
A DISJOINT SET ALGORITHM FOR THE

WATERSHED TRANSFORM

Arnold Meijster, Jos B.T.M. Roerdink

University of Groningen

Institute for Mathematics and Computing Science

P.O. Box 800, 9700 AV Groningen, The Netherlands

Tel. +31-50-3633931, Fax. +31-50-3633800

e-mail: arnold@cs.rug.nl, roe@cs.rug.nl

ABSTRACT

In this paper the implementation of a watershed transform

based on Tarjan's Union-Find algorithm is described. The

algorithm computes the watershed as de�ned by Meyer in [4].

The algorithm consists of two stages. In the �rst stage the

image to be segmented is transformed into a lower complete

image, using a FIFO-queue algorithm. In the second stage,

the watershed of the lower complete image is computed. In

this stage no FIFO-queues are used. This feature makes

parallel implementation of the watershed transform much

easier.

1 INTRODUCTION

A commonly used algorithm for digital image segmenta-
tion in the �eld ofmathematical morphology is the water-
shed transformation (see [4]). The basic idea is to look
upon a digital gray scale image as a landscape. The gray
level of a pixel is regarded as the altitude of that pixel.
A drop of water on the surface of this landscape will
ow
down along a path of steepest descent until it reaches
a (regional) minimum. The set of all pixels for which a
drop of water will end in the same minimum is called a
catchment basin. For some pixels it cannot be decided to
which catchment basin they belong. These pixels form
the boundaries between the catchment basins. These
boundaries are called watershed lines.
Several mathematical de�nitions of this informal con-

cept exist (see [3,4,6]). None of these de�nitions is math-
ematically equivalent to one of the others, but in most
practical cases the di�erences are negligible. In this pa-
per we adopt the de�nition given by Meyer in [4] based
on shortest paths. We start with a short summary of
this de�nition.
A digital gray scale image is a function f : D �! N,

where D � Z
2 is the domain of the image and f(p)

denotes the gray value of a pixel p 2 D. Let E denote
the underlying grid, i.e. E is a subset of Z2

� Z
2. A

path P of length l between two pixels p and q is an
(l+1)-tuple (p0; p1; : : : ; pl�1; pl) such that p0 = p, pl = q

and 8i 2 [0; l) : (pi; pi+1) 2 E. The length of a path
P is denoted by l(P). We denote the set of all paths
from p to q by p ; q. A descending path is a path
along which the altitude does not increase. By �#

f (p)

we denote the set of all descending paths starting in a
pixel p and ending in some pixel q with f(q) < f(p).
For a pixel p 2 D the set of neighboring pixels of p is
de�ned as NE(p) = fq 2 D j (p; q) 2 Eg.
For pixels in the interior of a plateau, i.e. a region

of constant altitude, it is not clear in which direction
a drop of water would
ow. Several solutions for this
problem have been proposed. First, let us assume that
the function f is lower complete. A gray scale image
f : D �! N is called lower-complete if and only if

(8p 2 D : (9q 2 NE(p) : f(q) < f(p)) _�#

f (p) = ;)

The interpretation of this formula is that each pixel has
at least one neighbor which has a smaller gray-value, or
the pixel is located inside a regional minimum.
We also assume that for every pixel p which is inside

a regional minimum, we have f(p) = 0. The lower slope,
which is the maximal slope linking a pixel p to any of
its neighbors of lower altitude, is de�ned as

LSf (p) = max
q2fpg[NE(p)

(f(p)� f(q))

The cost for walking from one pixel p to a neighboring
pixel q is de�ned as

costf (p; q) =

8<
:

LSf (p) if f(p) > f(q)
LSf (q) if f(p) < f(q)
LSf (p)+LSf (q)

2
if f(p) = f(q)

The topographical distance between two pixels p and q

along a path P = (p = p0; : : : ; pl(P) = q) is de�ned as

TP
f (p; q) =

l(P)�1X
i=0

costf (pi; pi+1)

The topographical distance between points p and q is
de�ned as the minimum of the topographical distances
along all paths between p and q:

Tf (p; q) = min
P2p;q

TP
f (p; q)

The topographical distance between a point p 2 D and
a set A � D is de�ned as Tf (p;A) = mina2A Tf (p; a).

Proc. IX European Signal Processing Conference (EUSIPCO'98), September 8 - 11, 1998, Rhodes, Greece (S.
Theodoridis and I. Pitas and A. Stouraitis and N. Kalouptsidis, eds.), pp. 1665-1668

Note that the topographical distance is not a real dis-
tance, since the topographical distance between two dif-
ferent pixels p and q in the same regional minimum is
0. This poses no problems for the implementation, how-
ever.

Let (mi)i2I be the minima of the function f . The
catchment basin of a minimum mi, denoted CBf (mi),
is de�ned as the set of points p 2 D that are topograph-
ically closer to mi than to any other minimum mj :

CBf (mi) = fp2D j 8j2Infig : Tf (p;mi) < Tf (p;mj)g

The watershed of a function f is the set of points of its
domain which do not belong to any catchment basin:

Wsh(f) = D \ ([i2ICBf (mi))
c

In practice, of course, images are not always lower
complete, and the altitude of the regional minima need
not be zero. The following construction can be used
to transform an image f such that it satis�es these re-
quirements. We compute a function f� in which for
every regional minimum (which could be a plateau) we
set the altitude to 0, and for all the other pixels p in the
image we set the altitude to the length of the shortest
path in �#

f (p):

f�(p) =

(
0 if �#

f (p) = ;

min
P2�

#

f�
(p)

l(P) otherwise

Let Lc = maxp2D f�(p). We construct the function fLC
as follows:

fLC(p) =

�
0 if f�(p) = 0
Lc � f(p) + f�(p)� 1 otherwise

The function fLC is lower complete, while for a pixel p
in a regional minimum we have fLC(p) = 0. A linear
time algorithm, given in Fig. 2, using a FIFO-queue
breadth-�rst algorithm to propagate distances computes
the function fLC .

2 TARJAN'S UNION-FIND ALGORITHM

In [5] Tarjan presents an algorithm for maintaining dis-

joint sets under the set-union operation. Since catch-
ment basins are disjoint sets by de�nition this algorithm
seems applicable. However, some modi�cations are nec-
essary. In this section we present Tarjan's algorithm for
disjoint sets, and in the next section we will show how
to modify this algorithm such that it can be used for the
computation of watersheds.

Tarjan stores sets in trees. Each node in the tree
points to its parent. The root of a tree points to itself.
Two objects x and y are members of the same set if and
only if x and y have the same canonical element. The
canonical element of x is the root of the tree in which x
is stored. There are three important operations.

Fig. 1: Image (left), and lower complete image (right).

procedure Lower (im[1 :HEIGHT; 1 :WIDTH] : int)

returns lc[1 :HEIGHT; 1 :WIDTH] : int

Init queue with pixels that have a lower neighbor
queue := EmptyQueue;
forall (i; j) 2 D do

lc[i; j] := 0;

if (9(ii; jj) 2 NE(i; j) : im[ii; jj] < im[i; j]) then

FifoAdd((i; j); queue); lc[i; j] := �1

endif

endforall

dist := 1; FifoAdd((�1;�1); queue);

while queue 6= EmptyQueue do

(i; j) := FifoRemove(queue);

if (i; j) = (�1;�1) then

if queue 6= EmptyQueue then

FifoAdd((�1;�1); queue)

dist := dist+ 1;

endif

else

lc[i; j] := dist;

forall (ii; jj) 2 NE(i; j) such that

im[ii; jj] = im[i; j] ^ lc[ii; jj] = 0 do

FifoAdd((ii; jj); queue);

lc[ii; jj] := �1 #To prevent from queueing twice
endforall

endif

endwhile

forall (i; j) 2 D such that lc[i; j] 6= 0 do

lc[i; j] := dist � im[i; j] + lc[i; j]� 1

endforall

end

Fig. 2: Transformation into a lower complete image.

� MakeSet(x): Create a new singleton set fxg. This
operation assumes that x is not already member of
any set.

� FindRoot(x): Return the canonical element (the
root of the tree) of the set containing x.

� Union(x,y): Form a new set that is the union of
the two sets whose canonical elements are x and y.
This operation assumes x 6= y.

The trees are implemented in a linear array, named
parent, of which the indices are of the same type as the
type of the objects stored in it (usually integers). The
value parent[x] gives the parent of x in the tree x is
contained in. When x is a canonical element, we have
parent[x] = x.

Obviously, the operationsMakeSet(x) and Union(x,y)

can be performed in constant time, but the operation
FindRoot(x) requires a search for the canonical element
of x. This operation takes time linear in the length of

procedure MakeSet (x : int)

parent[x] := x; rank[x] := 0

end;

procedure Link (x; y : int)
parent[x] := y

end;

procedure FindRoot (x : int) returns root : int

if x 6= parent[x] then parent[x] := FindRoot(x) endif

root := parent[x]

end;

procedure Union (x; y : int)

var px; py : int

px := FindRoot(x); py := FindRoot(y)

if rank[px] > rank[py] then Link(py; px)

elseif rank[px] < rank[py] then Link(px; py)

else Link(px; py);

rank[py] := rank[py] + 1
endif

end;

Fig. 3: Tarjan's algorithm for disjoint sets.

0 0
1 1
2 2
3 3
4 4
5 5

(a)

0 1
1 1
2 1
3 4
4 4
5 5

�
�

�

(b)

0 1
1 4
2 1
3 4
4 4
5 5

�

�

�

�

(c)

0 1
1 4
2 4
3 4
4 4
5 4

�

����

(d)

Fig. 4: (a) MakeSet(0); : : :; MakeSet(5) (b) Union(0,1);

Union(1,2); Union (3,4) (c) Union (1,3) (d) Union (2,5).

the path from x to its canonical element. Tarjan uses
two important techniques to keep these paths reasonably
short.

The �rst technique is called path compression. Every
time the operation FindRoot(x) is applied, the parent

pointer of the nodes on the �nd-path (the path from x

to the root of the tree) is changed to point directly to the
root of the tree. Thus, after the operation FindRoot(x),
a second operation FindRoot(y), with y on the �nd-path
of x, takes constant time.

The second technique, union by rank, is used in the
operation Union(x,y). The idea is to make the root of
the tree with fewer nodes point to the root of the tree
with more nodes. However, this technique is not used
in this paper.

Tarjan [5] shows that for an intermixed sequence of m
operations the time complexity of this algorithm is for
all practical purposes linear in m.

3 A MODIFICATION OF TARJAN'S AL-

GORITHM FOR COMPUTING WATER-

SHEDS

In this section we will show how Tarjan's algorithm can
be used to compute the watershed of a lower complete

procedure Resolve (p : pixel) returns ce : pixel

Returns canonical element of pixel p, or
WSHED=(-1,-1) in case p lies on a watershed
i := 1; ce := (0; 0); # some value such that ce 6= WSHED

while (i � 4) ^ (ce 6= WSHED) do
if (sln[p; i] 6= p) ^ (sln[p; i] 6=WSHED) then

sln[p; i] := Resolve(sln[p; i])

endif

if i = 1 then ce := sln[p;1]

elseif sln[p; i] 6= ce then

ce := WSHED;

for i := 1 to 4 do sln[p; i] := WSHED endfor

endif

i := i+ 1

endwhile

end;

procedure Basins ()

forall (i; j) 2 D do Resolve ((i; j)) endforall

end;

Fig. 5: Resolving the downstream paths of the DAG.

0 1 2 1 0

1 2 3 2 1

2 3 4 3 2

1 2 3 2 1

0 1 2 1 0

6 6 6 6 6

6 6 6 6 6

? ? ? ? ?

? ? ? ? ?

� � - -

� � - -

� � - -

� � - -

� � - -

0 1 2 1 0

1 2 3 2 1

2 3 4 3 2

1 2 3 2 1

0 1 2 1 0

6 6

? ?

� -

� -

@@I ���

��	 @@R

Fig. 6: Left: image and its corresponding DAG; right: DAG

after resolving (watershed-pixels are surrounded by a box).

image f , of which the regional minima are uniquely la-
beled. The label assigned to a minimum is the canonical
element for that minimum. In the remainder of this pa-
per we use 4-connectivity (although the algorithms can
also be applied in the case of 8-connectivity).
The algorithm proposed is based on the following the-

orem (see [4]). Let m � D be a regional minimum, and
q 2 m. If a pixel p 2 D belongs to the catchment basin
of m, then the di�erence in altitude of p and q equals
the topographical distance between p and q, i.e.

(8p 2 D : p 2 CB(m)) Tf (p; q) = f(p)� f(q));

and the path realizing the distance Tf (p; q) is a path of
steepest descent, i.e., each step along the path is to a
neighbor p0 2 NE(p) with the lowest altitude. In some
cases there will be several such neighbors. In these cases
there is no preference for any of the neighbors, and all
paths via these neighbors are followed. In the case that
at least two of these paths end in di�erent regional min-
ima, say m0 and m1, we have Tf (p;m0) = Tf (p;m1),
and hence p belongs to the set of watershed pixels.
The disjoint set forest used by Tarjan is replaced by

a directed graph, whose only cycles are self-loops. With
some abuse of terminology we refer to this as a directed

Fig. 7: Test images (from top left to bottom right): (a) blobs

(b) chess (c) waves (d) peppers (e) particles (f) aircraft.

acyclic graph (DAG). This is similar to the arrowing
method of [1, 4]. Let GCB = (D;E) be this DAG. For
a pixel p 2 D which is not in a regional minimum,
and for each of its lowest neighbors q 2 NE(p), we
have (p; q) 2 E. For a regional minimum m a single
pixel r 2 m is chosen as the canonical element of this
minimum, and we have 8(p 2 m : (p; r) 2 E) (since
(r; r) 2 E there are self-loops). The reason we use a
DAG instead of a disjoint set forest, is the fact that a
pixel can have more than one steepest lower neighbor,
and the fact that we cannot determine on the
y whether
a pixel belongs to a catchment basin or it belongs to the
set of watershed pixels, and thus it is simply added to
the DAG. The algorithm is given in Fig. 5. The DAG is
stored in an array sln, where sln[p; i] is a pointer to the
ith steepest lower neighbor of pixel p. The DAG GCB

can be constructed in a single pass scan-line algorithm,
in which for each pixel only its neighbors are referenced,
which results in optimal use of the cache memory of the
processor. After the DAG is constructed, all the di-
rected paths in the DAG can be resolved by following
the outgoing pointers of each node until a canonical el-
ement is reached. In the case that two or more di�erent
canonical elements can be reached from a node v in the
DAG, the node v is a watershed node. The resolving al-
gorithm closely resembles Tarjan's FindRoot operation.
For reasons of elegance, the algorithm is presented as a
recursive algorithm, however, in practice the recursion
should be eliminated to reach optimal performance.

4 RESULTS AND CONCLUSIONS

We applied the algorithm (both stages) to a number of
test images. The results shown in the table below are
for hundred runs, and are performed on square images of
sizes 256� 256, 512� 512, and 1024� 1024 respectively.
The computer used is a 300MHz Pentium PC, with 64
Mb RAM memory, and 512 Kb cache memory.

image minima 256 512 1024

blobs 4 17.2 74.8 313

chess 67 43.2 178 716

waves 20 36.3 165 720

peppers 44426 37.0 170 712

particles 359 41.6 182 756

aircraft 19053 38.7 174 724

The image `blobs' is a binary image with very large
minima plateaus (more than half of the pixels are in a
minimum), resulting in short root-paths in the DAG.
This explains the signi�cant shorter running time for
this image compared to the other ones. By doubling the
image dimensions, the number of pixels increases by a
factor of 4. Since all phases of the algorithm are per-
formed in (nearly) linear time with respect to the image
size, we expect to �nd this re
ected in the timings. On
average we �nd that the running time increases by a fac-
tor of 4.2, which is quite close to linear behavior. The
images 'blobs', 'chess', and 'waves' are arti�cially gener-
ated images, with relatively few minima, while the other
images are camera-made, containing a lot of noise and
minima. We see that the number of minima has little
e�ect on the total running time. The timings we �nd
are comparative with the ones found in the literature for
other algorithms ([2,6]). The main interest of our algo-
rithm is the second stage, since it can be parallelized on
shared memory computers with very little synchroniza-
tion overhead, while most other algorithms are di�cult
to parallelize as a result of global dependencies. An-
other approach to deal with these global dependencies
is by modifying the de�nition of the watershed through
a locality assumption, as is done in [2].

References

[1] Beucher, S., and Meyer, F. The morphological ap-

proach to segmentation: the watershed transformation.

In Mathematical Morphology in Image Processing, E. R.

Dougherty, Ed. Marcel Dekker, New York, 1993, ch. 12,

pp. 433{481.

[2] Bieniek, A., Burkhardt, H., Marschner, H., N�olle, M.,

and Schreiber, G. A parallel watershed algorithm. In

Proc. 10th Scandinavian Conference on Image Analysis

(SCIA'97), Lappeenranta, Finland (1997), pp. 237{244.

[3] Meijster, A., and Roerdink, J. B. T. M. A proposal for

the implementation of a parallel watershed algorithm. In

Computer Analysis of Images and Patterns, V. Hlav�a�c

and R. �S�ara, Eds., vol. 970 of Lecture Notes in Computer

Science. Springer-Verlag, New York{Heidelberg{Berlin,

1995, pp. 790{795.

[4] Meyer, F. Topographic distance and watershed lines.

Signal Process. 38 (1994), 113{125.

[5] Tarjan, R. E. Data Structures and Network Algorithms.

SIAM, 1983.

[6] Vincent, L., and Soille, P. Watersheds in digital spaces:

an e�cient algorithm based on immersion simulations.

IEEE Trans. Patt. Anal. Mach. Intell. 13, 6 (1990), 583{

598.

