number of rows and
columns, is defined by [cf. (8)]

when

where are the four submatrices obtained by
dividing into two along the row and column direction.

Wavelet reconstruction (10) has the matrix representation

(12)

where, for any matrix of Fourier coefficients, is the ma-
trix twice its size, defined by

We will refer to (11) and (12) asFourier-wavelet decomposi-
tion (FWD) andFourier-wavelet reconstruction(FWR), respec-
tively.

For a pseudocode of wavelet decomposition and reconstruc-
tion in the Fourier domain, the reader is referred to Figs. 5 and
6, respectively. In the pseudocode, denotes the transpose of

, denotes downsampling of by a factor of
in both dimensions, and is the submatrix of
obtained by retaining only those rowsand columns for which

and .

Fig. 5. Two-dimensional wavelet decomposition in the Fourier domain.~h; ~g

are column vectors of 1-D analysis filter coefficients.

D. Time Complexity

Assume that the input image is square and contains
elements, with a power of two. In this case, the maximal
number of decomposition levels is . The first step
is a 2-D FFT of yielding an array of Fourier coefficients.
We express the time complexity of the wavelet transform in the
number of complex multiplications in the frequency domain.
The number of multiplications for the first decomposition level
is , since there are four filters. For the second decomposi-
tion level, both the array size and the filter lengths are reduced
by a factor of two in both dimensions, so that multi-
plications are needed; etc. Altogether, the total number of mul-
tiplications for decomposition levels is given by

Therefore, the time complexity of the computations in the fre-
quency domain is .

An approximation image in the spatial domain is obtained
by inverse FFT of the corresponding array in the Fourier
domain. Since the complexity of the initial and final FFT is

, we conclude that the overall complexity of a
Fourier domain implementation of the 2-D wavelet transform
is . It can be shown in a similar way that the
reverse transform has the same time complexity.
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Fig. 6. Two-dimensional wavelet reconstruction in the Fourier domain.h; g

are column vectors of 1-D synthesis filter coefficients.

IV. WAVELET X-RAY TRANSFORM

In this section thewavelet X-ray transform, as introduced
in [12], is studied and an efficient implementation is derived
by computing the wavelet transform in the frequency domain.
This results in an algorithm which starts by computation of the
Fourier transform in a slice plane, as in ordinary FVR, followed
by a wavelet decomposition of the slice plane image in Fourier
space.

The wavelet X-ray transformis defined by expanding the
X-ray transform of a function in a 2-D wavelet series
[cf. (4)]

(13)

The coefficients and , , now depend
on the viewing direction .

This transform can be viewed as a close relative of the wavelet
X-ray transform which combines integration over a line with a
simultaneous 1-D wavelet transform along this line [13], [14].
The difference is, that we perform a 2-D wavelet transform in
the plane perpendicular to the line.

Now we can state the main result, which is an extension of
[12] to the biorthogonal case.

Theorem 1: The coefficients in the wavelet representation
(13) for the X-ray transform of are

(14)

and

(15)

where

Proof: We only prove (15), the result (14) follows analo-
gously. Using the Plancherel formula, we observe

(16)

Now

Using this in (16), we find

By the Fourier slice theorem (2),
. Therefore, the wavelet coefficients at scale

in (13) can be computed by multiplying a slice of the 3-D
Fourier transform of by the 2-D Fourier transform of the
scaling or wavelet function at scale, followed by an inverse
2-D Fourier transform evaluated at the points of the form

in the view plane.

A. Algorithm

The proposed wavelet extension of FVR requires only a
small modification of the standard algorithm. The implemen-
tation is facilitated by the fact that wavelet decomposition
and reconstruction can be performed in the Fourier domain,
see Section III-C. The algorithm, henceforth referred to as
Fourier-wavelet volume rendering (FWVR), can be summa-
rized as follows.
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• Preprocessing. Compute the 3-D Fourier transform of the
volume data (size ).

• Actual volume rendering. For each direction, do the fol-
lowing.

1) Interpolate the Fourier transform on a regular grid of
size in the slice plane orthogonal to. This
yields the array to be used for initializing the
wavelet transform.

2) Perform a 2-D Fourier-wavelet decomposi-
tion (FWD) of depth , yielding approxima-
tion coefficients and detail coefficients

, respectively.
3) Perform a partial Fourier-wavelet reconstruction

(FWR) from , putting all detail signals
equal to zero, followed by a 2-D inverse Fourier
transform to obtain an initial approximation
[size ] in the spatial domain.

4) Refine the approximation by partial FWR using the
detail signals with , followed by
a 2-D inverse Fourier transform to obtain an approx-
imation [size ] at a finer scale in the
spatial domain.

This approach enables us to implement aclient–servervisu-
alization system. The server performs the initial 3-D Fourier
transform, as well as the slicing and FWD at each view angle
(steps 1 and 2), and sends the required approximation and detail
coefficients to the client. The client performs the FWR and in-
verse Fourier transform to obtain an approximation image (steps
3 and 4). Below we describe in detail how to implement this
efficiently. As long as a user is interacting with the data, only
the coarsest Fourier domain approximation coefficients are
used. When interaction ceases, the Fourier domain detail coeffi-
cients are taken into account, so that the client can obtain
reconstructions at higher levels of detail. It is not necessary to
send floating point representations (4 bytes) of the coefficients,
but the coefficients can be quantized to shorts (2 bytes). The
quantization error is in the order of , which results in no
visible artifacts.

The progressive refinement inherent in the algorithm can im-
prove interaction with the data significantly, since the response
time of the system drops. Table I provides an estimate of the time
it takes to send full images of size and (in bytes), or
approximation and detail coefficients (in shorts) only. Times are
given for an ISDN connection with a bandwidth of 128 kbit/s
and a 1 Mbit/s connection, which can be considered a fast In-
ternet connection. The time for computing the wavelet decom-
position is not included; also communication protocol overhead
is ignored.

1) Progressive Refinement:For an -level wavelet decom-
position, progressive refinement with the pyramid algorithm is
done as follows. First, an approximate reconstruction at level

in Fourier space is made by ignoring all the detail coeffi-
cients and applying a full wavelet reconstruction to the approx-
imation coefficients. Then, a full wavelet reconstruction with
the pyramid algorithm is computed with the detail coefficients
of level only, and the result is added to the approximation.
This refines the approximation at level to an approximation

TABLE I
ESTIMATED TIME (IN SECONDS) TO SEND FULL SIZED IMAGES (BYTES) OR

APPROXIMATION AND DETAIL COEFFICIENTS(SHORTS) OVER AN ISDN
CONNECTION AND A 1 MBIT/S CONNECTION

at level . The process continues with the detail coefficients
of level to compute an approximation at level , etc.
That is, all images at level are successively
computed.

It is possible to reduce the number of multiplications and ad-
ditions by adopting the so-callednonpyramidalreconstruction
scheme. Write the FWR equation (12) in the following form:

where and are the operators defined by

By iterating this equation, the full reconstruction can be
written as follows:

Here, is the level approximation reconstructed from
by ignoring all the detail coefficients. By successively

adding full resolution images reconstructed from
, we obtain approximations on level ,

etc.
Since pointwise multiplication is associative, successive up-

samplings implicit in the product of operators can be per-
formed first and combined filtering at full resolution can be done
afterwards. The advantage of this approach is that the filters
needed for each level can be computed in advance. This avoids
all multiplications for the levels between the lowest resolution
and the full resolution, needing multiplications. For the de-
tail contributions there is an initial filtering step by .
Since the 2-D filters are separable, only the 1-D filters for the
incremental reconstruction are precomputed, which are then ap-
plied to rows and columns separately. Part of this process for the
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Fig. 7. (a) Computation ofC from C via upsampling followed by
multiplication. (b) Computation ofC from C directly. The filtersH and
H are combined into a new filter, andC is upsampled twice. Multiplication
yieldsC .

TABLE II
COMPUTATIONAL COMPLEXITY OF PROGRESSIVEREFINEMENT IN FOURIER

SPACE (IMAGE SIZE N �N ,M -LEVEL RECONSTRUCTION)

1-D case is illustrated in Fig. 7 for a three-level wavelet decom-
position.

The time complexity of progressive refinement reconstruc-
tion to full resolution is estimated by counting the number of
additions (adds) and multiplications (mults) for an -level de-
composition, see Table II (this concerns the part of the compu-
tation in the Fourier domain, i.e. excluding the final inverse 2-D
FFT). From this table, it is easily verified that indeed the non-
pyramidal reconstruction is more efficient than the pyramidal
algorithm; equal efficiency obtains for . Of course the
pyramidal algorithm is more efficient when only is wanted,
i.e. without the intermediate approximations. Althoughcan
be as large as , the number of decomposition levels is
usually fixed to a small number, like two or three, in order for
the approximation image to be useful. Therefore, the complexity
of progressive refinement is .

B. Results

Experiments with phantom data were carried out for two
basic wavelets, the Haar wavelet and a second-order B-spline
wavelet, which gives much smoother results at large compres-
sion ratios. In the latter case, we need a biorthogonal wavelet
basis, defined by filters of unequal length for decomposition
and reconstruction (length 41 and length 5, respectively; see
[22, Appendix]). We used 20% zero-padding and cubic spline
interpolation.

Fig. 8 shows the reconstruction from a three-level Haar
wavelet decomposition ( ), using the approximation
coefficients only, cf. Fig. 8(a), and with detail coefficients
added, cf. Fig. 8(b)–(d). Fig. 9 shows the reconstruction from
a three-level second-order B-spline wavelet decomposition of
the same volume data. Since the number of dual coefficients of

Fig. 8. FWVR rendering by a three-level Haar wavelet decomposition of
phantom volume data.

Fig. 9. FWVR rendering by a three-level second-order B-spline wavelet
decomposition of phantom volume data.

the B-spline wavelet is 41, at most three decomposition levels
are possible.

Table III shows rendering times of the Fourier-wavelet ren-
dering algorithm with progressive refinement. Linear and cubic
spline interpolation with 20% zero-padding was applied. A Haar
wavelet was used as a basic wavelet. Other wavelets give only
marginally different timing results, in agreement with the com-
plexity estimates in Section III-D. Three data sets were used:
phantom and CT data of size 128, and an MR data set of size
256 . Resolution of the slice plane was for a dataset of



1258 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 7, JULY 2000

TABLE III
CUMULATIVE RENDERING TIMINGS (IN SECONDS) OF FOURIER-WAVELET

VOLUME RENDERING. A HAAR WAVELET WAS USED AS ABASIC WAVELET

size . Timings were performed on a Silicon Graphics Onyx
with a 200 MHz R4400 processor. Results listed for computing
approximation images include the time used by the inverse 2-D
FFT. The computational complexity is only dependent on the
size of the rendered image, which explains the identical timings
for phantom and CT data. In fact, results for these volume data
are only included to facilitate a comparison with wavelet splat-
ting below. For the same reason, the decomposition depth for
the MR data was set to three levels, and for the other data sets
only two levels were used. Observe that the timings increase
approximately by a factor of four when the size of the data set
becomes eight times as large, as expected from the theoretical
complexity.

Application of progressive refinement in a client–server
system is only useful if the total time needed for computing the
approximation coefficients, transmitting them to the client, and
performing a partial reconstruction, is smaller than the time
required to send the full data over a transmission line. Referring
to Table I we see that this will be the case for an ISDN line, but
not for a 1 Mb/s connection (assuming this bandwidth is really
available).

C. Memory Usage

The fraction of zero-padding of the volume data determines
to a large extent memory usage of Fourier rendering. Volume
data are stored in a 3-D array of floats of size ,
where the volume data have size and is the factor due
to zero-padding. The extra elements are required by the
3-D real-to-complex FFT. The FWD uses two temporary 2-D
arrays of floats of size . The precomputed filters for
progressive refinement are 1-D. The hierarchy of combined
filters contains complex numbers, where is the number
of decomposition levels. The hierarchy of filters to reconstruct
detail coefficients contains complex numbers for each
decomposition level.

V. WAVELET SPLATTING

Wavelet splatting (WS) [3], [10], [11] modifies the basic
splatting algorithm in two ways: i) it uses wavelets as recon-
struction filters, and ii) it provides a mechanism to visualize

data at different levels of detail. First, the algorithm performs
a 3-D wavelet decomposition of the volume data. The 3-D
separable wavelet basis with 8 basis functions is given by [c.f.
(3)]

Substitution of the expansion ofon this basis in (1) results
in

(17)

where . This equation expresses
as a weighted summation of integrals along the line of sight.
The integrals are 2-D functions on the view plane: the footprints.
These have to be evaluated only once for a given viewing direc-
tion at the coarsest scale and translation

, yielding eight prototype footprints. The footprints for
other scales and translations can be computed by rescaling and
shifting. Prototype footprints can be computed efficiently by
slicing their 3-D Fourier transforms. When analytical expres-
sions exist for the Fourier transforms of the scaling function
and wavelet, as is the case for the Haar and cardinal B-spline
wavelets, no interpolation from discrete samples is necessary.
For the case of B-spline wavelets, the required formulas for the
Fourier transforms are somewhat involved, cf. [22, ch. 6 and Ap-
pendix]. By computing footprints analytically, we do not have
problems with aliasing and dishing as in (wavelet) Fourier ren-
dering. Also, no zero-padding of the data is necessary.

To summarize, the algorithm consists of the following steps.

1) Preprocessing. Perform a 3-D discrete wavelet transform
(of depth ) of the volume data.

2) Splatting. For each viewing direction do:
• Compute prototype footprints at level in the view

plane orthogonal to.
• Compute footprints for lower levels by scaling and

downsampling.
• Compute a low resolution image by summation of

scaled and translated footprints weighted by the ap-
proximation coefficients . Since, in general,
the coordinates of the center of the footprint are
not integers, use bilinear interpolation to convert to
pixel coordinates.

• Refine the image incrementally by adding footprints
corresponding to , weighted by the detail
coefficients .
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Fig. 10. Profiles along the linex = 122 of rendering by wavelet splatting of
phantom data.

A. Memory Usage

After the 3-D wavelet transform, the coefficients for each
wavelet type and level are stored in 1-D sequences. Zero co-
efficients are discarded, which makes it necessary to store the
spatial position of each coefficient as well. This position is en-
coded with an integer (4 bytes), which allows volume data of
sizes up to 4 GB. Larger volumes require a different encoding
for the spatial position. Storage of the position doubles memory
requirements if there are no coefficients with value zero at all.
In practice, a large number of data sets has 20%–40% zero co-
efficients, which makes memory requirements of WS compa-
rable to those of Fourier rendering. By storing the coefficients
in sequences instead of a 3-D array, the algorithm has a reg-
ular memory access pattern. This increases rendering perfor-
mance, since the memory cache is fully exploited. The amount
of memory used to store the footprints is dependent on the de-
composition depth and the support of the 1-D scaling func-
tion and wavelet. The size (i.e., number of pixels) of a footprint
at the coarsest scale is the first power of two larger than .
The size of the footprints decreases by a factor of four for each
finer scale.

B. Results

Fig. 10 shows intensity profiles corresponding to the line
of rendered images at full resolution of the phantom data

rendered with WS. We used a Haar wavelet and a second-order
B-spline wavelet. A comparison with the plots in Fig. 4 shows
that the accuracy of this method is comparable to FVR with
cubic spline interpolation. Fig. 11 shows renderings of the CT
data, both by FWVR and WS, also with visually very similar
results.

The WS algorithm has time complexity for a
data set, as is obvious from the summation over

in (17). Timings are shown in Table IV. Data sets and image
resolution are the same as for FWVR (Table III). The scaling
of the timings for increasing data size is in agreement with the
theoretical complexity. Due to its larger support, the B-spline
wavelet is computationally much more expensive than the Haar
wavelet. Furthermore, the rendering speed is very data depen-
dent. In case of the Haar wavelet, rendering the phantom data
takes almost four times as long as rendering the CT data. The
reason is that the CT data are smoother than the phantom data.
For the Haar wavelet, this results in a larger number of nonzero
wavelet coefficients and slower rendering, since it has only one

Fig. 11. Level 1 rendering of CT data (size256 ) using a Haar wavelet.

TABLE IV
CUMULATIVE RENDERINGTIMINGS (IN SECONDS) OF WAVELET SPLATTING

vanishing moment. A more sparse decomposition is obtained
by using B-spline wavelets which have a larger number of van-
ishing moments.

Comparison with Table III makes it clear that WS is indeed
computationally more demanding, and also more data-depen-
dent, than FWVR.

VI. DISCUSSION

In this paper, we have described an extension to Fourier
volume rendering (FVR) based on a wavelet decomposition,
which allows the data to be visualized at progressively higher
levels of detail, as can be useful for client–server systems.

The wavelet X-ray transformwas introduced, which com-
bines integration along the line of sight with a simultaneous
2-D wavelet transform in the plane perpendicular to this line.
An efficient implementation was derived by computing the
wavelet transform in the frequency domain. The initial step
of this Fourier-wavelet volume rendering algorithm (FWVR),
i.e., computation of the Fourier transform in a slice plane, is
identical to that of ordinary FVR, and requires interpolation.
Aliasing can be prevented by initial zero-padding of volume
data and the use of accurate interpolation filters. The additional
step is a wavelet decomposition of the slice plane data in Fourier
space to a given level of detail. Approximation images are then
obtained by partial wavelet reconstruction in Fourier space,
followed by a 2-D inverse Fourier transform. We compared the
new method with wavelet splatting (WS), which modifies the
basic splatting algorithm by using wavelets as reconstruction
filters.

A 3-D head phantom consisting of a collection of ellipsoids
of different density values was defined, for which analytical pro-
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jections, as well as a volume data set of size , were com-
puted. In the experiments, three data sets were used: phantom
and CT data of size , and an MR data set of size . For a
dataset of size , the resolution of the slice plane was taken as

. For interpolation in frequency space, we used linear and
cubic spline interpolation. Experiments were carried out for two
basic wavelets, the Haar wavelet and a second order B-spline
wavelet. Timings were performed on a Silicon Graphics Onyx
with a 200 MHz R4400 processor.

A. Differences Between FWVR and WS

In the following we enumerate the main differences between
Fourier-wavelet volume rendering and wavelet splatting, and
summarize the conclusions of the experimental investigations.

1) FWVR works in the frequency domain, and is initial-
ized by a 3-D Fourier transform. WS works in the spa-
tial domain (only the prototype footprints are obtained by
Fourier domain computation), and is initialized by a 3-D
wavelet transform.

2) In FWVR, a 2-D wavelet transform is computed for each
view plane, therefore, the wavelet coefficients depend on
the view direction. In WS, the 3-D wavelet coefficients
are computed only once, and are independent of view di-
rection.

3) The time complexity of FWVR is the same as for or-
dinary FVR, i.e. , whereas WS has com-
plexity , just as the original splatting method.

4) To prevent aliasing, FWVR requires zero-padding of the
input data. In contrast, no zero-padding is necessary in
WS: footprints are computed analytically in the Fourier
domain.

5) The rendering accuracy was assessed by using phantom
data and comparing intensity profiles of the rendered im-
ages with analytically computed projections. Using cubic
spline interpolation with 20% zero-padding we found that
FWVR results in accurate renderings with quality very
similar to that of WS.

6) Timings for FWVR were found to depend only on the size
of the input data. In contrast, the computation time of WS
is dependent on the basic wavelet used; e.g. the B-spline
wavelet is computationally much more expensive than the
Haar wavelet. Furthermore, the rendering speed of WS
is very data dependent, because the number of nonzero
wavelet coefficients depends on the smoothness of basic
wavelet and volume data.

7) Memory requirements of FWVR are comparable to those
of WS. FVWR needs a 3-D array of floats of size

( is the zero-padding factor), and uses two tem-
porary 2-D arrays of floats of size to com-
pute the forward transform. In WS, the coefficients for
each wavelet type and level are stored in 1-D sequences
to increase rendering performance, with the spatial posi-
tion of each coefficient stored as an integer. The amount
of memory used to store the footprints is dependent on
the decomposition depth and the support of the 1-D
scaling function and wavelet.

TABLE V
PARAMETERS OF THE3-D HEAD PHANTOM

B. Final Remarks

The FWVR method can be straightforwardly extended to
include gradient-based shading and depth cueing [2], [3].
Also, we would like to point out that the comparison of
WS and FWVR made in this paper concerns nonoptimized
implementations. For example, by compression of wavelet co-
efficients, through thresholding or more advanced techniques,
wavelet splatting can be substantially accelerated. Among
such techniques we mention the embedded zerotree wavelet
algorithm [23], and the conversion of wavelet transformed data
into a sequential bitstream [3]. However, both methods require
advanced spatial data structures, which are not necessary in
FWVR.

A disadvantage of FWVR in its current form is that it requires
the interpolation of a slice in Fourier space at full resolution in
order to perform a 2-D wavelet decomposition. In contrast, in
WS progressive refinement is immediate, since the initial data
is subjected to a 3-D wavelet transform. Therefore, we plan to
investigate the possibility of combining both methods to take
advantage of the strengths of each of them.

APPENDIX

DEFINITION OF THE HEAD PHANTOM

The 3-D phantom used in this paper consists of a number
of ellipsoids of various densities. Initially, each ellipsoid is as-
sumed to have its three axes aligned with the axes of the coor-
dinate system. Subsequently, a rotation of the ellipsoid around
the -axis is performed. Table V gives, for each ellipsoid, the
center, lengths of the three axes of the ellipsoid, rotation angle

around the -axis, and the density.
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