
An Alternative Algorithm for ComputingWatersheds on Shared Memory ParallelComputersA. Meijster and J.B.T.M. RoerdinkUniversity of Groningen,Institute for Mathematis and Computing SieneP.O. Box 800, 9700 AV Groningen, The NetherlandsEmail: arnold�s.rug.nl roe�s.rug.nlTel. +31-50-633931, Fax. +31-50-633800AbstratIn this paper a parallel implementation of a watershed algorithm is proposed.The algorithm an easily be implemented on shared memory parallel omputers.The watershed transform is generally onsidered to be inherently sequential sinethe disrete watershed of an image is de�ned using reursion, see [5℄. However,reently a few researh groups, see [2, 3, 4℄, have designed parallel algorithmsfor omputing watersheds. Most of these parallel algorithms are based on split-ting the soure image in bloks, omputing the watersheds of these bloks andmerging the resulting images into the desired result. A disadvantage of thisapproah is that a lot of ommuniation is neessary at the boundaries of thebloks. In this paper we show that it is possible to transform the omputationof the disrete watershed into a sequene of three simple steps whih are easierto exeute in parallel than the original algorithm. In the �rst step the input im-age is transformed into a graph representation of the image. In the seond stepwe ompute the watershed of this graph and �nally we transform the resultinggraph bak into the image domain.1 IntrodutionIn [5℄ an algorithmi de�nition of the watershed of a digital gray sale image isgiven. In this setion we will give a short summary of this de�nition.A digital gray sale image is a funtion f : D �! N, where D � Z2 is thedomain of the image (pixel oordinates) and for some p 2 D the value f(p)denotes the gray value of this pixel. Gray sale images are looked upon as1



topographi reliefs where f(p) denotes the altitude of the surfae at loationp. Let G denote the underlying grid, i.e. G is a subset of Z2 � Z2. A pathP of length l between two pixels p and q is an l + 1-tuple (p0; p1; :::; pl�1; pl)suh that p0 = p, pl = q and 8i 2 [0; l) : (pi; pi+1) 2 G. For a set of pixelsM the prediate onn(M) holds if and only if for every pair of pixels p; q 2 Mthere exists a path between p and q whih only passes through pixels of M .The set M is alled onneted if onn(M) holds. A onneted omponent is anonempty maximal onneted set of pixels, i.e. if for a nonempty onnetedset M and for eah onneted set N we have M \ N = ; _ N � M then Mis a onneted omponent. A regional minimum (minimum, for short) of f ataltitude h is a onneted omponent of pixels p with f(p) = h from whih itis impossible to reah a point of lower altitude without having to limb. Now,suppose that pinholes are piered in eah minimum of the topographi surfaeand the surfae is slowly immersed into a lake. Water will �ll up the valleysof the surfae reating basins. At the pixels where two or more basins wouldmerge we build a "dam". The set of dams obtained at the end of this immersionproess is alled the watershed of the image f .In order to de�ne watersheds mathematially, we need a few de�nitions.De�nition 1. Let A be a set, and a; b two points in A. The geodesi distanedA(a; b) within A is the in�mum of the lengths of all paths from a to b in A. Witha little abuse of notation we write dA(a;B) for the geodesi distane between apoint a 2 A and a set B, with A \ B 6= ;, whih is the in�mum of the lengthsof all paths from a to any point in A \ B.De�nition 2. Let A be some �nite set of pixels. Let B � A be partitioned in konneted omponents Bi. The geodesi inuene zone of Bi within A, denotedizA(Bi), is de�ned as the setfp 2 A j 8j 2 [1::k℄nfig : dA(p;Bi) < dA(p;Bj)gThe set IZA(B) is de�ned as the union of the inuene zones of the onnetedomponents of B, i.e. IZA(B) = Ski=1 izA(Bi).De�nition 3. The omplement of the set IZA(B) within A is alled the skele-ton by inuene zones of A, SKIZA(B) = AnIZA(B).De�nition 4. Let f be a gray level funtion. The set Th = fp 2 D j f(p) � hgis alled the threshold set of f at level h.Let hmin and hmax respetively be the minimum and maximum gray level of thedigital image. Let minh denote the union of all regional minima at the height h.De�nition 5. Watershed de�nition De�ne the following reurrene for h 2[hmin; hmax):Xhmin = Thmin = fp 2 D j f(p) = hming2



Xh+1 = Xh [minh+1 [ (IZTh+1(Xh)nTh)The watershed of the image f is the omplement of Xhmax in D:Wshed(f) = DnXhmaxIntuitively, one ould interpret Xh as the set of pixels p, satisfying f(p) � h,that lie in some basin.The reursion above is based upon the following ase analysis [5℄, whih isexplained here in some detail in preparation of the parallel algorithm to follow.For the reursive relation between Xh and Xh+1 the threshold set Th+1 isonsidered. It is obvious that Xh � Xh+1 � Th+1. Let Y be a onnetedomponent of Th+1. There are three possible relations between Y and Xh:1. Y \Xh = ;. In this ase Y is a new minimum at level h+1 and thus (afterpiering a hole in it) the starting set of a new basin. Clearly Y � Xh+1.2. Y \Xh 6= ; and is onneted. Clearly Y is an extension of the basin Xh,and thus Y � Xh+1.3. Y \ Xh 6= ; and is not onneted. In this ase Y ontains two or moredistint minima of f . Let Z1; : : : ; Zk be these minima. Then the basinXh is expanded by omputing the geodesi inuene zone of Zi within Y .Most implementations of algorithms that ompute the watershed of a digitalgray sale funtion are diret translations of this reursive relation. The basistruture of these algorithms is a main loop in whih h ranges from hmin tohmax. In every iteration the basins belonging to the minima are extended withtheir inuene zones within the set Th+1. The fat that Xh is needed to omputeXh+1 learly expresses the sequential nature of this algorithm.2 Watershed of a Components-graphComputing inuene zones is not neessary if we an guarantee that no plateaus,lusters of neighbouring pixels that have the same gray-value, our in the image.Of ourse, this is generally not true. Now, suppose that the image f does notontain plateaus, i.e. 8p; q 2 D : (p; q) 2 G) f(p) 6= f(q)In this ase every 'plateau' onsists of exatly one pixel. We an arti�iallysatisfy the ondition above by transforming the image f into a direted valuedgraph f� = (F;E), alled the omponents graph of f . Here F denotes the set ofverties of the graph and E � F �F the set of edges. The verties of this graphare maximal onneted sets of pixels whih have the same gray-values. In the3



remainder of this paper these sets are alled level omponents. The set of levelomponents at level h is de�ned asLh = fC � ThnTh�1 j C is a onn. omponentgThe set of verties of the graph f� is the olletion of level omponents of f , i.e.F = Shmaxh=hmin Lh. For level omponents v and w we have (v; w) 2 E i�. 9p 2v; q 2 w : (p; q) 2 G ^ f(p) < f(q). By de�nition every direted path throughthis graph inreases in altitude. With a little abuse of notation we denote thegray-value of a level omponent w by f�(w), whih is the value f(p) for somep 2 w if w is not a loal minimum. If w is a minimum we de�ne f�(w) = hmin.Note that hanging the gray value of a loal minimum into the gray value of theabsolute minimum does not hange the athment basin assoiated with suha minimum, but it avoids introduing new minima during the exeution of thewatershed algorithm. We denote the number of minima by N , suh that we anindex the minimaM1,..,MN . Now, we an de�ne the watershed of a omponentsgraph in a similar fashion as in the ase of a gray level image.De�nition 6. Watershed of a omponents graph De�ne the followingreurrene for h 2 [hmin; hmax) and i 2 [1::N ℄X ihmin = fMigX ih+1 = X ih [fv 2 F j f�(v) = h+ 1 ^(9w 2 X ih : (w; v) 2 E) ^(8j 6= i; w 2 Xjh : (w; v) =2 E)gThe watershed of the omponents graph f� is the omplement of the union ofthe athment basins in F :Wshed(f�) = Fn N[i=1X ihmaxNote that this de�nition losely resembles the de�nition of the watershed of agray level image. In this de�nition we do not have to onsider loal minima atlevel h+ 1 sine we hanged the gray level of the loal minima into hmin.The expansion of athment basins with their inuene zones is now replaedby merging omponents at level h + 1, that an be reahed from exatly oneathment basin, to the orresponding basin. If a omponent an be reahedfrom two di�erent athment basins then the node is de�ned to be a watershednode.
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3 Parallel Computation of the watershed of aomponents graphThe de�nition of the watershed of a omponents graph given in the previoussetion suggests a simple algorithm for omputing the watershed of a ompo-nents graph. The idea is to ompute the athment basins (CMi)i2[1::N ℄ byomputing all possible paths that start in the minima Mi. The sets CMi aneasily be omputed using standard breadth �rst graph algorithms. After om-puting these basins the algorithm determines whih omponents are ontainedin two or more basins. These nodes are the watershed omponents. The nodesthat are ontained in exatly one basin are non-watershed nodes.The time required to ompute the athment basin of one minimum is pro-portional with the number of nodes in the omponents graph. Let us say thatC is the number of omponents in the graph, i.e. C =j F j. Computing all thebasins one after another has omplexity of the order C �N . Sine, for typialgray sale images, C and N are very large, the omputation of the watershed inthis way is very expensive. An alternative is to start omputing all the ath-ment basins of the minima in parallel suh that we an stop expanding a basinin a partiular diretion as soon as we have disovered that in that diretiontwo or more basins have ome together.
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(c)Figure 1: (a) original image f . (b) labeled level omponents. () omponentsgraph f�. (d) watershed of f�Suppose we have a shared memory system with N proessors. Eah proesori is assigned the task to label the omponents belonging to athment basinX ih with the value i, unless this omponent is disovered to be a watershedomponent in whih ase it is labeled with the value N + 1. We introdue anarray wsh[1::C℄ whih is indexed by omponents. This array an be aessedand modi�ed by eah proessor. In this array the labeling of the omponentsis stored. Initially, all omponents are labeled with the (invalid) label 0. Inthe parallel algorithm eah proessor i hanges the value of the orresponding5



Figure 2: (left) thik watershed of f ; (right) skeleton of thik watershed of finitially: N is the number of minima;(8v 2 F : wsh[v℄ = 0)do parallel for i 2 [1::N ℄begin wsh[Mi℄ := i;s := fMig;while s 6= ; dobegin hoose v 2 s;s := snfvg;n := Neighbours(v);(� n = fw 2 F j (v; w) 2 Eg �)forall w 2 n dobegin P (w);if wsh[w℄ = 0 thenbegin wsh[w℄ := wsh[v℄;V (w);s := s [ fwgend elseif wsh[w℄ 6= wsh[v℄ thenbegin wsh[w℄ := N + 1;V (w);s := s [ fwgend else V (w)endendend; Figure 3: Parallel watershed algorithm on a omponents graph.6



minimum Mi into the label i. Sine a minimum an never be reahed from anyother omponent in the graph, we do not have to worry that this value ever getshanged by any other proessor.During the expansion proess, eah proessor expands its orrespondingathment basin iteratively. In eah iteration the neighbours of the ompo-nents that were added in the previous iteration are omputed. The label ofeah neighbour is inspeted inside a ritial setion. A ritial setion is a partof the program that an be exeuted by exatly one proessor at the same time.This is neessary in order to avoid that values get overwritten when two ormore proessors try to hange the value of a variable. A standard tehnique forsolving this problem is to use semaphores, see [1℄. A (binary) semaphore an beregarded as a speial kind of boolean variable that an be hanged by exatlyone proessor at the same time, using the operations P and V . A part of aprogram that is surrounded by a P and a V operation on the same semaphoreis alled a ritial setion. Semaphores are initalized with the value true. If sis a semaphore, with s = true, then P (s) hanges the value of s into false andontrol is returned to the alling proess immediately. If s = false then eahproess that alls P (s) is bloked until s beomes true again and one of theproesses an enter the ritial setion and set the value of s to false again.A proess that has passed a P -operation, and thus has bloked all other pro-essors on the orresponding semaphore, an unblok the semaphore with theoperation V (s) whih sets the value of s to true. For a omplete desription ofsemaphores the reader is referred to [1℄.If a neighbouring omponent w has not been labeled with a valid label yet,i.e. wsh[w℄ = 0, then w is labeled with the label of the omponent from whihit has been reahed, and thus w is merged with the basin. If w was alreadyassigned a label that di�ers from the label of the omponent from whih it wasreahed then the node is ontained in some other basin, and thus it an bereahed from at least two di�erent minima. In this ase w is labeled with thelabel N + 1 whih means that w is a watershed omponent. If another proessreahes this watershed omponent it an stop traking all the paths via thisomponent beause it knows that all omponents that are reahed along thesepaths have already been labeled by some other proess, or they will be labeledduring the exeution of the rest of the algorithm. Beause of this fat eahomponent of the graph is labeled at most twie, and eah node that has beenlabeled twie will not be visited again during the exeution of the algorithm.At eah visit a omponent is assigned a label. This means that this algorithmexeutes in time that is linear in the number of nodes in the graph, whih ismuh better than time omplexity C �N in the sequential ase.In general, the number of minima in the graph will exeed the number ofavailable proessors. This problem an be solved by reating virtual proessorsby running more than one proess on a single proessor. This kind of pseudo-parallelism does not a�et the exeution of the algorithm.7



4 Computation of the watershed of a gray saleimageThe omputation of the watershed of a graysale image aording the algorithm given in [5℄ is muh more omplex than thealgorithm given in the previous setion. This is a result of the fat that it isimpossible to determine whether a pixel is a watershed pixel using the gray valueof its neighbouring pixels, sine a pixel an be part of a (very large) plateau.This fat makes it hard to ompute the watershed of a gray sale image at thepixel level. We propose that the omputation of the watershed of a gray saleimage is performed in three onseutive steps. In the �rst step the level sets ofthe image are omputed and the omponents graph is built. Computing levelsets is a fast and simple operation, whih an be parallelized but it usually isnot worth the burden of doing this.In the seond step of the algorithm we ompute the watershed of the om-ponents graph that we omputed in the �rst step. This an be done using thealgorithm given in the previous setion. Finally the image is transformed bakinto the image domain. This step an be performed sequentially or in parallel.Both algorithms are evident. The result of transforming level nodes of the graphbak into sets of pixels is that we end up with thik watershed plateaus, whihis usually undesirable. In that ase we an deide to use some skeletonizationalgorithm to obtain thin watersheds. Note that this is perfetly aeptable,sine we an hoose the watershed lines within a plateau arbitrarily.5 ConlusionsIn this paper we have shown that it is possible to ompute the watershed trans-form of a gray sale image in parallel by splitting the omputation in threeonseutive stages. In theory all these stages an be implemented in parallel,but in pratie it is only worth the bureden to implement the seond stage inparallel.In the �rst stage of the algorithm the input image is transformed into a diretedomponents graph. In the seond stage of the algorithm the watershed of thisgraph is omputed by a breadth �rst olouring algorithm. The deision whiholour to assign to a ertain node an be made by examining the olours assignedto its neighbouring nodes. This loality property makes it possible to performthis stage in parallel, in ontrast with the lassial watershed algorithm. Inthe �nal stage of the algorithm the ooded graph is transformed bak into theimage domain. Pixels belonging to watershed nodes of the graph are olouredwhite, while pixels belonging to non-watershed nodes are oloured blak. Theresulting watersheds are "thik". "Thin" watersheds an be obtained by per-forming some skeletonization algorithm on the output image. The hoie whihskeletonization algorithm to use is arbitrary.8
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