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tIn this paper a parallel implementation of a watershed algorithm is proposed.The algorithm 
an easily be implemented on shared memory parallel 
omputers.The watershed transform is generally 
onsidered to be inherently sequential sin
ethe dis
rete watershed of an image is de�ned using re
ursion, see [5℄. However,re
ently a few resear
h groups, see [2, 3, 4℄, have designed parallel algorithmsfor 
omputing watersheds. Most of these parallel algorithms are based on split-ting the sour
e image in blo
ks, 
omputing the watersheds of these blo
ks andmerging the resulting images into the desired result. A disadvantage of thisapproa
h is that a lot of 
ommuni
ation is ne
essary at the boundaries of theblo
ks. In this paper we show that it is possible to transform the 
omputationof the dis
rete watershed into a sequen
e of three simple steps whi
h are easierto exe
ute in parallel than the original algorithm. In the �rst step the input im-age is transformed into a graph representation of the image. In the se
ond stepwe 
ompute the watershed of this graph and �nally we transform the resultinggraph ba
k into the image domain.1 Introdu
tionIn [5℄ an algorithmi
 de�nition of the watershed of a digital gray s
ale image isgiven. In this se
tion we will give a short summary of this de�nition.A digital gray s
ale image is a fun
tion f : D �! N, where D � Z2 is thedomain of the image (pixel 
oordinates) and for some p 2 D the value f(p)denotes the gray value of this pixel. Gray s
ale images are looked upon as1



topographi
 reliefs where f(p) denotes the altitude of the surfa
e at lo
ationp. Let G denote the underlying grid, i.e. G is a subset of Z2 � Z2. A pathP of length l between two pixels p and q is an l + 1-tuple (p0; p1; :::; pl�1; pl)su
h that p0 = p, pl = q and 8i 2 [0; l) : (pi; pi+1) 2 G. For a set of pixelsM the predi
ate 
onn(M) holds if and only if for every pair of pixels p; q 2 Mthere exists a path between p and q whi
h only passes through pixels of M .The set M is 
alled 
onne
ted if 
onn(M) holds. A 
onne
ted 
omponent is anonempty maximal 
onne
ted set of pixels, i.e. if for a nonempty 
onne
tedset M and for ea
h 
onne
ted set N we have M \ N = ; _ N � M then Mis a 
onne
ted 
omponent. A regional minimum (minimum, for short) of f ataltitude h is a 
onne
ted 
omponent of pixels p with f(p) = h from whi
h itis impossible to rea
h a point of lower altitude without having to 
limb. Now,suppose that pinholes are pier
ed in ea
h minimum of the topographi
 surfa
eand the surfa
e is slowly immersed into a lake. Water will �ll up the valleysof the surfa
e 
reating basins. At the pixels where two or more basins wouldmerge we build a "dam". The set of dams obtained at the end of this immersionpro
ess is 
alled the watershed of the image f .In order to de�ne watersheds mathemati
ally, we need a few de�nitions.De�nition 1. Let A be a set, and a; b two points in A. The geodesi
 distan
edA(a; b) within A is the in�mum of the lengths of all paths from a to b in A. Witha little abuse of notation we write dA(a;B) for the geodesi
 distan
e between apoint a 2 A and a set B, with A \ B 6= ;, whi
h is the in�mum of the lengthsof all paths from a to any point in A \ B.De�nition 2. Let A be some �nite set of pixels. Let B � A be partitioned in k
onne
ted 
omponents Bi. The geodesi
 in
uen
e zone of Bi within A, denotedizA(Bi), is de�ned as the setfp 2 A j 8j 2 [1::k℄nfig : dA(p;Bi) < dA(p;Bj)gThe set IZA(B) is de�ned as the union of the in
uen
e zones of the 
onne
ted
omponents of B, i.e. IZA(B) = Ski=1 izA(Bi).De�nition 3. The 
omplement of the set IZA(B) within A is 
alled the skele-ton by in
uen
e zones of A, SKIZA(B) = AnIZA(B).De�nition 4. Let f be a gray level fun
tion. The set Th = fp 2 D j f(p) � hgis 
alled the threshold set of f at level h.Let hmin and hmax respe
tively be the minimum and maximum gray level of thedigital image. Let minh denote the union of all regional minima at the height h.De�nition 5. Watershed de�nition De�ne the following re
urren
e for h 2[hmin; hmax):Xhmin = Thmin = fp 2 D j f(p) = hming2



Xh+1 = Xh [minh+1 [ (IZTh+1(Xh)nTh)The watershed of the image f is the 
omplement of Xhmax in D:Wshed(f) = DnXhmaxIntuitively, one 
ould interpret Xh as the set of pixels p, satisfying f(p) � h,that lie in some basin.The re
ursion above is based upon the following 
ase analysis [5℄, whi
h isexplained here in some detail in preparation of the parallel algorithm to follow.For the re
ursive relation between Xh and Xh+1 the threshold set Th+1 is
onsidered. It is obvious that Xh � Xh+1 � Th+1. Let Y be a 
onne
ted
omponent of Th+1. There are three possible relations between Y and Xh:1. Y \Xh = ;. In this 
ase Y is a new minimum at level h+1 and thus (afterpier
ing a hole in it) the starting set of a new basin. Clearly Y � Xh+1.2. Y \Xh 6= ; and is 
onne
ted. Clearly Y is an extension of the basin Xh,and thus Y � Xh+1.3. Y \ Xh 6= ; and is not 
onne
ted. In this 
ase Y 
ontains two or moredistin
t minima of f . Let Z1; : : : ; Zk be these minima. Then the basinXh is expanded by 
omputing the geodesi
 in
uen
e zone of Zi within Y .Most implementations of algorithms that 
ompute the watershed of a digitalgray s
ale fun
tion are dire
t translations of this re
ursive relation. The basi
stru
ture of these algorithms is a main loop in whi
h h ranges from hmin tohmax. In every iteration the basins belonging to the minima are extended withtheir in
uen
e zones within the set Th+1. The fa
t that Xh is needed to 
omputeXh+1 
learly expresses the sequential nature of this algorithm.2 Watershed of a Components-graphComputing in
uen
e zones is not ne
essary if we 
an guarantee that no plateaus,
lusters of neighbouring pixels that have the same gray-value, o

ur in the image.Of 
ourse, this is generally not true. Now, suppose that the image f does not
ontain plateaus, i.e. 8p; q 2 D : (p; q) 2 G) f(p) 6= f(q)In this 
ase every 'plateau' 
onsists of exa
tly one pixel. We 
an arti�
iallysatisfy the 
ondition above by transforming the image f into a dire
ted valuedgraph f� = (F;E), 
alled the 
omponents graph of f . Here F denotes the set ofverti
es of the graph and E � F �F the set of edges. The verti
es of this graphare maximal 
onne
ted sets of pixels whi
h have the same gray-values. In the3



remainder of this paper these sets are 
alled level 
omponents. The set of level
omponents at level h is de�ned asLh = fC � ThnTh�1 j C is a 
onn. 
omponentgThe set of verti
es of the graph f� is the 
olle
tion of level 
omponents of f , i.e.F = Shmaxh=hmin Lh. For level 
omponents v and w we have (v; w) 2 E i�. 9p 2v; q 2 w : (p; q) 2 G ^ f(p) < f(q). By de�nition every dire
ted path throughthis graph in
reases in altitude. With a little abuse of notation we denote thegray-value of a level 
omponent w by f�(w), whi
h is the value f(p) for somep 2 w if w is not a lo
al minimum. If w is a minimum we de�ne f�(w) = hmin.Note that 
hanging the gray value of a lo
al minimum into the gray value of theabsolute minimum does not 
hange the 
at
hment basin asso
iated with su
ha minimum, but it avoids introdu
ing new minima during the exe
ution of thewatershed algorithm. We denote the number of minima by N , su
h that we 
anindex the minimaM1,..,MN . Now, we 
an de�ne the watershed of a 
omponentsgraph in a similar fashion as in the 
ase of a gray level image.De�nition 6. Watershed of a 
omponents graph De�ne the followingre
urren
e for h 2 [hmin; hmax) and i 2 [1::N ℄X ihmin = fMigX ih+1 = X ih [fv 2 F j f�(v) = h+ 1 ^(9w 2 X ih : (w; v) 2 E) ^(8j 6= i; w 2 Xjh : (w; v) =2 E)gThe watershed of the 
omponents graph f� is the 
omplement of the union ofthe 
at
hment basins in F :Wshed(f�) = Fn N[i=1X ihmaxNote that this de�nition 
losely resembles the de�nition of the watershed of agray level image. In this de�nition we do not have to 
onsider lo
al minima atlevel h+ 1 sin
e we 
hanged the gray level of the lo
al minima into hmin.The expansion of 
at
hment basins with their in
uen
e zones is now repla
edby merging 
omponents at level h + 1, that 
an be rea
hed from exa
tly one
at
hment basin, to the 
orresponding basin. If a 
omponent 
an be rea
hedfrom two di�erent 
at
hment basins then the node is de�ned to be a watershednode.
4



3 Parallel Computation of the watershed of a
omponents graphThe de�nition of the watershed of a 
omponents graph given in the previousse
tion suggests a simple algorithm for 
omputing the watershed of a 
ompo-nents graph. The idea is to 
ompute the 
at
hment basins (CMi)i2[1::N ℄ by
omputing all possible paths that start in the minima Mi. The sets CMi 
aneasily be 
omputed using standard breadth �rst graph algorithms. After 
om-puting these basins the algorithm determines whi
h 
omponents are 
ontainedin two or more basins. These nodes are the watershed 
omponents. The nodesthat are 
ontained in exa
tly one basin are non-watershed nodes.The time required to 
ompute the 
at
hment basin of one minimum is pro-portional with the number of nodes in the 
omponents graph. Let us say thatC is the number of 
omponents in the graph, i.e. C =j F j. Computing all thebasins one after another has 
omplexity of the order C �N . Sin
e, for typi
algray s
ale images, C and N are very large, the 
omputation of the watershed inthis way is very expensive. An alternative is to start 
omputing all the 
at
h-ment basins of the minima in parallel su
h that we 
an stop expanding a basinin a parti
ular dire
tion as soon as we have dis
overed that in that dire
tiontwo or more basins have 
ome together.
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(c)Figure 1: (a) original image f . (b) labeled level 
omponents. (
) 
omponentsgraph f�. (d) watershed of f�Suppose we have a shared memory system with N pro
essors. Ea
h pro
esori is assigned the task to label the 
omponents belonging to 
at
hment basinX ih with the value i, unless this 
omponent is dis
overed to be a watershed
omponent in whi
h 
ase it is labeled with the value N + 1. We introdu
e anarray wsh[1::C℄ whi
h is indexed by 
omponents. This array 
an be a

essedand modi�ed by ea
h pro
essor. In this array the labeling of the 
omponentsis stored. Initially, all 
omponents are labeled with the (invalid) label 0. Inthe parallel algorithm ea
h pro
essor i 
hanges the value of the 
orresponding5



Figure 2: (left) thi
k watershed of f ; (right) skeleton of thi
k watershed of finitially: N is the number of minima;(8v 2 F : wsh[v℄ = 0)do parallel for i 2 [1::N ℄begin wsh[Mi℄ := i;s := fMig;while s 6= ; dobegin 
hoose v 2 s;s := snfvg;n := Neighbours(v);(� n = fw 2 F j (v; w) 2 Eg �)forall w 2 n dobegin P (w);if wsh[w℄ = 0 thenbegin wsh[w℄ := wsh[v℄;V (w);s := s [ fwgend elseif wsh[w℄ 6= wsh[v℄ thenbegin wsh[w℄ := N + 1;V (w);s := s [ fwgend else V (w)endendend; Figure 3: Parallel watershed algorithm on a 
omponents graph.6



minimum Mi into the label i. Sin
e a minimum 
an never be rea
hed from anyother 
omponent in the graph, we do not have to worry that this value ever gets
hanged by any other pro
essor.During the expansion pro
ess, ea
h pro
essor expands its 
orresponding
at
hment basin iteratively. In ea
h iteration the neighbours of the 
ompo-nents that were added in the previous iteration are 
omputed. The label ofea
h neighbour is inspe
ted inside a 
riti
al se
tion. A 
riti
al se
tion is a partof the program that 
an be exe
uted by exa
tly one pro
essor at the same time.This is ne
essary in order to avoid that values get overwritten when two ormore pro
essors try to 
hange the value of a variable. A standard te
hnique forsolving this problem is to use semaphores, see [1℄. A (binary) semaphore 
an beregarded as a spe
ial kind of boolean variable that 
an be 
hanged by exa
tlyone pro
essor at the same time, using the operations P and V . A part of aprogram that is surrounded by a P and a V operation on the same semaphoreis 
alled a 
riti
al se
tion. Semaphores are initalized with the value true. If sis a semaphore, with s = true, then P (s) 
hanges the value of s into false and
ontrol is returned to the 
alling pro
ess immediately. If s = false then ea
hpro
ess that 
alls P (s) is blo
ked until s be
omes true again and one of thepro
esses 
an enter the 
riti
al se
tion and set the value of s to false again.A pro
ess that has passed a P -operation, and thus has blo
ked all other pro-
essors on the 
orresponding semaphore, 
an unblo
k the semaphore with theoperation V (s) whi
h sets the value of s to true. For a 
omplete des
ription ofsemaphores the reader is referred to [1℄.If a neighbouring 
omponent w has not been labeled with a valid label yet,i.e. wsh[w℄ = 0, then w is labeled with the label of the 
omponent from whi
hit has been rea
hed, and thus w is merged with the basin. If w was alreadyassigned a label that di�ers from the label of the 
omponent from whi
h it wasrea
hed then the node is 
ontained in some other basin, and thus it 
an berea
hed from at least two di�erent minima. In this 
ase w is labeled with thelabel N + 1 whi
h means that w is a watershed 
omponent. If another pro
essrea
hes this watershed 
omponent it 
an stop tra
king all the paths via this
omponent be
ause it knows that all 
omponents that are rea
hed along thesepaths have already been labeled by some other pro
ess, or they will be labeledduring the exe
ution of the rest of the algorithm. Be
ause of this fa
t ea
h
omponent of the graph is labeled at most twi
e, and ea
h node that has beenlabeled twi
e will not be visited again during the exe
ution of the algorithm.At ea
h visit a 
omponent is assigned a label. This means that this algorithmexe
utes in time that is linear in the number of nodes in the graph, whi
h ismu
h better than time 
omplexity C �N in the sequential 
ase.In general, the number of minima in the graph will ex
eed the number ofavailable pro
essors. This problem 
an be solved by 
reating virtual pro
essorsby running more than one pro
ess on a single pro
essor. This kind of pseudo-parallelism does not a�e
t the exe
ution of the algorithm.7



4 Computation of the watershed of a gray s
aleimageThe 
omputation of the watershed of a grays
ale image a

ording the algorithm given in [5℄ is mu
h more 
omplex than thealgorithm given in the previous se
tion. This is a result of the fa
t that it isimpossible to determine whether a pixel is a watershed pixel using the gray valueof its neighbouring pixels, sin
e a pixel 
an be part of a (very large) plateau.This fa
t makes it hard to 
ompute the watershed of a gray s
ale image at thepixel level. We propose that the 
omputation of the watershed of a gray s
aleimage is performed in three 
onse
utive steps. In the �rst step the level sets ofthe image are 
omputed and the 
omponents graph is built. Computing levelsets is a fast and simple operation, whi
h 
an be parallelized but it usually isnot worth the burden of doing this.In the se
ond step of the algorithm we 
ompute the watershed of the 
om-ponents graph that we 
omputed in the �rst step. This 
an be done using thealgorithm given in the previous se
tion. Finally the image is transformed ba
kinto the image domain. This step 
an be performed sequentially or in parallel.Both algorithms are evident. The result of transforming level nodes of the graphba
k into sets of pixels is that we end up with thi
k watershed plateaus, whi
his usually undesirable. In that 
ase we 
an de
ide to use some skeletonizationalgorithm to obtain thin watersheds. Note that this is perfe
tly a

eptable,sin
e we 
an 
hoose the watershed lines within a plateau arbitrarily.5 Con
lusionsIn this paper we have shown that it is possible to 
ompute the watershed trans-form of a gray s
ale image in parallel by splitting the 
omputation in three
onse
utive stages. In theory all these stages 
an be implemented in parallel,but in pra
ti
e it is only worth the bureden to implement the se
ond stage inparallel.In the �rst stage of the algorithm the input image is transformed into a dire
ted
omponents graph. In the se
ond stage of the algorithm the watershed of thisgraph is 
omputed by a breadth �rst 
olouring algorithm. The de
ision whi
h
olour to assign to a 
ertain node 
an be made by examining the 
olours assignedto its neighbouring nodes. This lo
ality property makes it possible to performthis stage in parallel, in 
ontrast with the 
lassi
al watershed algorithm. Inthe �nal stage of the algorithm the 
ooded graph is transformed ba
k into theimage domain. Pixels belonging to watershed nodes of the graph are 
olouredwhite, while pixels belonging to non-watershed nodes are 
oloured bla
k. Theresulting watersheds are "thi
k". "Thin" watersheds 
an be obtained by per-forming some skeletonization algorithm on the output image. The 
hoi
e whi
hskeletonization algorithm to use is arbitrary.8
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